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Abstract— Software testing is an important aspect of software quality 

assurance, especially in Agile environments with fast-paced iterations. 

In contrast, traditional testing has severe difficulty coping with the 

increasing complexity, dynamism, and scalability of a modern 

software system. To meet these needs, a Hybrid AI Model is presented 

for Test Case Generation and Optimization by combining Long Short-

Term Memory (LSTM) networks and Genetic Algorithms (GA). The 

methodology proposes the starting point of data collection from defect 

reports, software execution logs, and code metrics to extensive pre-

processing comprising data cleaning, feature extraction, and 

standardization. LSTM would be used to produce test cases through 

analysis of historical execution data and defect patterns, so that those 

test cases would give more attention to critical and high-risk software 

modules. Generation of test cases would be followed by GA 

optimization to select test cases capable of detecting the maximum 

faults with minimum redundancy and execution costs. The execution of 

the optimized test cases takes place, alongside the evaluation of their 

effectiveness; this is a continuous feedback-loop process for the 

refinement of the model and adaptation to the evolving requirements 

of the software. Performance evaluation shows that the Hybrid AI 

Model proposed is a far better performer when compared to 

conventional testing approaches, achieving 93% reduced 

computational overheads, 92% Efficiency, 95% Test Coverage, and 

92% Testing Reliability. The findings demonstrate that the 

combination of LSTM and GA works well in the test-case generation 

and optimization process, leading to faster defect detection and better 

software quality. This supports Agile principles of continual 

improvement and detection of defects in real-time, which contributes 

toward aiding the adaptive and effective practice of software testing. 

In short, this truly provides an answer to the tests of modern software 

testing for custom-scalability, reliability, and resource efficiency. 

 

Keywords:  Hybrid AI Model, Test Case Optimization, LSTM, Genetic 

Algorithm (GA), Software Testing Efficiency 

I. INTRODUCTION  

One possible tactic is to use Genetic Algorithms (GAs), which 

mimic natural selection to improve test case output and 

software path coverage (Allur 2019). The fast improvements in 

technology over the past decade have brought about a 

significant upheaval in the software development and testing 

scene. As software systems grow increasingly complex, 

dynamic, and distributed, traditional software testing methods 

become less efficient and more challenging (Gattupalli 2022). 

Real-time performance can also be impacted by problems 

including reliance on high-quality data, trade-offs in power 

allocation, ongoing training costs, and possible error 

accumulation  (Jadon, Vantara, and Clara 2019). In the digital 

age, dependable software is essential, particularly for big 

distributed systems that enable critical applications in finance, 

healthcare, transportation, and communication (Dondapati 

2020). 

To a large extent, the combined effect of NOMA, UVFA, 

and DGNNs is observed with certain disadvantages, namely 

cost of computation, implementation barriers, and failure to 

scale in the case of large-scale AI applications. (Ganesan et al. 

2024). They evolve and are subject to change; AI technologies 

are more than doing automatic tasks repetitively, having 

algorithms that eventually learn and improve based on 

experience. Such is not always the case, but takes a while. Plus, 

there are risks and benefits, as well as an element of change 

concerning the clinical part (B. R. Gudivaka 2021). 

The strategy proposed is based on a hybrid of LSTMs and 

Genetic Algorithms (GAs) for automating and optimizing the 

generation of test cases for Agile software development. 

LSTMs generate test cases by looking through historical data, 

while GAs optimize the test cases for maximum fault detection 

and coverage. The hybrid approach shields the weathered 

testing-style methodology from chaos while ensuring that any 

testing can be made easily integrated into CI/CD pipelines for 

adaptive continuous testing. 

1.1 Primary Contribution 

• The system tries to check whether using Long Short-Term 

Memory with Genetic Algorithm to enhance test case 

design, defect detection, and system verification improves a 

combination of software testing tools and manual testing 

• Achieved a notable enhancement in terms of overhauls in 

computational overhead by 93 percent, efficiency by 92 

percent, test coverage by 95 percent, and reliability by 92 

percent, rendering software testing more effective in Agile 

environments. 

• The introduced optimization strategy based on enhanced 

genetic algorithms prioritizes test cases modeled on 

coverage, fault detection, and execution efficiency, hence 

giving it superiority over traditional methods in maximizing 

testing outcomes. 

II. LITERATURE SURVEY 

The new emergent model in this paper cushions adaptive AI 

to software engineering applications via neuromyotonic tensor 

networks, metaheuristic optimization, and social influence-
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based reinforcement learning. (Jadon 2021). With respect to 

these aforementioned problems, this study offers three state-of-

the-art solutions: cloud-based infrastructures, automated error 

injections, and XML scenario-based testing. (Nagarajan 2021). 

