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Abstract— Exhaust gas emissions resulting from the combustion of a 

combustion engine can determine the efficiency of the engine. 

Recently, the use of Artificial Neural Network (ANN) methods has 

been explored to predict exhaust gas output from combustion 

processes. This research aims to predict exhaust emissions produced 

by considering factors such as fuel type, torque, and engine speed by 

developing an ANN model trained using the Levenberg-Marquardt 

(LM) algorithm. The results indicate that the ANN model trained with 

the LM algorithm successfully predicted exhaust emissions with high 

accuracy, yielding a Correlation Coefficient (R) of 0.99514, a 

Determination Coefficient (R²) of 0.9903, and a low Root Mean 

Squared Error (RMSE) of 0.0017. These findings suggest that ANN 

models can be effective tools for predicting exhaust gas emissions, 

potentially contributing to improvements in engine efficiency and 

environmental sustainability. 

 

Keywords— Generator set; Liquified Petroleum Gas; Artificial 

Neural Network; Fuel properties, emissions 

I. INTRODUCTION  

Currently, Fuel Oil is increasingly popular among Indonesian 

people as a source of energy. However, the use of fuel oil 

causes negative impacts on the environment because it 

increases exhaust emissions and contributes to global 

warming. In 2018, there was an increase in greenhouse gas 

emissions of 14% GHG emissions, 73% of which was caused 

by the transportation sector [1]. The effort taken is to increase 

existing standards, namely nitrogen oxides (NOx), which 

contributes greatly to the formation of air pollution, will be 

reduced.[2]  

Various studies have been carried out to reduce emissions 

caused by the combustion process [3][4][5]. There are several 

studies that have been carried out using spark ignition (SI) 

engines with various alternative fuels, one of them that is 

considered good is compressed natural gas [6]. Therefore, 

Indonesia has great potential to replace transportation fuels 

such as natural gas. One option for Fuel Oil is LPG (Liquified 

Petroleum Gas), which is obtained from natural gas. Indonesia 

has abundant natural gas reserves. LPG has a high octane 

value, around 112, so it is suitable for use in petrol engines 

(spark ignited). LPG can be an alternative fuel for Spark-

ignition (SI) engine, especially for vehicle applications, 

because has easy liquefaction capability and high knock 

resistance with low pressure and lower costs [7]  

Fuel quality has a significant influence on engine 

performance results. If we can predict the emissions that will 

be generated then the engine can be at good performance. One 

of the methods that can be used is ANN. Previous research on 

neural networks to can determinated diesel engine emissions 

shows that NOx emissions results can be found by knowing 

the fuel composition and workload.[8] 

The ANN used was based on LM which worked well to 

predict NOx emission data in previous research. Abaut 

emission performance prediction using an ANN has developed 

to predict torque, hydrocarbons (HC), carbon monoxide (CO) 

and NOx emissions based on the LM model with a correlation 

coefficient value of > 0. 99 and a MSE value of less than 

0.001, which effectively predicts difficult to determinated 

NOx emission data.[9] By knowing the amount of fuel used, 

torque and the speed of the engine, the amount of emissions 

produced can be known. 

There are many study is use of LPG as a fuel for generator 

set engine. 

 
TABLE 1. Literatures related to “engine”, “prediction” and “emission”. 

Title Ref Emission Model 

Application of 

artificial neural 

network to forecast 
engine performance 

and emissions of a 

spark ignition engine 

Fu et al. 
(2022) [10] 

Carbon 

monoxide, 
hydrocarbons, 

nitrogen oxides 

Neural Networks 

A novel modal 

emission modelling 

approach and its 
application with on-

road emission 

measurements 

Wang et 

al.(2022) 

[11] 

Carbon 

monoxide, 
carbon dioxide, 

nitrogen oxides 

Modal emission 
models 

Designing a steady-
state experimental 

dataset for predicting 

transient NOx 
emissions of diesel 

engines via deep 

learning 

Shin et al. 

(2022) [12] 

Nitrogen 

oxides 
Deep learning 

Optimizing model 

parameters of artifcial 

neural networks to 
predict vehicle 

emissions 

Seo and 

Park 
(2023)[13] 

Carbon 
monoxide, 

carbon dioxide, 

nitrogen oxides 

Neural Networks 

NOx emissions 
prediction based on 

mutual information 

and back propagation 
neural network using 

correlation 

quantitative analysis 

Wang et al. 

