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Abstract— This paper focuses on computer simulations intended for 

oscillatory problems formulated in special second order initial value 

problems (IVPs) of ordinary differential equations (ODEs) where first 

derivatives do not explicitly feature. These problems crop up in 

Mechanics of Materials (Macro-, Meso-, Micro-and Nano-Mechanics) 

as well as Celestial Mechanics and Orbital Mechanics. Computer 

simulation of the problems have always been of immense importance 

and attracted interests of scientist and researchers. We selected a six-

order Hybrid Method for current study. The method requires an extra 

back value after a change in step-size. Collocation technique inherits 

function evaluations at off-step points in an underlying interpolant that 

could be proficiently exploited to compute the extra back value.  

Accordingly, we embedded Collocation techniques into the selected 

Hybrid Method. We applied the method algorithm to the benchmark 

problems selected from linear Orbital Mechanics. At that point we 

programmed solution steps and procedures into commercially 

available MATLABTM 2020 code to obtain desired simulated results. 

We compared simulation generated results to the data results 

available in the literature and found to be within the acceptable range 

of (±2%) deviations. Additionally, the method is self-starting, requires 

fewer function evaluations, found to be quite proficient, and 

practically well suited for solving such problems. The selected results 

in terms of function value and point-wise absolute error evaluations 

are presented in graphical and tabular illustrations up to seven 

decimal places. Based on performance of the proposed Hybrid Method 

induced with Collocation techniques, we would like to recommend the 

proposed method for similar studies in the future. 

 

Keywords— A. Second-order initial value problems; B. Direct Hybrid 

Methods; C. Mechanics of Materials; D. Celestial Mechanics; E. 

Orbital Mechanics. 

I. INTRODUCTION  

The special second order initial value problems of ordinary 

differential equations with missing terms of time, function, or 

derivative of function formulate perturbed oscillatory problems 

in Mechanics of Materials (Macro-, Meso-, Micro-and Nano-

Mechanics) as well as Celestial and Orbital Mechanics [1]. 

Computer simulations of the problems take up significant part 

at pre-design stage. As well as design parameters are identified, 

classified and evaluated for various design analyses. 

Nonetheless, the group of differential equations solvable for 

exact solutions is small. Either different techniques are required 

to solve system of equations or exact solutions cannot be found 

candidly. In so far as, the second order initial value problems 

are concerned the solutions could often be more challenging, 

complex, or almost impossible. Therefore, many researchers 

have resorted to numerical methods for solving the differential 

equations. A short appraisal of the relevant investigations is 

presented below. 

The Spectral method applied to determine solutions on 

discretized set of Collocation points in series of bases functions: 

Legendre polynomials, Fourier series, and Chebyshev 

polynomials were reported in [2]. The single-step methods for 

illustration Euler and Runge-Kutta (RK) initiate more reliable 

starting values and predominantly suitable for computations 

were submitted in [3]. Bogie and Shampine developed method 

using two and three order RK methods with four stages for the 

same step to evaluate function for adaptive mesh size 

algorithms in [4]. Another four and five order RK process 

algorithm with stability analysis was proposed by Erwin 

Fehlberg in [4]. Conversely, the explicit RK methods of high 

order were instituted to boot complicated problems consisting 

of higher derivatives was mentioned in [5]. The family of high 

order single-step methods with truncation errors raised up to 

0(h5) were presented in [6] The nonexistence of ten-stage  eight-

order explicit RK-method with rationalization, increasing 

stability limits, the dynamics of RK algorithms was proposed in 

[7]. Failures of the one-step method consisting of RK-Fehlberg 

solvers to higher order algorithms “embedded strong-stability-

preserving pairs” was reported in [8]. The RK family of high 

order with Dormand and Prince algorithm was derived in [9]. 

The Implicit RK-methods with control of step size selection, 

increased stability limits, weaknesses of the single-step 

methods, and requirement for multistep methods were 

explained in [10]. Test sets for second ODE IVPs solvers, 

demonstration of lateral analyses, and multistep methods on 

manifold algorithms were presented in [11]. A collection on 

multistep algorithms/solvers for second order ODEs were 
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produced in [12]. Intuitively, the multistep methods are more 

efficient since function values at previous points were already 

computed and could be utilized in further simulations, and to 

achieve a higher order solution method were discussed in [13]. 

The multistep methods illustrated higher order of accuracy and 

suitability for the direct solutions of higher order differential 

equations without reduction to lower orders in [14]. 

Nonetheless, the major drawback in implementation of the 

methods still persists. Furthermore, the methods are not self-

starting and require lower order development of predictor was 

confirmed in [15] and [16]. The transformation from higher to 

lower order reduces the accuracy of the methods was 

established in [17]. To encounter requirements and difficulties 

in adopting multistep methods, the Predictor-Corrector method 

as well as a Block Multistep Methods were introduced and 

detailed in [18] and [19]. However, accuracy of these methods 

in terms of errors was found discouraging. Besides, the methods 

performed well, these methods also get affected by the 

Dahlquist barrier.  

In overcoming the for-mentioned setbacks, researchers 

developed numerical methods for solution without reducing 

differential equations to a system of first order equations, to 

address limitations, circumvent the Dahlquist barrier, as well as 

persistent quest for versatile numerical methods with better 

accuracy led to introduction of the Hybrid Methods proposed in 

[11], [15] [20]. The Hybrid Methods combined features of 

single-step RK and linear multistep methods as well as function  

evaluations at off-step point(s) as described in [8] [19], [21]. As 

a consequence, to improve accuracy within the selected interval 

of integration, One-step and two-step Hybrid Method were 

proposed in [9], [20].  Some multi derivative Hybrid block for 

the problem was also presented in [21]. A five-step high order 

method with compact fourth-order-accurate embedded 

boundary method with a class of Hybrid Collocation methods 

were also conceded in [22]. The 2-Step two-point Hybrid 

Method for direct solution of second order IVPs for direct 

solutions of continuous ordinate-function Hybrid Methods were 

suggested in [23]. For analogous problems a class of implicit 

five step blocks methods and a class of six step block methods 

were also suggested in [24].   

