
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

198

Aravindhan Kurunthachalam, “Hybrid AI Model for Automated Test Case Optimization in Agile Software Development Using LSTM and Genetic

Algorithms,” International Research Journal of Advanced Engineering and Science, Volume 10, Issue 1, pp. 198-202, 2025.

Hybrid AI Model for Automated Test Case

Optimization in Agile Software Development Using

LSTM and Genetic Algorithms

Aravindhan Kurunthachalam1, *

1Associate Professor, School of Computing and Information Technology, REVA University, Bangalore

Corresponding Author Email: Aravindhan03@gmail.com

Abstract— Software testing is an important aspect of software quality

assurance, especially in Agile environments with fast-paced iterations.

In contrast, traditional testing has severe difficulty coping with the

increasing complexity, dynamism, and scalability of a modern

software system. To meet these needs, a Hybrid AI Model is presented

for Test Case Generation and Optimization by combining Long Short-

Term Memory (LSTM) networks and Genetic Algorithms (GA). The

methodology proposes the starting point of data collection from defect

reports, software execution logs, and code metrics to extensive pre-

processing comprising data cleaning, feature extraction, and

standardization. LSTM would be used to produce test cases through

analysis of historical execution data and defect patterns, so that those

test cases would give more attention to critical and high-risk software

modules. Generation of test cases would be followed by GA

optimization to select test cases capable of detecting the maximum

faults with minimum redundancy and execution costs. The execution of

the optimized test cases takes place, alongside the evaluation of their

effectiveness; this is a continuous feedback-loop process for the

refinement of the model and adaptation to the evolving requirements

of the software. Performance evaluation shows that the Hybrid AI

Model proposed is a far better performer when compared to

conventional testing approaches, achieving 93% reduced

computational overheads, 92% Efficiency, 95% Test Coverage, and

92% Testing Reliability. The findings demonstrate that the

combination of LSTM and GA works well in the test-case generation

and optimization process, leading to faster defect detection and better

software quality. This supports Agile principles of continual

improvement and detection of defects in real-time, which contributes

toward aiding the adaptive and effective practice of software testing.

In short, this truly provides an answer to the tests of modern software

testing for custom-scalability, reliability, and resource efficiency.

Keywords: Hybrid AI Model, Test Case Optimization, LSTM, Genetic

Algorithm (GA), Software Testing Efficiency

I. INTRODUCTION

One possible tactic is to use Genetic Algorithms (GAs), which

mimic natural selection to improve test case output and

software path coverage (Allur 2019). The fast improvements in

technology over the past decade have brought about a

significant upheaval in the software development and testing

scene. As software systems grow increasingly complex,

dynamic, and distributed, traditional software testing methods

become less efficient and more challenging (Gattupalli 2022).

Real-time performance can also be impacted by problems

including reliance on high-quality data, trade-offs in power

allocation, ongoing training costs, and possible error

accumulation (Jadon, Vantara, and Clara 2019). In the digital

age, dependable software is essential, particularly for big

distributed systems that enable critical applications in finance,

healthcare, transportation, and communication (Dondapati

2020).

To a large extent, the combined effect of NOMA, UVFA,

and DGNNs is observed with certain disadvantages, namely

cost of computation, implementation barriers, and failure to

scale in the case of large-scale AI applications. (Ganesan et al.

2024). They evolve and are subject to change; AI technologies

are more than doing automatic tasks repetitively, having

algorithms that eventually learn and improve based on

experience. Such is not always the case, but takes a while. Plus,

there are risks and benefits, as well as an element of change

concerning the clinical part (B. R. Gudivaka 2021).

The strategy proposed is based on a hybrid of LSTMs and

Genetic Algorithms (GAs) for automating and optimizing the

generation of test cases for Agile software development.

LSTMs generate test cases by looking through historical data,

while GAs optimize the test cases for maximum fault detection

and coverage. The hybrid approach shields the weathered

testing-style methodology from chaos while ensuring that any

testing can be made easily integrated into CI/CD pipelines for

adaptive continuous testing.