(2020) [14] 

Nitrogen 

oxides 
Neural Networks 

Neural network 
models for virtual 

sensing of NOx 

emissions in 

Arsie et al. 

(2017) [15] 

Nitrogen 

oxides 
Neural networks 
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automotive diesel 

engines with least 
square-based 

adaptation 

Prediction of engine 
NOx for virtual 

sensor using deep 

neural network and 
genetic algorithm 

Kim et al. 
(2021) [16] 

Nitrogen 
oxides 

Deep neural 

networks and 

genetic algorithms 

An Artifcial Neural 

Network Model to 
Predict Effciency and 

Emissions of a 

Gasoline Engine 

Yang et al. 

(2022) [17] 

Carbon 
monoxide, 

nitrogen oxides 

Neural networks 

Prediction of 
instantaneous real-

world emissions from 

diesel light-duty 
vehicles based on an 

integrated artifcial 

neural network and 
vehicle dynamics 

model 

Seo et al. 

(2021) [18] 

Carbon 

dioxide, 

hydrocarbons, 
nitrogen oxides 

Neural networks 

Deep neural network 
model with Bayesian 

hyperparameter 

optimization for 
prediction of NOx at 

transient conditions in 

a diesel engine 

Shin et al. 

(2020) [19] 

Nitrogen 

oxides 

Bayesian 

Hyperparameter 

Optimization for 
Deep Neural 

Networks 

 

From Table 1 we see that a lot of research has been 

developed in the last 5 years regarding engines, emissions and 

ANN, using advanced machine learning techniques, namely 

ANN, to predict the emission characteristics of LPG-fueled 

engines. ANN training uses the LM method. This research 

aims to provide predictions of emissions to determine engine 

performance by providing input data in the form of fuel 

consumption, torque and engine speed as given in the 

following Figure 1. 

 

 
Fig. 1. Objective of this study. 

 

The process of accurately predicting the performance of gas 

engine generator sets, particularly in terms of emissions, 

involves the development of a model that leverages both 

steady-state and transient data. The overall methodology can 

be broken down into three distinct phases: steady-state data 

collection, model training, and transient data prediction. These 

phases are crucial for achieving high prediction accuracy and 

optimizing engine performance. 

1. Steady-State Data Collection 

The first phase involves the acquisition of steady-state data, 

which is collected when the engine operates under constant 

conditions. This data typically includes variables such as 

engine speed (in RPM) and fuel consumption, among others. 

As illustrated in the left-hand section of the diagram, this 

steady-state data forms the basis for the initial dataset. The 

research target at this stage is to build a high-quality dataset to 

ensure that the model, when trained, is highly accurate. High-

accuracy data allows the model to generalize effectively 

across various operating conditions. 

2. Model Training 

Once a sufficient dataset of steady-state conditions has been 

gathered, the next phase involves training the model using this 

data. In this case, an artificial neural network (ANN) is used, 

as depicted in the center of the diagram. ANNs are well-suited 

for handling complex, non-linear relationships, such as those 

found between engine operational parameters and emission 

outputs. 

The steady-state data is fed into the neural network, and a 

training process is conducted to allow the model to learn the 

underlying relationships between input features (e.g., engine 

speed, fuel type) and target outputs (e.g., emissions, fuel 

consumption). During this training process, various 

parameters of the model are adjusted to minimize prediction 

errors and enhance model accuracy. 

3. Transient Data Prediction 

Following model training, the next step involves using the 

trained model to predict engine performance under transient 

conditions—where the engine's operational parameters are 

changing dynamically over time. The transient data, as shown 

in the right section of the diagram, reflects how variables such 

as engine speed and fuel consumption fluctuate over time in 

non-steady conditions (e.g., during acceleration or 

deceleration). 

The model target at this stage is to maintain high accuracy 

in predicting transient performance. Accurately modeling 

transient conditions is more challenging due to the non-linear 

and rapidly changing nature of the data. However, with the 

neural network already trained on steady-state data, the model 

can provide highly accurate predictions of engine performance 

even in dynamic environments. 

Research Implications 

The approach of using steady-state data to train an artificial 

neural network for transient data prediction has several 

significant implications. First, the method allows for the 

efficient use of available data to create a robust prediction 

model, capable of generalizing to real-world scenarios. 

Second, by achieving high accuracy in transient data 

prediction, the model can be instrumental in optimizing engine 

performance while minimizing emissions. This has direct 

relevance to industries aiming to meet stringent environmental 

regulations without compromising on operational efficiency. 