Review of the previous literature on the topic revealed that 

a wide selection of methods and analyses are already available. 

The review provides valuable qualitative and quantitative 

information along evolution of problems and performance of 

methods. Nonetheless, none of those methods are effective for 

every type of applications. It also divulged the following 

pragmatic deficiencies: limitations in applications, complexity 

in implementation, computational burden, the accuracy in 

results, and time wastage. The lack of comprehensive studies 

on the topic is required to bridge the gap in the literature. It was 

desired to evaluate and choose method that could reliably and 

efficiently solve second-order initial value problem in-hand. 

Therefore, a relatively effective approach to utilize the direct 

Hybrid Method embedded with Collocation techniques was 

opted. Confidently, the current study would be another effort to 

complement manuscripts that offer a set of valuable 

computational tools. The study concludes that the solution 

approach is undemanding, dependable, and relatively efficient 

in performance. The proposed approach is thus recommended 

to solve real-world problems of perturbed and oscillatory nature 

in scientific and engineering dynamics. 

II. NUMERICAL METHODS FOR SPECIAL SECOND ORDER 

INITIAL VALUE PROBLEMS   

2.1 Single-step Methods  

Many authors constructed a class of two-step methods for 

the second order periodic or oscillatory problem formulated in 

vector form in (1). The single-step methods require the high 

order IVPs may be replaced with an equivalent coupled first 

order system to obtain numerical solution as shown below: 

{
 

 

              

𝑦′′(𝑡) = 𝑓 (𝑡, 𝑦) ,   𝑎 ≤ 𝑡 ≤ 𝑏

𝑦′(𝑎) = 𝑦′
0
(𝑔𝑖𝑣𝑒𝑛),

𝑦(𝑎) = 𝑦0(𝑔𝑖𝑣𝑒𝑛).

                        (1) 

where 𝑦 , 𝑓, 𝑦0 and 𝑦′0 are vectors of dimension ‘m’ can be 

converted to a first order IVP. The equations may be solved by 

applying single-step (RK family) or linear multistep methods:  

{
Y[n] = ui, yn−1 + (1 − ui)yn + h

2∑aijf(xn + cj, Yj
[n]),

m

j=1

yn+1 = θ yn−1 + (1 − θ)yn + h
2.

 

(2)    

The algorithms belong to the class of two-step methods.   

The RK methods being too complicated, higher order 

nonexistent, involve large number of function evaluations, and 

exhibit increasing stability limits [2], [9]. In consequence, 

researchers started to develop and design advance solution 

methods.  

2.2 Second order Multistep Hybrid Methods 

In general, the second order equations may be put in the 

following form: 

yn+1 = ∑ aiyn−i+1
k
i=0 + h∑ biyn−i+1

′k
i=0                                (3) 

Symbolically, we may write (3) as 

ρ(E)yn−k+1 − hσ(E)yn−k+1
′ = 0                         (4) 

where ρ and σ are polynomials of degree k fined a: 

{
ρ(ξ) = ξk − a1ξ

k−1 − a2ξ
k−2 −⋯− ak

σ(ξ) = b0ξ
k + b1ξ

k−1 +⋯bk
                       (5) 

assuming the polynomials have no common factor. The 

difference equation (3) associated with the difference operator 

L may be defined by 

 

 

{

L[y(t), h] = y(tn+1) − ∑ aiy(tn−i+1)
k
i=0 + h∑ biy

′(tn−i+1)
k
i=0

By expanding → y(tn−i+1) and y
′(tn−i+1) in Taylor series, we get

L[y(t), h] = C0y(tn) + C1hy
′(tn)+C2h

2y′′′(tn) + ⋯+ Cph
py(p)(tn) + Tn

     (6) 

where 
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{
 
 
 

 
 
 
C0 = 1 − ∑ ai

k
i=0

: : :

Cq = 1 −
1

q!
[∑ ai

k
i=0 (1 − i)q] −

1

(q−1)!
∑ bi
k
i=0 (1 − i)q−1, q = 1, 2,⋯ , p.

and

Tn = [
1

p!
∫ (tn−i+1 − s)
tn−i+1
tn

y(p)(s)ds − ∑ ai
k
i=0 ∫ (tn−i+1 − s)

tn−i+1
tn

y(p+1)(s)ds

−hp∫ b0(tn+1 − s)
p−1tn−i+1

tn
y(p+1)(s)ds − hp∑ bi

k
i=0 ∫ (tn+1 − s)

p−1tn−i+1
tn

y∗
(p+1)(s)ds]

   (7) 

Definition 1: These methods associated with the difference operator are said to be of order p if C0 = C1 = C2 = ⋯+ Cp = 0 and 

Cp ≠ 0 in (9). Thus, for any function y(t) ∈  Cp+2 with some nonzero Cp +1 will yields  

{

L[y(t), h] = −Cp+1h
p+1y(tn)

(p+1)
+  o(hp+2)

𝑤ℎ𝑒𝑟𝑒

hp+1
Cp+1

σ(1)
 is an error constant

       (8) 

 

In particular, the term L[y(t), h] vanishes identically when 

y(t) is a polynomial of degree ≤ 𝑝. The method is said to be 

consistent if it has order p ≥ 1 and satisfies the root condition 

if the roots satisfy the equation ρ(ξ) = 0. In the same way all 

roots lie inside the unit circle in the complex plane and are 

simple if they lie on the circle. We use definitions of order, 

consistency, and root condition to determine the parameters ai 
and biin linear multistep method. Since (4) holds good for any 

(t) ∈  Cp+2 . The constants Ci and p are independent of y(t). 