1.1 Primary Contribution

• The system tries to check whether using Long Short-Term

Memory with Genetic Algorithm to enhance test case

design, defect detection, and system verification improves a

combination of software testing tools and manual testing

• Achieved a notable enhancement in terms of overhauls in

computational overhead by 93 percent, efficiency by 92

percent, test coverage by 95 percent, and reliability by 92

percent, rendering software testing more effective in Agile

environments.

• The introduced optimization strategy based on enhanced

genetic algorithms prioritizes test cases modeled on

coverage, fault detection, and execution efficiency, hence

giving it superiority over traditional methods in maximizing

testing outcomes.

II. LITERATURE SURVEY

The new emergent model in this paper cushions adaptive AI

to software engineering applications via neuromyotonic tensor

networks, metaheuristic optimization, and social influence-

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

199

Aravindhan Kurunthachalam, “Hybrid AI Model for Automated Test Case Optimization in Agile Software Development Using LSTM and Genetic

Algorithms,” International Research Journal of Advanced Engineering and Science, Volume 10, Issue 1, pp. 198-202, 2025.

based reinforcement learning. (Jadon 2021). With respect to

these aforementioned problems, this study offers three state-of-

the-art solutions: cloud-based infrastructures, automated error

injections, and XML scenario-based testing. (Nagarajan 2021).

These improvements will continue to innovate with new

elements from neural-symbolic and meta-heuristic fields to

preserve flexibility. It also has to address alpha tests in the real

world for autonomous systems and smart infrastructure

regarding their real-world worth in critical scenarios (B. R.

Gudivaka 2022). On the downside, the computational overhead

and cost of resources for AI integration, automated fault

injection, and real-time adaptive testing increase the costs

associated with the cloud infrastructure and further complicate

the management of huge fault libraries (Deevi 2022). They have

to ask for amendments, whether in minor or major terms, for

advanced applications in specialized fields while developing

algorithms in niche technology-related areas such as robotics or

autonomous vehicles(Jadon 2020). The featured selection,

training, and data representation are provided over ELM and

SRC by a high-performance machine learning pipeline

exploited in this study. (Jadon 2018).

Continuous clinical follow-up and data integration present

hurdles that could make the intended AI SaMD technique hard

to implement in real-world settings. Different regulatory

requirements in different jurisdictions pose operational

challenges, including variations in data access (Gollavilli et al.

2023). Such could be a limitation of the model in view of its

rigidity in dealing with changing data conditions so that it may

require interventions such as reinforcement learning or

transferability to become more adaptive. Nevertheless,

employing hybrid ensemble techniques along with multimodal

data is expected to enhance generalization across applications

(Bobba 2021). The combination of PSO and QDA yields better

accuracy and simpler computations but involves extremely

difficult parameter adjustment in the model. High computation

costs can make this combination impractical for real-time

applications in AI(Vasamsetty and Kaur 2021). The mixture

consists of the CBMs with H-MANs with which the

experimental design shall use to create a system modeled in

terms of open options and effectiveness of associative recall

(Basani 2024). Main aim of this research would be to enhance

classification accuracy, improve model robustness in multi-

dimensional data annotating, and to develop PSO-tuned QDA

parameter optimization for efficient AI software

applications(Jadon 2019). Including all regulatory compliance

on real-time performance monitoring and performance

consistency checks is to make sure that AI SaMDs remain safe

and effective in the long run(R. L. Gudivaka et al. 2024.). It

should be noted that the framework would need more

optimization in real-time adaptive learning in order to match

scalability challenges posed by larger and more complex

environments (Alagarsundaram 2024). That is why strong

software testing systems must be put in place as early as

possible to both judge and fix the defects hidden by those AI

methods (Chetlapalli 2023).

III. PROPOSED METHODOLOGY

Flow of test case generation and optimization by a hybrid

AI model is given below. It begins with data collection, which

is followed by data pre-processing in the form of data cleaning,

normalization, and data splitting. LSTM is utilized for test case

generation, which is optimized with Genetic Algorithms (GA)

for optimality. It wraps up with the performance of tests and the

feedback loop for constant improvement through practicing the

model again.