II. MATERIAL AND METHOD 

A. Material 

The materials used in this research include both hardware 

and software components, as well as the data utilized for 

model training and validation: 

1. Gas Engine Generator Set: The gas engine generator set 

used for the study operates under various load conditions. 



International Research Journal of Advanced Engineering and Science 
 ISSN (Online): 2455-9024 

 

 

109 

 
Achmad Aminudin, Nanang Romandoni, and Deni Nur Fauzi, “Emission Value Estimation to Achieve Best Performance Gas Engine 

Generator Set using Artificial Neural Network,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 4, 

pp. 107-113, 2024. 

The key parameters measured during the engine's 

operation include engine speed (RPM), fuel consumption, 

and emission outputs (NOx, CO2, and HC emissions). 

2. Sensors and Data Acquisition System: The system includes 

various sensors for measuring real-time engine 

performance. These sensors include: 

3. Engine Speed Sensor: Captures the revolutions per minute 

(RPM) of the engine. 

4. Fuel Consumption Sensor: Measures the fuel consumed 

during engine operation. 

5. Emission Sensors: NOx, CO2, and hydrocarbon (HC) 

sensors to quantify the pollutant levels. The data is 

collected via a 12-bit ADC (Analog-to-Digital Converter), 

ensuring high accuracy in the recorded values. 

6. Microcontroller (STM32Fx LQFP64): An STM32Fx 

microcontroller in the LQFP64 package is used to manage 

data collection and processing. This microcontroller is 

known for its efficiency in handling real-time data from 

multiple sensors. 

7. Artificial Neural Network (ANN) Software: The ANN 

model is implemented using MATLAB and Python 

programming environments, which provide robust tools for 

neural network design, training, and testing. The model 

architecture consists of multiple layers of neurons trained 

using the backpropagation algorithm. 

8. Data Acquisition Interface (USB-Serial FT232RL): The 

communication between the data acquisition system and 

the processing unit is facilitated through a USB-Serial 

FT232RL interface, allowing for seamless transfer of data 

for model training. 

B. Engine setup 

Experimental work set as a schematic and diagram 

following Table 2 and Figure 2. A flow and ventilation brake 

dynamometer was used to determinated torque. Varying the 

amount of fuel, torque and speed is done by controlling the 

existing load. A gas analyzer is used to record the NOx 

produced. 
 

TABLE 2. The specific parameters of the test engine. 

Description Specification 

Type OHV,4 Stroke, Single cylinder, 

Volume 389 cc 

Compression ratio 8.2 

Power 8.7kW (11.7 HP)/3600 min-1 rpm 

 

The table describes the specifications of an engine. Here’s 

the explanation: 

Type: The engine is an OHV (Overhead Valve), 4-stroke, 

single-cylinder engine. This means the engine operates on a 

four-stroke cycle, and the valves are located in the cylinder 

head above the combustion chamber. 

Volume: The engine has a displacement of 389 cc (cubic 

centimeters), which refers to the total volume of all the 

cylinders in the engine. 

Compression ratio: The engine has a compression ratio of 

8.2:1. This is the ratio of the volume of the combustion 

chamber at its maximum capacity to its minimum capacity, 

which describes how the fuel-air mixture is pre-burned. 

Power: The engine produces a power output of 8.7 kW (11.7 

horsepower) at 3600 revolutions per minute (rpm), which 

reflects its capability to generate energy at this engine speed. 

This specification provides an overview of the engine's design 

and performance characteristics. 

C. Data Gathering 

Data is taken from a gas-fueled generator set with a self-

made Electric Control Unit (ECU) is given in the following 

Table 3 and Figure 3. Data is taken using an ECU with 

electrical wiring as in Figure 4. By carrying out 100 data 

variations, data was obtained in the form of variations in fuel, 

torque, speed and emissions produced.  

 
TABLE 3. Technical specification of ECU. 

Description Specification 

Type OHV,4 Stroke, Single cylinder,  

Volume 389 cc 

Compression ratio 8.2 

Power 8.7kW (11.7 HP)/3600 min-1 rpm 

 

Here’s an explanation of each part in the table: 

1. Power Voltage (12 V): 

The system operates at a power voltage of 12 volts. This 

voltage powers the main components, such as the 

microcontroller and peripheral devices. It is common in 

embedded systems and automotive electronics. 