Thus, the constants can be determined by a particular case 

y(t) =  et on substituting in (4): 

 

 

{
 
 
 

 
 
 
L[et, h] = etn+1 − a1 e

tn  ⋯− ake
tn−k+1 − h(b0 e

tn+1 + b1 e
tn +⋯+ bk e

tn−k+1)

= −Cp+1h
p+1etn + o(hp)

after simplifying

= [(ekh  − a1 e
(k−1)h  ⋯− ak) − h(b0 e

kh + b1 e
(k−1)h +⋯+ bk )]e

tn−k+1

= −Cp+1h
p+1etn + o(hp) 
or

ρ(eh) − hσ(eh) ≈ −Cp+1h
p+1etn + o(hp+2) 

     (9) 

Putting eh = ξ, as h → 0, ξ → 1, the (9) becomes 

{

ρ(ξ) − (logξ)σ(ξ) = −Cp+1(ξ − 1)
p+1 + o((ξ − 1)p+2)

𝑜𝑟
ρ(ξ)

logξ
− σ(ξ) = −Cp+1(ξ − 1)

p + o((ξ − 1)p+1)
        (10) 

 

The equations (7) and (8) provide methods for determining 

ρ(ξ) or σ(ξ) for maximum order. If σ(ξ) is specified, then (10) 

can be used to determine ρ(ξ) of degree k such that the order is 

at least k. The term (logξ)σ(ξ) in (10) may be expanded in a 

power series (ξ − 1) up to (ξ − 1)k terms to find ρ(ξ). On the 

other hand, if  ρ(ξ) is given one can determine σ(ξ) of degree 

≤ k  such that the order is at least k+1. The ratio  
ρ(ξ)

logξ
 may be 

expanded as a power in (ξ − 1) series, … , and terms up to 

(ξ − 1)k are used to get σ(ξ). A choice of polynomial ρ(ξ) and 

the resulting polynomials σ(ξ) pave a way to produce other 

various well-known methods.  

The linear k-step Hybrid Method contains 2k+1 arbitrary 

parameters that satisfy 2k+1 relations that gives 2k order of the 

method. Nonetheless, the stability requirements restrict the 

order up to k+1 if k is odd and to k+2 if k is even. Thus, the 

order of the k-step Hybrid Methods remains fixed. Nonetheless, 

no linear multistep method can be of order greater than two was 

confirmed in [12] and [15]. Thus, we to increase stability order 

of the k-step Hybrid Methods we modified the (3) to include a 

linear combination of the slopes at several points between tn 

and tn+1. Since stability of higher order methods requires 

implementation of collocation algorithm to evaluate function 

values at off-step points in a variable step code. Thus, we would 

introduce the Collocation algorithm and then imbed the same 

within Hybrid Method. 

2.3 The Collocation algorithm to evaluate function values at 

off-step points  

We derive parameters of the methods by using a Collocation 

technique based on algebraic polynomials. Thus, it takes 

various possibilities into account: construction of off-step, in 

the step-point solutions, different derivative of the solution, 

stages associated to the previous points, and order of the 

resulting method.  

Definition 2: The Collocation polynomial y(t)ϵ P of s-stage 

Collocation method with pair-wise different points 𝑐0, 𝑐1, … , 𝑐𝑠 
is defined through the 𝑠 + 1  conditions:  

{
 
 

 
 

 

𝑦(𝑡0) = 𝑦0
𝑦′(𝑡0 + 𝑐𝑖ℎ) = 𝑓(𝑡0 + 𝑐𝑖ℎ, 𝑦(𝑡0 + 𝑐𝑖ℎ)),  𝑖 = 1,… 𝑠.

𝑡ℎ𝑒 𝑛𝑒𝑥𝑡 𝑠𝑡𝑒𝑝 𝑏𝑒𝑐𝑜𝑚𝑒𝑠

𝑦1 =  𝑦(𝑡0 + ℎ)

(11) 
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Definition 3: In an s-stage Gauss-Collocation method is the 

Collocation points are the set of a Gauss points in an interval 
[0, 1] namely the roots of the Legendre polynomial of degree s. 

Thus, a general single-step m-stage RK method is used to define 

off-step points: 

{
  
 

  
 𝑦𝑛+1 = 𝑦𝑛 + ℎ∑𝑏𝑗𝑓𝑛𝑗

𝑚

𝑗=1

, 0 ≤ 𝑛 ≤ 𝑁 − 1

𝑓𝑛𝑗 = 𝑓 (𝑡𝑛𝑗 , 𝑦𝑛 + ℎ∑𝑎𝑗𝑙𝑓𝑛𝑙 

𝑚

𝑙=1

) 1 ≤ 𝑗 ≤ 𝑚,

𝑡𝑛𝑗 = 𝑡𝑛 + ℎ𝑐𝑗 , 1 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑛 ≤ 𝑁 − 1.

 

(12) 

The off-step point may be assumed as  0 ≤ 𝑐1 ≤ 𝑐2 ≤ .  .  . ≤
𝑐𝑚 ≤ 1. The points 𝑡𝑛𝑗 are known as Collocation points, 𝑐𝑛 =

∑ 𝑎𝑛𝑗
𝑚
𝑗=1 are coefficients. The constants 𝑎𝑗𝑖 , 𝑖 = 1,2,   .  .  .  , 𝑚, 

and 𝑏𝑗 , 𝑐𝑗 , 𝑗 = 1,2,   .  .  .  , 𝑚 are coefficients of the formula. We 

observed that the sum in  (3) is a quadrature rule for with 

weights 𝑎𝑗1, 𝑎𝑗2,   .  .  .  , 𝑎𝑗𝑚 while the sum is a quadrature rule 

for with weights 𝑏1, 𝑏2,   .  .  .  , 𝑏𝑚. We also assume that the 

quadrature rule has the same order for all 𝑗, 1 ≤ 𝑗 ≤ 𝑚, and 1 ≤
𝑠 ≤ 𝑚, uniform step size, and limits 0 → 𝑐𝑗, 𝑃𝑠 denote the set 

of polynomials of degree order < 𝑠. 