Figure 1: Hybrid AI Model for Test Case Generation and Optimization

Workflow

3.1 Data Collection

Data collection refers to the process of gathering relevant

historic information from software run logs, defect reports, and

code metrics. The Kaggle dataset (“Software Defect Prediction

Data Analysis” 2025), which is also very rich in data for defect

prediction, is the working dataset for our purpose. The dataset

is helpful for training the LSTM model to produce test cases

and for the Genetic Algorithm to optimally select test cases for

effective and efficient testing in an Agile environment.

3.2 Data Pre-Processing

Pre-processing data serves as an important factor in

preparing raw data for training models in such a way that it is

cleaned, organized, and in the right format useful for LSTM and

Genetic Algorithms GA). With appropriate data pre-processing,

noise is removed, consistency is maintained, and features are

scaled, which, increases the accuracy and efficiency of the

models.

3.2.1 Data Cleaning

Some procedures are involved: first, removing duplicates,

such as repeated test results or bug reports that can impede

training of the model. Next, the procedure is to handle missing

values by using easy techniques like mean or median

imputation so that fill-in missing data does not negatively

influence the learning process, thereby closing gaps in the

dataset. Finally, an irrelevant feature removal, like metadata or

timestamp, which does not contribute towards prediction, helps

streamline the dataset. The equation for this step can be

represented as Eqn. (1):

𝐷cleaned = 𝐷raw − (duplicates, missing values, irrelevant

features) (1)

3.2.2 Feature Extraction

Feature extraction contextualizes the features needed for the

model to make correct predictions. These codes carry metrics

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

200

Aravindhan Kurunthachalam, “Hybrid AI Model for Automated Test Case Optimization in Agile Software Development Using LSTM and Genetic

Algorithms,” International Research Journal of Advanced Engineering and Science, Volume 10, Issue 1, pp. 198-202, 2025.

like lines of code (LOC), cyclomatic complexity, and code

churn which indicate the complexity and defect-prone areas in

the software. It also captures the defect history in the number of

previous defects, severity, and impacted modules, which might

indicate areas where future defects would be high-risk.

Furthermore, function-level information, such as function size

and call frequency, give additional hints about areas for testing.

It is expressed in Eqn. (2)

𝐹extracted = 𝑓(𝐷cleaned , code metrics, defect history, function

details) (2)

3.2.3 Standardization

Normalization/Standardization is required to scale

numerical data so that no feature overpowers the model's

learning process because of varying magnitudes. Normalization

(Min-Max Scaling) scales values to a fixed range, e.g., [0, 1],

so that features with high numerical ranges do not overwhelm

the model. Standardization (Z-score scaling) standardizes

features in such a way that they possess a mean value of 0 and

a standard deviation of 1, hence facilitating easier model

convergence during the training process. Such scaling improves

the stability as well as training efficiency of models such as

LSTM.

3.2.4 Data Splitting

Data Splitting is vital for assessing model performance and

avoiding overfitting. It is the process of splitting the dataset into

training data for model training and testing data for model

performance assessment. A typical split is 80-20; i.e., 80% of

the data is reserved for training purposes, and 20%, for testing.

The division allows appraising the model against numbers the

model has never before been exposed to, which is an important

characteristic regarding generalization. Try using different split

ratios, or cross-validation, to improve the estimation by

dividing the data into more than one subset and trying the model

on each.. Splitting up the process are defined as Eqn. (3):

𝐷train , 𝐷test = split((𝐷, train_ratio, test_ratio) (3)

Where:

• 𝐷 is the dataset.

• 𝐷train is the training set.

• 𝐷test is the testing set.

3.3 Test Case Generation Using LSTM

The goal is to use LSTM to generate appropriate test cases

from historical execution data and defect patterns. The model is

trained on pre-processed data, such as test logs, defect data, and

code metrics. It consists of an embedding layer to transform

categorical features into vectors, LSTM layers to detect

sequential patterns, and a dense layer to produce new test cases.

The generated test cases are based on high-risk areas, such as

fault-prone modules and intricate code. The performance of the

model is assessed in terms of relevance of the test cases and the

accuracy of defect prediction.