These improvements will continue to innovate with new 

elements from neural-symbolic and meta-heuristic fields to 

preserve flexibility. It also has to address alpha tests in the real 

world for autonomous systems and smart infrastructure 

regarding their real-world worth in critical scenarios (B. R. 

Gudivaka 2022). On the downside, the computational overhead 

and cost of resources for AI integration, automated fault 

injection, and real-time adaptive testing increase the costs 

associated with the cloud infrastructure and further complicate 

the management of huge fault libraries (Deevi 2022). They have 

to ask for amendments, whether in minor or major terms, for 

advanced applications in specialized fields while developing 

algorithms in niche technology-related areas such as robotics or 

autonomous vehicles(Jadon 2020). The featured selection, 

training, and data representation are provided over ELM and 

SRC by a high-performance machine learning pipeline 

exploited in this study. (Jadon 2018). 

Continuous clinical follow-up and data integration present 

hurdles that could make the intended AI SaMD technique hard 

to implement in real-world settings. Different regulatory 

requirements in different jurisdictions pose operational 

challenges, including variations in data access (Gollavilli et al. 

2023). Such could be a limitation of the model in view of its 

rigidity in dealing with changing data conditions so that it may 

require interventions such as reinforcement learning or 

transferability to become more adaptive. Nevertheless, 

employing hybrid ensemble techniques along with multimodal 

data is expected to enhance generalization across applications 

(Bobba 2021). The combination of PSO and QDA yields better 

accuracy and simpler computations but involves extremely 

difficult parameter adjustment in the model. High computation 

costs can make this combination impractical for real-time 

applications in AI(Vasamsetty and Kaur 2021). The mixture 

consists of the CBMs with H-MANs with which the 

experimental design shall use to create a system modeled in 

terms of open options and effectiveness of associative recall 

(Basani 2024). Main aim of this research would be to enhance 

classification accuracy, improve model robustness in multi-

dimensional data annotating, and to develop PSO-tuned QDA 

parameter optimization for efficient AI software 

applications(Jadon 2019). Including all regulatory compliance 

on real-time performance monitoring and performance 

consistency checks is to make sure that AI SaMDs remain safe 

and effective in the long run(R. L. Gudivaka et al. 2024.). It 

should be noted that the framework would need more 

optimization in real-time adaptive learning in order to match 

scalability challenges posed by larger and more complex 

environments (Alagarsundaram 2024). That is why strong 

software testing systems must be put in place as early as 

possible to both judge and fix the defects hidden by those AI 

methods (Chetlapalli 2023). 

III. PROPOSED METHODOLOGY 

Flow of test case generation and optimization by a hybrid 

AI model is given below. It begins with data collection, which 

is followed by data pre-processing in the form of data cleaning, 

normalization, and data splitting. LSTM is utilized for test case 

generation, which is optimized with Genetic Algorithms (GA) 

for optimality. It wraps up with the performance of tests and the 

feedback loop for constant improvement through practicing the 

model again. 

 
Figure 1: Hybrid AI Model for Test Case Generation and Optimization 

Workflow 

3.1 Data Collection 

Data collection refers to the process of gathering relevant 

historic information from software run logs, defect reports, and 

code metrics. The Kaggle dataset (“Software Defect Prediction 

Data Analysis” 2025), which is also very rich in data for defect 

prediction, is the working dataset for our purpose. The dataset 

is helpful for training the LSTM model to produce test cases 

and for the Genetic Algorithm to optimally select test cases for 

effective and efficient testing in an Agile environment. 

3.2 Data Pre-Processing 

Pre-processing data serves as an important factor in 

preparing raw data for training models in such a way that it is 

cleaned, organized, and in the right format useful for LSTM and 

Genetic Algorithms GA). With appropriate data pre-processing, 

noise is removed, consistency is maintained, and features are 

scaled, which, increases the accuracy and efficiency of the 

models. 

3.2.1 Data Cleaning 

Some procedures are involved: first, removing duplicates, 

such as repeated test results or bug reports that can impede 

training of the model. Next, the procedure is to handle missing 

values by using easy techniques like mean or median 

imputation so that fill-in missing data does not negatively 

influence the learning process, thereby closing gaps in the 

dataset. Finally, an irrelevant feature removal, like metadata or 

timestamp, which does not contribute towards prediction, helps 

streamline the dataset. The equation for this step can be 

represented as Eqn. (1): 

𝐷cleaned = 𝐷raw − ( duplicates, missing values, irrelevant 

features )                (1) 

3.2.2 Feature Extraction 

Feature extraction contextualizes the features needed for the 

model to make correct predictions. These codes carry metrics 
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like lines of code (LOC), cyclomatic complexity, and code 

churn which indicate the complexity and defect-prone areas in 

the software. It also captures the defect history in the number of 

previous defects, severity, and impacted modules, which might 

indicate areas where future defects would be high-risk. 