{
𝑡 = 𝑡𝑛 + 𝑥ℎ

∫ 𝜓(𝑥)𝑑𝑥
𝑐𝑗
0

= ∑ 𝑎𝑗𝑙𝜓(𝑐𝑙)      
𝑚
𝑙=1 ∀𝜓 ∈ 𝑃𝑠,    1 ≤ 𝑗 ≤ 𝑚

   (13) 

We assume quadrature rule order is p≥ 𝑠, it 

gives:

{

∫ 𝜓(𝑥)𝑑𝑥 =
1

0
∑ 𝑏𝑙𝜓(𝑐𝑙),    
𝑚
𝑙=1 ∀𝜓 ∈ 𝑃𝑝

the schemes satisfy 𝑝 ≥ 𝑠 ≥ 1
∑ 𝑏𝑙 = 1,
𝑚
𝑙=1 ∑ 𝑎𝑗𝑙 = 𝑐𝑗 ,

𝑚
𝑙=1 1 ≤ 𝑗 ≤ 𝑚.

(14) 

The weights 𝑏𝑗 and 𝑎𝑖𝑗  may be constructed by Lagrangian 

interpolation when the values of 𝑐𝑚 are given. With these 

values, we define the Collocation points 𝑡𝑖𝑗 in each subinterval 

[𝑡𝑖 , 𝑡𝑖+1]. Thus write the function 𝑦′(𝑡) on the interval in terms 

of its Lagrangian interpolant of order m with an error term ∆(𝑡): 

{
 
 
 
 

 
 
 
 𝑦′(𝑡) = ∑ 𝐿𝑙 (

𝑡−𝑡𝑛

ℎ
) 𝑓𝑛𝑙 + ∆(𝑡)

𝑚
𝑙=1  

𝑤ℎ𝑒𝑟𝑒
𝑓𝑛𝑙 = 𝑦′(𝑡𝑛𝑙)

𝐿1(𝑡) = ∏
𝑡−𝑐

𝑐𝑙−𝑐

𝑚
𝑖=1
𝑖≠1

∆(𝑡) =
𝑦𝑚(𝜉)

𝑚𝑙
∏ (𝑡 − 𝑡𝑛𝑙),
𝑚
𝑙=1

𝜉 ∈ (𝑡𝑛, 𝑡𝑛+1) 𝑎𝑛𝑑 𝑦 ∈ 𝐶𝑚[𝑡𝑛, 𝑡𝑛+1]

          (15) 

Integrating (16) with respect to t when 𝑡 = 𝑡𝑛 → 𝑡𝑛𝑗 and 

ignoring the error term, we obtain  

{
 
 
 

 
 
 𝑦𝑛𝑗 − 𝑦𝑛 = ℎ∑ ∫ (𝐿𝑖(𝑡)𝑑𝑡)

𝐶𝑗
0

𝑓𝑛𝑙
𝑚
𝑙=1 , 𝑎𝑛𝑑

𝑡 = 𝑡𝑛 to 𝑡𝑛+1

𝑦𝑛+1 − 𝑦𝑛 = ℎ∑ (∫ 𝐿𝑗(𝑡)𝑑𝑡)𝑓𝑛𝑗

1

0

𝑚
𝑗=1

Thus,we obtain

𝑏𝑗 = ∫ 𝐿𝑗(𝑡)𝑑𝑡,        
1

0
𝑎𝑛𝑑 𝑎𝑗𝑖 = ∫ 𝐿1(𝑡)𝑑𝑡.                  

𝐶𝑗
0

    (16) 

The process is identical with an m-stage implicit RK method 

shown in [4]. The RK methods furnish a discrete solution with 

values 𝑦𝑛 approximating the truncation error at mesh points 𝑡𝑛 

and values 𝑦𝑛𝑗 defined by (13), approximating the true solution 

at Collocation points𝑡𝑛𝑗. Let 𝑦𝜋(𝑡) be a polynomial of order 

𝑚 + 1 defines on [𝑡𝑛, 𝑡𝑛+1] by the interpolation conditions. 

{
  
 

  
 
𝑦𝜋(𝑡𝑛) = 𝑦𝑛

𝑦′𝜋(𝑡𝑛𝑗) = 𝑓 (𝑡𝑛𝑗 , 𝑦𝑛𝑗)  𝑗 = 1,2,   .  .  .  ,𝑚

𝑦𝜋(𝑡)in terms of its first derivative:

𝑦𝜋(𝑡) = 𝑦𝑛 +∫ 𝑦′𝜋(𝜂)𝑑𝜂
𝑡

𝑡𝑛

 

(17) 

and replacing 𝑦′𝜋(𝑡) by its Lagrangian interpolant form (17). 

Using the results in (15) and (16) and noting that the error term 

Δ(𝑡) = 0 since 𝑦𝜋(𝑡) is a polynomial of degree m or less, we 

obtain  

{
 
 
 

 
 
 𝑦𝜋(𝑡𝑛𝑗) = 𝑦𝑛 +∫ ∑ 𝑓 (𝑡𝑛𝑙 , 𝑦𝑛𝑙) 𝐿𝑙 (

𝜂−𝑡𝑛

ℎ
) 𝑑𝜂𝑚

𝑙=1   
𝑡𝑛𝑗

𝑡𝑛

= 𝑦𝑛 + ℎ∑ 𝑎𝑗𝑙𝑓𝑛𝑙
𝑚
𝑙=1 = 𝑦𝑛𝑗

𝑦𝜋(𝑡𝑛+1) = 𝑦𝑛 +∫ ∑ 𝑓 (𝑡𝑛𝑙, 𝑦𝑛𝑙) 𝐿𝑙 (
𝜂−𝑡𝑛

ℎ
) 𝑑𝜂𝑚

𝑙=1

𝑡𝑛+1

𝑡𝑛

= 𝑦𝑛 + ℎ∑ 𝑏𝑙𝑓𝑛𝑙
𝑚
𝑙=1 = 𝑦𝑛+1

   (18) 

We extended the polynomial to the next subinterval 

[𝑡𝑛+1,𝑡𝑛+2]. By using the same conditions, replacing 𝑛 by 𝑛 +
1, we observed that the polynomial continuously marched to 

𝑡𝑛+1 values. We observed that by expanding the subintervals 

for all n 1 ≤ 𝑛 ≤ 𝑁, over[𝑎, 𝑏] in (14)-(19) the piecewise 

polynomial function 𝑦𝜋(𝑡) satisfies the Collocation points:  