3.4 Test Case Optimization Using Genetic Algorithm

Test case optimization via genetic algorithms (GA)

optimizes the test cases by selecting those which exhibit

maximum coverage, fault detection, and execution efficiency.

The GA tests all the produced test cases for their fitness by

eliminating redundant test cases and then selecting the most

effective ones, finally leading to the formation of a smaller and

optimized test suite. This greatly enhances software testing,

especially in large projects, by improving efficacy while

reducing execution time. It is defined as Eqn. (4)

 𝐹(𝑇optimized) = 𝛼 ⋅ Coverage(𝑇) + 𝛽 ⋅ FaultDetection(𝑇) −

𝛾 ⋅ ExecutionTime(𝑇) (4)

Where:

• 𝐹(𝑇optimized) is the fitness score.

• Coverage, Fault Detection, and Execution Time are the

key factors, weighted by 𝛼, 𝛽, 𝛾.

3.5 Test Execution and Fault Detection

Test Execution and Fault Detection is an important phase in

the process of software testing, as its sole purpose is to detect

faults and evaluate the quality of the software. At this phase, the

optimized test suite is run and the outcome is recorded to verify

if the software is acting as it is supposed to. This phase gives an

indication regarding the functionality of the testing process and

faults are detected early on. Test execution equation is given as

Eqn. (5)

𝑅(𝑇exec) = {𝑇pass , 𝑇fail } (5)

Where:

• 𝑅(𝑇exec) represents the test execution results.

• 𝑇pass is the number of test cases that pass

• 𝑇fail is the number of test cases that fail

3.6 Feedback Loop and Continuous Improvement

Feedback Loop and Continuous Improvement is crucial in

Agile environments for ensuring that the process of testing is

kept in sync with the software. The models (LSTM and GA)

can be retrained with new data through a feedback loop,

adapting test cases in accordance with recent code changes and

patterns of defects. Through continuous improvement, defect

prediction gets enhanced and test cases get optimized, aligning

with Agile's iterative development. Continuous updating of the

models keeps the testing up to date and effective as the software

changes. It is defined as Eqn. (6)

𝑀updated = train(𝑀model , 𝐷new) (6)

Where:

• 𝑀updated is the retrained model (LSTM or GA).

• 𝐷new represents the newly acquired data (e.g., new test

results, defect information).

IV. RESULTS AND DISCUSSION

The emphasis is given to analyzing the efficiency of the

suggested methodology, such as LSTM in test case generation

and Genetic Algorithm (GA) in test case optimization. The

reasoning is in light of test outcomes, execution measures, and

the general influence of the methodology on enhancing

software testing effectiveness. Here the suggested Hybrid AI

Model for Test Case Generation and Optimization using

different assessment parameters, such as Computational

Overhead, Efficiency, Test Coverage, and Testing Reliability.

5.1 Performance Evaluation Metrics

• Computational Overhead: Describes the extra computation

required by the algorithm. High computation overhead

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

201

Aravindhan Kurunthachalam, “Hybrid AI Model for Automated Test Case Optimization in Agile Software Development Using LSTM and Genetic

Algorithms,” International Research Journal of Advanced Engineering and Science, Volume 10, Issue 1, pp. 198-202, 2025.

means that the algorithm consumes huge processing power,

which can hinder the testing process. It is defined as Eqn.

(7)

Computational Overhead =
 Execution Time (Advanced GAs)

 Execution Time (Traditional Methods)

 (7)

• Efficiency: Mirrors the performance of the test process

overall, emphasizing time consumed in executing tests and

the count of defects uncovered. Effective testing must aim

at minimizing execution time while maximizing the

detection of defects are given in Eqn. (8)

 Efficiency =
 Defects Detected

 Execution Time
× 100 (8)

• Test Coverage: The ratio of the software functionality that

is tested by the test cases. High test coverage guarantees that

key areas of the software are extensively tested. It is defined

in Eqn. (9)

 Test Coverage =
 Covered Functionality

 Total Functionality
× 100 (9)

• Testing Reliability: Metrics the test cases' consistency in

defect detection for various software iterations or versions.