2. Main Chip (STM32Fx LQFP64): 

The main processing unit is an STM32Fx microcontroller 

in an LQFP64 package (64 pins). STM32Fx is part of 

STMicroelectronics’ STM32 family, known for their 

performance in controlling embedded systems. The "Fx" series 

typically supports ARM Cortex-M cores, offering high 

processing capabilities for real-time applications. 

3. Storage (Internal EEPROM): 

The system has built-in EEPROM (Electrically Erasable 

Programmable Read-Only Memory) for non-volatile storage. 

EEPROM stores critical data such as settings or calibration 

parameters, ensuring data retention even when the power is 

off. 

4. USB Data Interface (USB-Serial FT232RL): 

This interface allows communication between the system 

and a computer or other devices using a USB connection. The 

FT232RL chip is commonly used for USB-to-serial 

communication, converting USB signals to serial 

communication protocols (UART), making it easy to transfer 

data between the microcontroller and external devices. 

5. Engine Control Transistor (IRF540N): 

The IRF540N is an N-channel MOSFET (Metal-Oxide-

Semiconductor Field-Effect Transistor) used for controlling 

high-power components in the engine control system. It can 

handle high currents and voltages, making it suitable for 

switching operations and driving heavy loads. 

6. TPS Input (12-bit ADC): 

The TPS (Throttle Position Sensor) input is connected to a 

12-bit ADC (Analog-to-Digital Converter), which converts the 

analog signal from the sensor to a digital value for the 

microcontroller to process. A 12-bit ADC provides high-
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resolution measurements, ensuring more accurate throttle 

control in engine applications. 

7. PULSER Input (Any pulsed signals): 

This input can accept various types of pulsed signals. 

Pulsers generate pulse-width modulation (PWM) or other 

digital pulses, which can be used for controlling the timing 

and synchronization of certain system components or 

monitoring engine performance metrics. 

D. Electric Control Unit (ECU) 

In addition to the previously mentioned materials, a self-

made Engine Control Unit (ECU) was utilized in this research. 

The ECU was custom-built to provide real-time control and 

data acquisition capabilities for the gas engine generator set. 

The key features of the custom ECU are as follows: 

1. Main Controller (STM32Fx Microcontroller): 

The self-made ECU is based on the STM32Fx 

microcontroller in the LQFP64 package, which allows for 

efficient processing of sensor data and engine control 

operations. The microcontroller's versatility and processing 

speed make it well-suited for handling real-time control of the 

engine parameters, such as fuel injection and ignition timing. 

2. Signal Input and Processing: 

The ECU is designed to accept a variety of inputs from the 

engine, including: 

a. Throttle Position Sensor (TPS): The ECU processes 

signals from the TPS using a 12-bit ADC, allowing for 

precise throttle control in response to real-time conditions. 

b. Pulser Input: The ECU can handle any pulsed signals, such 

as those from crankshaft position sensors, which are 

critical for timing control. 

c. Fuel Consumption and Emission Sensors: Inputs from 

sensors measuring fuel flow and emissions (NOx, CO2, 

HC) are fed into the ECU for processing and real-time 

adjustments to engine operations. 

3. Control Output: 

The ECU is equipped with an IRF540N MOSFET to 

handle high-power outputs for controlling various engine 

components, such as fuel injectors and ignition coils. The 

ECU can modulate the fuel delivery and engine timing to 

optimize performance and minimize emissions under varying 

load conditions. 

4. Data Communication Interface (USB-Serial FT232RL): 

The self-made ECU integrates a USB-Serial FT232RL 

interface to communicate with a computer for real-time data 

logging and monitoring. This interface allows the ECU to 

transmit operational data such as engine speed, fuel 

consumption, and emissions to external monitoring systems or 

a neural network model for further analysis. 

This custom ECU design is an integral part of the engine 

control system, managing critical engine parameters such as 

fuel injection, ignition timing, and throttle position. It collects 

real-time data from multiple sensors, processes it using the 

STM32Fx microcontroller, and makes dynamic adjustments to 

optimize engine performance and minimize emissions. The 

integration of high-precision sensors, powerful control 

transistors, and data communication capabilities allows the 

ECU to interact with machine learning models (such as 

ANNs) for advanced engine tuning and performance 

optimization. 

 

 
(a) Mockup 

 
(b) Actual 

Fig. 2. (a) Mockup Electric Control Unit (ECU) (b) Actual Electric Control 

Unit. 