𝑦′
𝜋
(𝑡) = 𝑓(𝑡𝑛𝑗) , 𝑦𝜋(𝑡𝑛𝑗),   𝑛 = 0,1,2,   .  .  .  , 𝑁, 𝑗 =

1,2,   .  .  .  , 𝑚.        (19) 

The process steps are useful to overcome the difficulty of 

obtaining the extra back value after a change of step-size using 

the Collocation method as stated in [17]. We apply the same 

algorithm based on 𝑃3,𝑛(𝑡) a polynomial of degree three defined 

on [𝑡𝑛−1, 𝑡𝑛+1] with the following interpolation conditions: 

{
 
 

 
 
 (𝑖)  𝑃3,𝑛(𝑡𝑛) = 𝑦𝑛

(𝑖𝑖) 𝑃3,𝑛(𝑡𝑛−1) = 𝑦𝑛−1

(𝑖𝑖𝑖) 𝑃3,𝑛
′′ (𝑡𝑛+𝛼1) = 𝑦𝑛+𝛼1

′′

(𝑖𝑣) 𝑃3,𝑛
′′ (𝑡𝑛−𝛼1) = 𝑦𝑛−𝛼1

′′

   (20) 

where 𝑦𝑛−𝛼1 denotes the numerical solution at 𝑡𝑛±𝛼1 ≡ 𝑡𝑛 ±

𝛼1ℎ, and 𝛼1is a parameter to be determined.  
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{
 
 

 
 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓𝑛±𝛼1 𝑚𝑎𝑦 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 → 𝑓𝑛±𝛼1 = 𝑓 (𝑡𝑛±𝛼1 , 𝑦𝑛±𝛼1) =  𝑦𝑛±𝛼1

′′

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙  𝑎𝑠:

𝑃3,𝑛(𝑡) = 𝑎0 + 𝑎1(𝑡 − 𝑡𝑛) +  𝑎2(𝑡 − 𝑡𝑛)
2 + 𝑎3(𝑡 − 𝑡𝑛)

3

Differentiating twice gives:

𝑃3,𝑛
′′ (𝑡) = 2𝑎2 + 6𝑎3(𝑡 − 𝑡𝑛)

   (21) 

where the parameters 𝑎𝑖 , 𝑖 = 0, 1, 2, and 3 are to be chosen to satisfy the interpolating conditions. The conditions (iii) and (iv) 

becomes: 

{
 
 

 
 
𝐶ℎ𝑜𝑜𝑠𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑎𝑖 , 𝑖 = 0, 1, 2, and 3 𝑡ℎ𝑎𝑡 𝑠𝑎𝑡𝑖𝑠𝑓𝑦

conditions (iii) and (iv) 𝑎𝑛𝑑 𝑔𝑖𝑣𝑒𝑠:

2𝑎2 + 6𝑎1ℎ𝑎3 = 𝑦𝑛+𝑎1
′′

2𝑎2 − 6𝑎1ℎ𝑎3 = 𝑦𝑛−𝑎1
′′

       (22) 

Solving for 𝑎2 and 𝑎3 gives 

{
  
 

  
 𝑎3 =

𝑦𝑛+𝑎1
′′ −𝑦𝑛−𝑎1

′′

12𝑎1ℎ
,

𝑎2 =
1

4
(𝑦𝑛+𝑎1

′′ + 𝑦𝑛−𝑎1
′′ ) .

Using condition (i) → 𝑎0 = 𝑦𝑛

𝑎1 =
𝑦𝑛−𝑦𝑛−1

ℎ
+

ℎ

4
(𝑦𝑛+𝑎1

′′ + 𝑦𝑛−𝑎1
′′ ) −

ℎ

12𝑎1
(𝑦𝑛+𝑎1

′′ + 𝑦𝑛−𝑎1
′′ )

               (23) 

We arrived at values of 𝑦𝑛±𝑎1   from the equation  

{
  
 

  
 

𝑊𝑒 𝑎𝑟𝑟𝑖𝑣𝑒 𝑎𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠

𝑦𝑛±𝑎1 = 𝑃3,𝑛(𝑡𝑛±𝑎1)

𝑜𝑓𝑓 − 𝑠𝑡𝑒𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑟𝑒

𝑦𝑛+𝑎1 = (1 + 𝑎1)𝑦𝑛 − 𝑎1𝑦𝑛−1 +
ℎ2

12
{4𝑎1

2 + 3𝑎1 − 1}𝑦𝑛+𝑎1
′′  +

ℎ2

12
{2𝑎1

2 + 3𝑎1 + 1}𝑦𝑛−𝑎1
′′

𝑦𝑛−𝑎1 = (1 − 𝑎1)𝑦𝑛 + 𝑎1𝑦𝑛−1 +
ℎ2

12
{2𝑎1

2 − 3𝑎1 + 1}𝑦𝑛+𝑎1
′′  +

ℎ2

12
{4𝑎1

2 − 3𝑎1 − 1}𝑦𝑛−𝑎1
′′

   (24) 

{

To obtain𝑦𝑛+1, we put 𝑎1 = 1 𝑖𝑛 𝐸𝑞. (24)

that gives

𝑦𝑛+1 ≡ 𝑃3,𝑛(𝑡𝑛+1) = 2𝑦𝑛 − 𝑦𝑛−1 +
ℎ2

2
(𝑦𝑛+𝑎1

′′ + 𝑦𝑛−𝑎1
′′ )

      (25) 

 

Comparing (24) and (25) with the direct Hybrid formulae in 

[17], the method this is a new one. The off-step values 𝑦𝑛±𝑎1  

are defined in terms of 𝑦𝑛±𝑎1
′′  which do not appear to relate with 

the multistep Hybrid Method.  