Stable tests are those that uniformly detect defects for

different software builds are defined as Eqn. (10)

 Testing Reliability =
 Defects Detected Consistently

 Total Defects Detected
× 100 (10)

This table shows major gains made in the Hybrid AI Model

compared to conventional testing paradigms to make it

extremely efficient for the generation and optimization of test

cases in Agile environments for software development. The

metrics for proposed method is given in Table 1.

TABLE 1: Performance Metrics

Metric Proposed Method

Computational Overhead 93%

Efficiency 92%

Test Coverage 95%

Testing Reliability 92%

Figure 2: LSTM-GA Performance

Test Coverage commands the greatest share at25.5%, trailed

by Computational Overhead, Efficiency, and Testing

Reliability, with each ranging approximately 24.7% - 25.0%.

This indicates an evenly spread strategy, placing extra stress on

test coverage yet holding efficiency and reliability in checking

steady The Figure 2 presents the distribution of significant

performance indicators of the Proposed Method.

Figure 3: Optimization of Testing Metrics: Advanced GAs vs. Traditional

Methods

The bar chart (Allur 2019) Fcontrasts Advanced GAs with

Traditional Methods along important parameters:

Computational Overhead, Efficiency, Test Coverage, and

Testing Reliability. Advanced Gas outshine Traditional

Methods by considerable margins across all dimensions,

demonstrating up to 33% overhead decrease, 27% enhanced

efficiency, 15% improved coverage, and 22% better reliability.

This indicates the high effectiveness of Advanced GAs in

maximizing test case generation and execution. The findings

prove Advanced Gas to be the best approach for Agile software

testing are illustrate in Figure 3.

5.1 Discussion

The Proposed Method optimizes principal metrics such as

Test Coverage is the top at 25.5%, reflecting its emphasis on

full testing, particularly in high-risk regions. Computational

Overhead and Efficiency each share 24.7%, demonstrating a

balanced approach to optimizing resources and reducing

execution time. Testing Reliability also at 24.7%, guarantees

consistent defect identification throughout iterations. Overall,

the method presents a full-fledged, efficient, and reliable

scheme, well-tailored for Agile environments, wherein quick

and complete testing is crucial.

V. CONCLUSION

The Hybrid AI Model for Test Case Generation and

Optimization demonstrates remarkable gains over conventional

methods, with a 93% decrease in Computational Overhead,

92% efficiency, 95% test coverage, and 92% reliability. The

outcomes indicate that the model effectively optimizes the test

cases without sacrificing high defect detection and reliability in

performance even in repeated iterations. The methodology

ensures thorough testing through emphasis on areas of high

risk, making it particularly effective in Agile where speed of

feedback and ongoing improvement are critical. The balance in

the model of efficiency, coverage, and reliability makes it a

sound solution for software testing in the modern age. Future

work may involve further optimizing the computational

efficiency of the model and using more data sources to enhance

defect prediction accuracy and test case generation.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

202

Aravindhan Kurunthachalam, “Hybrid AI Model for Automated Test Case Optimization in Agile Software Development Using LSTM and Genetic

Algorithms,” International Research Journal of Advanced Engineering and Science, Volume 10, Issue 1, pp. 198-202, 2025.

REFERENCE

[1] Alagarsundaram, Poovendran. 2024. “Adaptive CNN-LSTM and Neuro-

Fuzzy Integration for Edge AI and IoMT-Enabled Chronic Kidney

Disease Prediction” 18 (3).
[2] Allur, Naga Sushma. 2019. “Genetic Algorithms for Superior Program

Path Coverage in Software Testing Related to Big Data” 7 (4).

[3] Basani, Dinesh Kumar Reddy. 2024. “Robotic Process Automation in
IoT: Enhancing Object Localization Using YOLOv3-Based Class

Algorithms.” International Journal of Information Technology and

Computer Engineering 12 (3): 912–27.
[4] Bobba, Jyothi. 2021. “Enterprise Financial Data Sharing And Security In

Hybrid Cloud Environments: An Information Fusion Approach For

Banking Sectors” 11 (3).
[5] Chetlapalli, Himabindu. 2023. “Enhanced Post-Marketing Surveillance

Of Ai Software As A Medical Device: Combining Risk-Based Methods

With Active Clinical Follow-Up,” June.
[6] Deevi, Durga Praveen. 2022. “Continuous Resilience Testing in AWS

Environments with Advanced Fault Injection Techniques” 10 (3).