Furthermore, function-level information, such as function size 

and call frequency, give additional hints about areas for testing. 

It is expressed in Eqn. (2) 

𝐹extracted = 𝑓(𝐷cleaned , code metrics, defect history, function 

details )         (2) 

3.2.3 Standardization 

Normalization/Standardization is required to scale 

numerical data so that no feature overpowers the model's 

learning process because of varying magnitudes. Normalization 

(Min-Max Scaling) scales values to a fixed range, e.g., [0, 1], 

so that features with high numerical ranges do not overwhelm 

the model. Standardization (Z-score scaling) standardizes 

features in such a way that they possess a mean value of 0 and 

a standard deviation of 1, hence facilitating easier model 

convergence during the training process. Such scaling improves 

the stability as well as training efficiency of models such as 

LSTM. 

3.2.4 Data Splitting 

Data Splitting is vital for assessing model performance and 

avoiding overfitting. It is the process of splitting the dataset into 

training data for model training and testing data for model 

performance assessment. A typical split is 80-20; i.e., 80% of 

the data is reserved for training purposes, and 20%, for testing. 

The division allows appraising the model against numbers the 

model has never before been exposed to, which is an important 

characteristic regarding generalization. Try using different split 

ratios, or cross-validation, to improve the estimation by 

dividing the data into more than one subset and trying the model 

on each.. Splitting up the process are defined as Eqn. (3): 

𝐷train , 𝐷test =  split( (𝐷, train_ratio, test_ratio ) (3) 

Where: 

• 𝐷 is the dataset. 

• 𝐷train  is the training set. 

• 𝐷test  is the testing set. 

3.3 Test Case Generation Using LSTM 

The goal is to use LSTM to generate appropriate test cases 

from historical execution data and defect patterns. The model is 

trained on pre-processed data, such as test logs, defect data, and 

code metrics. It consists of an embedding layer to transform 

categorical features into vectors, LSTM layers to detect 

sequential patterns, and a dense layer to produce new test cases. 

The generated test cases are based on high-risk areas, such as 

fault-prone modules and intricate code. The performance of the 

model is assessed in terms of relevance of the test cases and the 

accuracy of defect prediction. 

3.4 Test Case Optimization Using Genetic Algorithm 

Test case optimization via genetic algorithms (GA) 

optimizes the test cases by selecting those which exhibit 

maximum coverage, fault detection, and execution efficiency. 

The GA tests all the produced test cases for their fitness by 

eliminating redundant test cases and then selecting the most 

effective ones, finally leading to the formation of a smaller and 

optimized test suite. This greatly enhances software testing, 

especially in large projects, by improving efficacy while 

reducing execution time. It is defined as Eqn. (4) 

  𝐹(𝑇optimized ) = 𝛼 ⋅ Coverage(𝑇) + 𝛽 ⋅ FaultDetection(𝑇) −

𝛾 ⋅ ExecutionTime(𝑇) (4) 

Where: 

• 𝐹(𝑇optimized ) is the fitness score. 

• Coverage, Fault Detection, and Execution Time are the 

key factors, weighted by 𝛼, 𝛽, 𝛾. 

3.5 Test Execution and Fault Detection 

Test Execution and Fault Detection is an important phase in 

the process of software testing, as its sole purpose is to detect 

faults and evaluate the quality of the software. At this phase, the 

optimized test suite is run and the outcome is recorded to verify 

if the software is acting as it is supposed to. This phase gives an 

indication regarding the functionality of the testing process and 

faults are detected early on. Test execution equation is given as 

Eqn. (5) 

𝑅(𝑇exec ) = {𝑇pass , 𝑇fail }     (5) 

Where: 

• 𝑅(𝑇exec ) represents the test execution results. 

• 𝑇pass  is the number of test cases that pass 

• 𝑇fail  is the number of test cases that fail 

3.6 Feedback Loop and Continuous Improvement 

Feedback Loop and Continuous Improvement is crucial in 

Agile environments for ensuring that the process of testing is 

kept in sync with the software. The models (LSTM and GA) 

can be retrained with new data through a feedback loop, 

adapting test cases in accordance with recent code changes and 

patterns of defects. Through continuous improvement, defect 

prediction gets enhanced and test cases get optimized, aligning 

with Agile's iterative development. Continuous updating of the 

models keeps the testing up to date and effective as the software 

changes. It is defined as Eqn. (6) 

𝑀updated = train(𝑀model , 𝐷new )                                  (6) 

Where: 

• 𝑀updated  is the retrained model (LSTM or GA). 

• 𝐷new  represents the newly acquired data (e.g., new test 

results, defect information). 