Therefore, we require to solve the equations simultaneously 

for 𝑦𝑛±𝑎1  to find 𝑦𝑛+1 and accept 𝑦𝑛 a new step-size, ℎ, 

predicted for the next step to advance to the next step. Thus, 

approximations of back value 𝑦(𝑡𝑛 − ℎ) is required that can be 

calculated by evaluating from the polynomial 𝑃3,𝑛(𝑡) 𝑎𝑡 𝑡 =

𝑡𝑛 − ℎ using the conditions (iii) and (iv) as: 

{
 

  𝑃3,𝑛
′′ (𝑡𝑛±𝑎1) = 𝑓 (𝑡𝑛±𝑎1 , 𝑦𝑛±𝑎1)

and we have

𝑃3,𝑛
′′ (𝑡𝑛±𝑎1) = 𝑓 (𝑡𝑛±𝑎1 , 𝑃3,𝑛(𝑡𝑛±𝑎1))

       (26) 

Accordingly, it follows that the interpolating polynomial 

𝑃3,𝑛(𝑡) satisfied the equation at the Collocation points 𝑡𝑛±𝑎1 .  

2.4 Six-order Hybrid Method embedded with off-step 

Collocation points    

The Direct Hybrid Methods can be applied directly to a 

second order problem without first converting it to first order 

equivalent. The method incorporates the features of single-steps 

as well as linear multistep methods. It can also make use of 

function values at the points 𝑙𝑛 = 𝑎 + 𝑛ℎ, 𝑛 = 0,1,   . ..  . as well 

as at the off-step points 𝑡𝑛 ± 𝛼𝑖ℎ, where 𝛼𝑖 ∈ (0, 1). To 

increase order of the k-step Hybrid Methods, we require to 

modify (3), and include a linear combination of the slopes at 

several points between tn and tn+1. We may let function 𝑦𝑛+1 

be an approximation to the theoretical solution at 

(𝑡𝑛+𝑘, 𝑓(𝑡𝑛+𝑘)) where function is 𝑓𝑛+𝑘 ≡ 𝑓 (𝑡𝑛+𝑘 , 𝑦𝑛+𝑘) and 

change (3) by adding v slopes up to k-steps as  

yn+1 = ∑ aj
k
j=1 yn−j+1 + h∑ bj

k
j=0 yn−j+1 + h∑ cj

v
j=1 yn−αj+1 

      (27) 

whereas aj’s, bj’s, cj’s, αj’s coefficients and 2k + 2v + 1 

arbitrary parameters that obey relations: 0 <  αj < 1, 𝑗 =

1, 2,⋯ , 𝑣. If we choose b0 = 0, the formula (27) is called an 

explicit Hybrid Method, otherwise it is an implicit Hybrid 

Method. We select two non-step points, so k-step method can 

be written in the form: 
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{

yn+1 = ∑ aj
k
j=1 yn−j+1 + h∑ bj

k
j=0 fn−j+1 + hc1fn−α1+1

Using k = 2 into gives

yn+1 = a1yn + a2yn−1 + h(b0fn+1 + b1fn + b2fn−1) + hc1fn−α1+1

     (28) 

where aj’s, bj’s, c1, and α1 are arbitrary and 0 <  α1 < 1, and letting a1, a2, b0, b1, b2, c1, and α1, the seven arbitrary parameters, 

0 <  α1 < 1. We proceed to achieve   Hybrid Method of order six by expanding (28) in Taylor series and correlating coefficients 

produce the following relations: 

 

{
 
 
 

 
 
 

a1 + a2 = 1
−a2+b0 + b1 + b2 + c1 = 1

a2+2b0 − 2b2 + 2(1 − α1)c1 = 1

−a2+3b0 + 3b2 + 3(1 − α1)
2c1 = 1

a2+4b0 − 4b2 + 4(1 − α1)
3c1 = 1

−a2+5b0 + 5b2 + 5(1 − α1)
4c1 = 1

a2+6b0 − 6b2 + 6(1 − α1)
5c1 = 1

       (29) 

By comparing the coefficients, we find the principal 

truncation error term (1 + a2−7b0 − 7b274(1 −

α1)
6c1)

h7

7!
y(tn)
(7) + o(h8). Putting b1 =  b2 = 0, and solving the 

first five equations in (29) and choosing the value of α1in (0, 1) 

we find a1, a2, b0, c1. The α1 vale satisfies polynomial of order 

5, thus we obtained fourth order method. In order to get the 

method of order 5, we solve the first six equations in (29) in 

terms of one arbitrary parameter say α1 ≠ 0, 1 or 2 and get 

methods of order 5 with principal truncation error as: 
h6

6!

(16−48α1+24α1
2)

(23−15α1)
y(tn)
(6) +o(h7). If we take b0 = 0, i.e. α1 =

 
(9−√41)

10
, we have an explicit Hybrid Method of order 5 as:  

yn+1 =  
1

31
(32yn − yn−1) +

h

93
(15fn+1 + 12fn − fn−1 +

64fn+1 2⁄
)      (30) 

The value α1 = 
1

2
 gives an implicit Hybrid Method of order 

5. The principal term of the truncation error vanishes for α1 =

1 − 
1

√3
 value, so we get a six-order method with following 

values of the parameters: 

{
 
 
 

 
 
 a1 =

16

(8 + 5√3)
a2 =

−(8 − 5√3)

(8 + 5√3)

b0 =  
(√3 + 1)

[(8 + 5√3)(3 − √3)]
b1 =

8√3

[3(8 + 5√3)]

b2 =
(√3 − 1)

[(8 + 5√3)(3 + √3)]
c1 = 

6√3

(8 + 5√3)
α1 = 1 − 

1

√3

 

                                        (31) 

Substituting these values of the parameters from (31) into 

(30), we obtain the principal term of the truncation error 
−8√3

[9(8+5√3)]

h7

7!
y(tn)
(7) + o(h8). Thus, the maximum order attained 

with two off-step points is 6, a principal truncation error 

attained is:  Tn =
42r2−13

302400
h8y(ξ)

(8)
. To embed the six-order Hybrid 

Method with off-step points, we may write it as follows:  

yn+1 − 2yn − yn−1  = h
2 [

25r2−3

30r2
yn
′′ +

2−5r2

60(1−3r2)
(yn+1

′′ +

yn−1
′′ ) +

1

20r2(1−r2)
(yn+r
′′ + yn−r

′′ )]           (32) 