 

 
Fig. 3. Electrical Wiring 

 

The diagram illustrates a microcontroller-based control 

system for the ignition and fuel injection processes in a gas 

engine. The system integrates multiple sensors and actuators 

to ensure precise control over the engine’s operational 

parameters. The components are described as follows: 

1. Throttle Position Sensor (TPS) 

The Throttle Position Sensor measures the angle of the 

throttle valve, which is used to control the amount of fuel 

injected into the engine. The sensor provides real-time data to 

the microcontroller, which processes the information to adjust 

fuel injection accordingly. The sensor operates using a 5V 

signal, with connections for power (5V), signal (5V), and 

ground (5V). 

2. Crankshaft Position Sensor 
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This sensor detects the position and rotational speed of the 

crankshaft, providing critical input for determining the 

engine’s ignition timing and fuel injection intervals. The 

sensor operates with a 5V power supply and communicates 

with the microcontroller via signal and ground connections. 

3. Fuel Injector 

The fuel injector is responsible for delivering fuel to the 

combustion chamber of the engine. It is controlled by the 

microcontroller based on input from the sensors, which 

ensures an optimal air-fuel mixture for combustion. The 

microcontroller signals the injector to release fuel at the 

appropriate time and quantity. 

4. Spark Coil 

The ignition coil produces the high voltage required to 

ignite the air-oil mixture in the engine's cylinders. The 

microcontroller governs the timing of the spark, ensuring 

precise ignition based on the data provided by the position 

sensors. 

5. 12V Battery 

The 12V battery powers the entire system, supplying 

energy to both the sensors and the microcontroller. It has 

connections for power (12V), signal (12V), and ground (12V), 

ensuring the steady operation of the electronic components. 

This system allows for enhanced engine control by 

monitoring and adjusting key operational parameters in real 

time, ultimately improving engine efficiency and emission 

control. 

III. RESULTS AND DISCUSSION 

NOx emissions refer to nitrogen oxide gas (NO and NO2), 

which is formed during the combustion process in internal 

combustion engines. Generally, LPG generator set engines 

tend to produce higher levels of NOx emissions than gasoline 

engines. Additionally, NOx levels increased with increasing 

engine load for all mixtures tested. From these data we can 

observe that the increase in NOx emissions is consistent with 

increasing fuel proportions. This can indicate the influence of 

engine load on NOx emissions, where after a certain point, an 

increase in load does not significantly affect NOx emissions. 

These data highlight the potential of fuel reduction to reduce 

NOx emissions in generator set engines at different engine 

loads. 

From the Figure 8 it can be seen that the correlation 

coefficient (R) and determination (R2) in artificial neural 

networks were examined in this study. R is used to measure 

the closeness of the relationship between points to the linear 

regression line according to the resulting value. The R value 

can vary from -1 to +1, with a value of -1 indicating perfect 

linear inverse correlation and +1 indicating that the correlation 

is perfect positive. The detailed R value of the LM algorithm 

for training, validation, testing and everything is presented in 

Figure 8. In addition, the coefficient of determination is a 

prediction criterion used to measure how much variability a 

particular factor is triggered by its relationship to other factors. 

Correlation is also usually called "goodness of fit", which 

has a value ranging between 0 and 1, with a value of 1 

indicating perfect suitability, and this makes the model 

contently usable, while 0 indicates that the prediction results 

cannot be used in general. accurate.  

The correlation value uses the LM Algorithm. With an R 

value of 0.99514, the LM algorithm sign is almost perfectly 

linear positive correlation. Furthermore, the LM algorithm 

with an R2 value of 0.9903 shows that the dependent variable 

is predicted well is presented in Figure 7. These results can be 

obtained because LM has a faster ability to adjust the 

algorithm. in general LM is able to handle models better rather 

than free parameters that are not known exactly. If the initial 

estimate is far from the target, then the LM algorithm can find 

the optimal solution. However, LM sometimes has some 

weaknesses. For linear functions, the LM algorithm will take a 

long time to find a solution. In some cases, these algorithms 

can be very slow to assemble due to bulk the model has more 

than ten parameters that the algorithm needs to move slowly. 

 
Fig. 4. Actual and predicted for various test LM training algorithm 

 

The graph presents a comparison between the actual and 

predicted values of NOx emissions (nitrogen oxides) using a 

machine learning or statistical model, likely an Artificial 

Neural Network (ANN) model. Here's a breakdown of the key 

components: 

1. X-Axis (Data Set): This axis represents the data points or 

samples used in the analysis, ranging from 0 to 200. 