IV. RESULTS AND DISCUSSION 

The emphasis is given to analyzing the efficiency of the 

suggested methodology, such as LSTM in test case generation 

and Genetic Algorithm (GA) in test case optimization. The 

reasoning is in light of test outcomes, execution measures, and 

the general influence of the methodology on enhancing 

software testing effectiveness. Here the suggested Hybrid AI 

Model for Test Case Generation and Optimization using 

different assessment parameters, such as Computational 

Overhead, Efficiency, Test Coverage, and Testing Reliability. 

5.1 Performance Evaluation Metrics 

• Computational Overhead: Describes the extra computation 

required by the algorithm. High computation overhead 
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means that the algorithm consumes huge processing power, 

which can hinder the testing process. It is defined as Eqn. 

(7) 

Computational Overhead =
 Execution Time (Advanced GAs) 

 Execution Time (Traditional Methods) 

 (7) 

• Efficiency: Mirrors the performance of the test process 

overall, emphasizing time consumed in executing tests and 

the count of defects uncovered. Effective testing must aim 

at minimizing execution time while maximizing the 

detection of defects are given in Eqn. (8) 

 Efficiency =
 Defects Detected 

 Execution Time 
× 100         (8) 

• Test Coverage: The ratio of the software functionality that 

is tested by the test cases. High test coverage guarantees that 

key areas of the software are extensively tested. It is defined 

in Eqn. (9) 

  Test Coverage =
 Covered Functionality 

 Total Functionality 
× 100                   (9) 

• Testing Reliability: Metrics the test cases' consistency in 

defect detection for various software iterations or versions. 

Stable tests are those that uniformly detect defects for 

different software builds are defined as Eqn. (10) 

 Testing Reliability =
 Defects Detected Consistently 

 Total Defects Detected 
× 100       (10) 

This table shows major gains made in the Hybrid AI Model 

compared to conventional testing paradigms to make it 

extremely efficient for the generation and optimization of test 

cases in Agile environments for software development. The 

metrics for proposed method is given in Table 1. 

 
TABLE 1: Performance Metrics 

Metric Proposed Method 

Computational Overhead 93% 

Efficiency 92% 

Test Coverage 95% 

Testing Reliability 92% 

 

 
Figure 2: LSTM-GA Performance 

 

Test Coverage commands the greatest share at25.5%, trailed 

by Computational Overhead, Efficiency, and Testing 

Reliability, with each ranging approximately 24.7% - 25.0%. 

This indicates an evenly spread strategy, placing extra stress on 

test coverage yet holding efficiency and reliability in checking 

steady The Figure 2 presents the distribution of significant 

performance indicators of the Proposed Method. 

 
Figure 3: Optimization of Testing Metrics: Advanced GAs vs. Traditional 

Methods 

 

The bar chart (Allur 2019) Fcontrasts Advanced GAs with 

Traditional Methods along important parameters: 

Computational Overhead, Efficiency, Test Coverage, and 

Testing Reliability. Advanced Gas outshine Traditional 

Methods by considerable margins across all dimensions, 

demonstrating up to 33% overhead decrease, 27% enhanced 

efficiency, 15% improved coverage, and 22% better reliability. 

This indicates the high effectiveness of Advanced GAs in 

maximizing test case generation and execution. The findings 

prove Advanced Gas to be the best approach for Agile software 

testing are illustrate in Figure 3. 

5.1 Discussion  

The Proposed Method optimizes principal metrics such as 

Test Coverage is the top at 25.5%, reflecting its emphasis on 

full testing, particularly in high-risk regions. Computational 

Overhead and Efficiency each share 24.7%, demonstrating a 

balanced approach to optimizing resources and reducing 

execution time. Testing Reliability also at 24.7%, guarantees 

consistent defect identification throughout iterations. Overall, 

the method presents a full-fledged, efficient, and reliable 

scheme, well-tailored for Agile environments, wherein quick 

and complete testing is crucial. 

V. CONCLUSION 

The Hybrid AI Model for Test Case Generation and 

Optimization demonstrates remarkable gains over conventional 

methods, with a 93% decrease in Computational Overhead, 

92% efficiency, 95% test coverage, and 92% reliability. The 

outcomes indicate that the model effectively optimizes the test 

cases without sacrificing high defect detection and reliability in 

performance even in repeated iterations. The methodology 

ensures thorough testing through emphasis on areas of high 

risk, making it particularly effective in Agile where speed of 

feedback and ongoing improvement are critical. The balance in 

the model of efficiency, coverage, and reliability makes it a 

sound solution for software testing in the modern age. Future 

work may involve further optimizing the computational 

efficiency of the model and using more data sources to enhance 

defect prediction accuracy and test case generation. 
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