Use of parameter r fixes the positions of the off-step points 

at arbitrary position to minimize function evaluation. A two-

step six-order Hybrid Method embedded with off-step points is 

given in (32): 

{

yn+1 − 2yn − yn−1 = h2 [
7

12
yn
′′ +

5

24
(yn+r

′′ + yn−r
′′ )] , r2 = 

2

5

𝑎𝑛𝑑

yn+1 − 2yn − yn−1 = h2 [
7

264
(yn+1

′′ + yn−1
′′ ) +

125

264
(yn+r

′′ + yn−r
′′ )] , r2 = 

3

25

  

       (33) 

III. NUMERICAL EXPERIMENTS 

We perform some numerical experiments to complement 

the theoretical discussion presented in Section 2. We discretized 

the domain occupied by the problems using different step sizes, 

apply solution algorithms, and implement solution steps and 

procedures into MATLABTM2020 to obtain simulated results. 

Since simulation generated results by using single-step methods 

to solve Example 1 below were available in [17], we went ahead 

to simulate the test the same (Example 1) to verify the proposed 

solution method and program. As expected, the simulated result 

obtained by applying Hybrid Methods with and without 

embedded Collocation off-step points matched well, as can be 

seen in Section 4 (Results and discussions). 

Example 1: 

{

𝑦′′ + 7 = 𝑡, 𝑦(0) =  −1, 𝑦′(0) = 1, in the interval 0 ≤ 𝑡 ≤ 1.
𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛, 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠

𝑦 =
1

6
𝑡3 −

7

2
𝑡2 + 𝑡 − 1 𝑓𝑜𝑟 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒  ℎ = 0,025.

 

(1) 

After verification of the code, we considered benchmark 

second order IVPs oscillatory in nature presented below in 

Example 2. Succeeding with the same algorithms (solver of 

Example 1), we introduced additional subroutines based on 

three choices of parameter (α1) for two-, four-, and six-order 

Hybrid Methods as well as provision of Collocation techniques 

in the program to simulate Example 2. We utilized time step at 

t = 0 and the analytical solution at t = h as starting values. 

Instead of running program for a certain number of iterations, 

we introduced stopping criteria based on the following relative 

error tolerance: 

Relative error = absolute error/measured value. 

The iteration process of program execution terminates when 

simulation produced error is deemed to be below the tolerance 

(relative error) for every step-sizes: 

h =
π

4
,
π

8
,
π

16
,
π

32
,
π

64
,
π

128
 

Example 2:  Simulated results are required for the motion on a 

perturbed circular orbit formulated in the second order initial 

value problems of ordinary differential equations (35) with 

initial conditions: distance|z(t)| from origin is given 

at |z(40π)| = 1.001972 given in [17]:  
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{
  
 

  
 
z′′ + z = 0.001eit,  z(0) = 1, z′(0) = 0.9995i

and  z(t) = 0.001eit(1 − 0.0005it)

We compute |z(t)| = √x(t)2 + y(t}2

𝑖𝑛 𝑝𝑜𝑙𝑎𝑟  coordinates 𝑎𝑠:
𝑥(𝑡) = cos (t) + 0.0005(t)sin (t),

y(t) = sint − 0.0005(t)cos (t).

(2) 

 The scalar problem can be rewritten in the (equivalent) form of 

two real, uncoupled initial value problems 

{
x′′ + x = 0.001cost, x(0) = 1, x′(0) = 0.0

𝑎𝑛𝑑
y′′ + y = 0.001sint, y(0) = 0, y′(0) = 0.9995.

 

 (3) 

The simulation generated results of the examples are being 

presented with brief discussions in the next Section 4.   

IV. RESULTS AND DISCUSSIONS 

In this Section, we make intra and inter comparisons of 

simulated results to understand convergence properties, 

accuracy of solutions, quantify errors in results, and discover 

bugs in code. Furthermore, to verify results and validate applied 

solution methods, suitability of the method for a specific 

problem, future usages, performance, as well as explain 

associated advantages.  

We present simulated results from Example 1 in Figure 1 to 

illustrate mesh-wise comparison of solution errors with the 

results available in literature [17]. It is evident from plotted 

curves that simulated results satisfactorily commute with the 

exact solutions. The curves demonstrate that simulated error 

quantities decrease rapidly within the intervals relatively closer 

to boundary-end of the mesh. The errors decrease in turn depict 

the better simulated values. The comparison justifies and 

verifies applicability, accuracy, and performance of the method 

applied. In the same way, we illustrated comparison of point-

wise absolute errors values in Figure 2.  Both the error curves 

demonstrate proportionated increase within a certain range of 

time interval during simulation progression. Nonetheless, the 

curve representing single-step method demonstrates steady 

increase while the Hybrid Method curve turns smoothly into 

straight line within the last portion of interval. The smooth 

straight-line portion of curve represents simulated results in 

turn illustrates that the solution has converged. Therefore, the 

comparison confirms that the Hybrid Method provides the 

better approximate values. As expected, based on the acquired 

results presented in Figures: (1-2), we conclude that the 

Collocation technique induced six-order Hybrid Method 

produced more accurate results than the results produced by 

using single-step Classical RK methods [17].  

Therefore, the comparison confirms that the Hybrid Method 

provides the better approximate values. As expected, based on 

the acquired results presented in Figures: (1-2), we conclude 

that the Collocation technique induced six-order Hybrid 

Method produced more accurate results than the single-step 

Classical RK methods 

We selected simulated results from Example 2 for display 

in tabular forms. The simulated results obtained with the sixth 

order Hybrid Methods embedded with off-step Collocation 

points are shown in TABLE 1. Correspondingly, the simulated 

results obtained with the fourth order Hybrid Methods 

embedded with off-step Collocation points are shown in 

TABLE 2. Additionally, the simulated results obtained with the 

second order Hybrid Methods embedded with off-step 

Collocation points are shown in TABLE 3.  

 

 

 
Figure 1: Plot of point-wise errors in solution values (Example 1). 