These could be different instances or time intervals 

during which NOx emissions were recorded and 

predicted. 

2. Y-Axis (NOx): This axis represents the NOx values, 

ranging from approximately -0.2 to 1.0. The NOx values 

are typically measured in ppm (parts per million), 

although the exact unit is not specified. 

3. Solid Line (Actual): The blue solid line represents the 

actual measured NOx values in the system. 

4. Dotted Points (Predicted): The red dots correspond to the 

predicted NOx values calculated by the ANN or another 

prediction model. 

The graph demonstrates how closely the predicted values 

(red dots) align with the actual values (blue line). A good 

model would show a close match between the two, indicating 

that the model is accurately predicting NOx emissions. 

The slight variations between the red dots and blue line may 

indicate some prediction error, which is common in such 
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models. 

This figure likely demonstrates the effectiveness of the 

predictive model (such as an ANN) in estimating NOx 

emissions from a gas engine generator set. The closeness of 

the predicted points to the actual line suggests the model’s 

accuracy, though there are visible discrepancies at certain data 

points, which might require further model refinement. 

 
The image consists of four scatter plots, each comparing 

predicted output values from a model Artificial Neural 

Network to actual target values. These types of plots are 

commonly used to evaluate how well a model is performing in 

terms of its predictions. Here is a detailed breakdown of each 

subplot: 

1. X-Axis (Target): This axis represents the actual target 

values, ranging from 0 to 1. 

2. Y-Axis (Output): This axis represents the model’s 

predicted output values, also ranging from 0 to 1. 

3. Circles (Data): Each black circle represents a pair of 

target and predicted values. Ideally, these points should 

fall along the diagonal line, indicating a perfect match 

between predictions and actual values. 

4. Lines 

5. Fit Line (Colored): The colored line represents the best-

fit line of the model’s predictions. 

6. Diagonal Line (Y=T): This is the dashed diagonal line 

where the predicted output equals the target value (Y = 

T). The closer the data points are to this line, the more 

accurate the model is. 

Subplot Descriptions: 

1. Top Left Plot: 

Fit Line (Blue): Shows a linear fit of the data with an equation 

of `Output = 0.89 * Target + 0.011`. This suggests that the 

model is underestimating the target slightly, as the slope is less 

than 1. The points are relatively well distributed along the 

diagonal, indicating reasonable performance but some 

underprediction for higher target values. 

2.Top Right Plot 

Fit Line (Green): The equation is `Output = 0.99 * Target + 

0.0036`, with a slope much closer to 1. This indicates that the 

model is performing better, with predictions more closely 

matching the actual values. The points align quite closely with 

the diagonal, suggesting strong predictive accuracy in this set. 

3.Bottom Left Plo: 

Fit Line (Red): The equation here is `Output = 0.96 * Target + 

0.022`, indicating slightly lower predictions compared to the 

actual values. There are a few points where the predictions 

deviate from the diagonal, indicating minor prediction errors, 

especially for some higher target values. 

4.Bottom Right Plot: 

Fit Line (Grey): The equation is `Output = 0.98 * Target + 

0.001`, showing a very close fit between the model’s 

predictions and actual values. Similar to the other plots, most 

points lie near the diagonal, indicating a high degree of 

accuracy. 

These plots show how well the model predicts NOx 

emissions based on the given targets. The closer the points are 

to the diagonal (Y=T line), the better the model's predictions 

align with the actual values. 

Across the four plots, the model performs quite well, with 

only slight deviations in the predicted output. In general, the 

fit lines indicate that the model slightly underestimates the true 

values (slope < 1), but the differences are minor. 

In summary, the plots indicate that the predictive model is 

effective in estimating NOx emissions with some small 

deviations, particularly for larger target values. Further 

refinement of the model might reduce these small prediction 

errors. 

IV. CONCLUSION  

A conclusion section is research from 100 data sets used to 

build the ANN model. In predicting the emissions produced 

based on variations in speed, torque and fuel used, a training 

algorithm using the LM algorithm uses an artificial neural 

network structure with 3 inputs and 1 output using 10 hidden 

layers. Results ANN trained with LM provided the better 

accuracy and succeeded in predicting emissions with 

correlation and determination coefficients (R =  0.99514, R2 = 

0.9903) and the lowest error RMSE = 0.0017.g 
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