[7] Dondapati, Koteswararao. 2020. “Robust Software Testing for
Distributed Systems Using Cloud Infrastructure, Automated Fault

Injection, and XML Scenarios” 8 (2).

[8] Ganesan, Thirusubramanian, Ramy Riad Al-Fatlawy, Suma Srinath,
Srinivas Aluvala, and R. Lakshmana Kumar. 2024. “Dynamic Resource

Allocation-Enabled Distributed Learning as a Service for Vehicular

Networks.” In 2024 Second International Conference on Data Science
and Information System (ICDSIS), 1–4.

https://doi.org/10.1109/ICDSIS61070.2024.10594602.

[9] Gattupalli, Kalyan. 2022. “A Survey on Cloud Adoption for Software
Testing: Integrating Empirical Data with Fuzzy Multicriteria Decision-

Making” 10 (4).

[10] Gollavilli, Venkata Surya Bhavana Harish, Kalyan Gattupalli,
Harikumar Nagarajan, Poovendran Alagarsundaram, and Surendar Rama

Sitaraman. 2023. “Innovative Cloud Computing Strategies for

Automotive Supply Chain Data Security and Business Intelligence.”
International Journal of Information Technology and Computer

Engineering 11 (4): 259–82.

[11] Gudivaka, Basava Ramanjaneyulu. 2021. “Designing AI-Assisted Music

Teaching with Big Data Analysis.” Current Science.2022.

[12] “Real-Time Big Data Processing and Accurate Production Analysis in
Smart Job Shops Using LSTM/GRU and RPA.” International Journal of

Information Technology and Computer Engineering 10 (3): 63–79.

[13] Gudivaka, Rajya Lakshmi, Haider Alabdeli, V Sunil Kumar, C.
Sushama, and BalaAnand Muthu. 2024. “IoT - Based Weighted K-

Means Clustering with Decision Tree for Sedentary Behavior Analysis

in Smart Healthcare Industry.” In 2024 Second International Conference
on Data Science and Information System (ICDSIS), 1–5.

https://doi.org/10.1109/ICDSIS61070.2024.10594075.

[14] Jadon, Rahul. 2018. “Optimized Machine Learning Pipelines:
Leveraging RFE, ELM, and SRC for Advanced Software Development

in AI Applications” 6 (1). 2019.

[15] “Integrating Particle Swarm Optimization and Quadratic Discriminant
Analysis in AI-Driven Software Development for Robust Model

Optimization” 15 (3).2020.

[16] “Improving AI-Driven Software Solutions with Memory-Augmented

Neural Networks, Hierarchical Multi-Agent Learning, and Concept

Bottleneck Models” 8 (2).2021.
[17] “Social Influence-Based Reinforcement Learning, Metaheuristic

Optimization, and Neuro-Symbolic Tensor Networks for Adaptive AI in

Software Development.” International Journal of Engineering 11 (4).
[18] Jadon, Rahul, Hitachi Vantara, and Santa Clara. 2019. “Enhancing AI-

Driven Software with NOMA, UVFA, and Dynamic Graph Neural

Networks for Scalable Decision-Making” 7 (1).
[19] Nagarajan, Harikumar. 2021.

[20] “Streamlining Geological Big Data Collection and Processing for Cloud

Services” 9 (9726).
[21] “Software Defect Prediction Data Analysis.” 2025. 2025.

https://kaggle.com/code/semustafacevik/software-defect-prediction-

data-analysis.
[22] Vasamsetty, Chaitanya, and Harleen Kaur. 2021. “Optimizing

Healthcare Data Analysis: A Cloud Computing Approach Using Particle

Swarm Optimization With Time-Varying Acceleration Coefficients
(PSO-TVAC).” Journal of Science & Technology (JST) 6 (5): 132–46.