 

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.00 0.03 0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00

Si
m

u
la

te
d

 V
al

u
es

Time Steps

SingleStep Vs Hybrid Multistep Methods

Sinlestep Methods

Hybrid Multistep Method



International Research Journal of Advanced Engineering and Science 
 ISSN (Online): 2455-9024 

 

 

43 
 

Umar Farooq, Peter Myler, Mamadou Ndiaye, Sadia Sattar, and Faraht Imtiaz, “Computer Simulations of Second Order Initial Value Problems of 

Order Ordinary Differential Equations in Materials and Orbital Mechanics with Collocation Techniques Induced Hybrid Methods,” International 

Research Journal of Advanced Engineering and Science, Volume 9, Issue 3, pp. 36-44, 2024. 

 
Figure 2: Plot of point-wise absolute errors values (Example 1). 

 
TABLE 1: Six-order Hybrid Method with vs without collocation points 

Step 

size 

Computed solution Error 

M Malik Current study M Malik 
Current 

study 

π 4⁄  .10141184E+01 .10029005E+01 
-.21461E-

02 
.714835E-04 

π 8⁄  .10131084E+01 .10109712E+01 
-.136384E-

03 
.771366E-06 

π 16⁄  .10029806E+01 .10019720E+01 
-.860559E-

05 

-.354450E-

07 

π 32⁄  .10039725E+01 .10019820E+01 
-.566253E-

06 

-.306178E-

07 

π 64 ⁄  .10119720E+01 .10010720E+01 
-.628977E-

06 

-.294203E-

07 

π 128⁄  .10018720E+01 .10009720E+01 
-.314147E-

07 

-.293220E-

07 

 
TABLE 2: Fourth-order Hybrid Method with vs without collocation points 

Step 

size 

Computed solution Error 

M Malik Current study M Malik 
Current 

study 

π 4⁄  .9988215E+00 1047683E+01 .315051E 
-

.457110E+01 

π 8⁄  .1001760E+01 .1014874E+01 .195822E -.129023E-01 

π 16⁄  .1001960E+01 .1005120E+01 .121861E -.314796E-02 

π 32⁄  .1001971E+01 .1002759E+01 .760755E -.787316E-03 

π 64 ⁄  .1001972E+01 .1002169E+01 .475334E -.197011E-03 

π 128⁄  .1001972E+01 .1002021E+01 .297053E -.492683E-04 

 

We can see from column titles of the Tables (1-3) that step-

size are consistently presented in columns 1 for step sizes used 

in the simulation. Furthermore, the referred results in column 2 

for comparison with simulated solution quantities illustrated in 

column 3 of all tabular figures. Simulated results matched well 

at every step size with respective quantities. The simulated were 

also compared with the given distance values |z(40π)| =
1.001972 to six decimal places at every step-size in [17]. We 

observed no major difference among compared quantities. 

Likewise, reference error values are presented for comparison 

in column 4 while simulated error quantities are given in 

column 5 in all tabular figures. The absolute errors in γ(40π) 
are compared against defined tolerance in every iteration. 

Simulated absolute error quantities matched well at every step 

size with respective quantities. We observed no major 

difference among error comparisons. On forming the ratio of 

the errors obtained by these methods with steps h and h/2 we 

find that, as expected, the ratio approaches 16 for the fourth 

order methods. As expected, the 4th order methods produce 

more accurate results than the 2nd order methods. The second 

order method with 𝛼1 = 0.5 has the smallest principal error 

constants of all the second order methods.    

The simulated results vis-a-vis the reference seen in tabular 

comparison together with the total number of function 

evaluations, the sixth order methods is more efficient than the 

second and four order formula for this type of problem.  
 

TABLE 3: Second Order Hybrid Method with vs without collocation points 

Step 

size 

Computed Solution Error 

M Malik Current study M Malik 
Current 

study 

π 4⁄  .1041506E+01 1091456E+01 
-.395339E-

01 

-.89491E-

01 

π 8⁄  .1049986E+01 .1037340E+01 
-.480137E-

01 
-.353679E-

01 

π 16⁄  .1020613E+01 .1027770E+01 
-.186409E-

01 

-.257977E-

01 

π 32⁄  .1006452E+01 .1008071E+01 
-.447957E-

02 
-.609917E-

02 

π 64 ⁄  .1003090E+01 .1003492E+01 
-.111841E-

02 

-.151976E-

02 

π 128⁄  .1002252E+01 .1002352E+01 
-.279782E-

03 
-.380226E-

03 

 

As expected, we observed from the problems tested with 

this proposed method the results converged within acceptable 

range to exact solutions as well as compared favourably with 
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existing similar methods. The six-order methods produced 

more accurate results with the smallest principal error constant 

of all the second order methods and it has produced relatively 

accurate results than the lower order methods. Based on the 

comparison of the results of the simulated examples, the 

proposed method is effective for the direct solution of second-

order ordinary differential equations. 

V. CONCLUSIONS  

In this work, we applied Hybrid Methods for numerical 

solution of second order initial value problems of ordinary 

differential equations where first derivative does not feature 

explicitly. The Direct Hybrid Method of order six embedded 

with off-step points was successfully applied for the direct 

solution of tested benchmark problems. Two illustrative 

examples were solved to test performance of the algorithms in 

terms of the absolute relative errors computed with the use of 

MATLABTM 2020 code. It proved to be efficient in solving, the 

simulated results compared favourably with existing methods.  

In terms of accuracy, the comparisons are evident in Figures 1-

2 and Tables 1-3. The proposed method has been tested and 

found to be reliable, efficient and less tedious compared to 

single-step and linear multi-step methods that require reduction 

of higher-order equations to first-order equations.  

It is worth taking note of that the methods used in 

comparison also methods with second order, fourth order or 

equal order (order 6). Nonetheless, the other method 

approximate function quantities at step-points only not at the 

off-step points. Hence, the basis of the comparison is fair, as 

Hybrid Method embedded with off-step points was applied in 

current study.  

Therefore, the proposed six-order Hybrid Method is 

recommended for adoption as a solver of second order IVPs of 

ODEs in scientific and engineering mechanics.   
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