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Abstract—Following the trend towards digitization, Computerized 

numerical control (CNC) machines are lagging behind due to the lack 

of compatibility between different manufacturers. The recently 

developed Open Platform Communications – Unified Architecture 

(OPC UA) is supposed to change that. The aim of this work is to find 

the limits of this tool for trajectory planning. It sends the coordinates 

of the path the machine must follow from an external source while 

operating. The communication between a DMU 75 monoBlock 

machine and a Python program is performed using the Python 

”opcua” library to create an OPC UA Client and the inbuilt OPC UA 

Server from the Siemens SINUMERIK 840D sl control. Speed 

measurements have been made monitoring the tool tip position via 

OPC UA and SINUMERIK trace function. The results were used to 

determine the boundary conditions for the feed rate and the minimum 

distance between two trajectory coordinates to obtain a viable 

solution. The structure of the trajectory itself was also analyzed to find 

suitable working conditions. After comparing these results with the 

theory, a rule was set up to ensure the machine’s correct operation by 

guiding it through an external system with OPC UA. 

 

Keywords— CNC machining, Industry 4.0, OPC UA 

I. INTRODUCTION  

“Industry 4.0”, announcing the fourth Industrial Revolution, is 

a recurring term in scientific papers over the past fifteen years 

[1]. It contains several concepts, including the digitization of 

manufacturing processes and the creation of “smart factories”, 

i.e. machines equipped with sensors that are intended to obviate 

the need for human supervision [2]. The digitization of the 

industrial production is becoming increasingly interesting with 

the rise of big data, Artificial Intelligence and the Internet of 

Things [3]. Incorporating these new technologies to a 

production system can help to improve the safety and efficiency 

of a production process, reduce the energy costs, prevent and 

predict maintenance and maximize the product quality [4]. For 

this purpose, communication interfaces between machine, 

sensors and the data processing algorithms are required. One 

example is the communication standard Open Platform 

Communications - Unified Architecture (OPC UA).  

Released in 2008 OPC UA is an international standard (IEC 

62541 [5]) for the platform independent secure transfer of data 

in the automation field [6]. With the Client-Server 

communication, it works as a request-respond mechanism, but 

can also directly be used as a data and event notifier via the 

publish-subscribe method. 

The aim of this study is to investigate what has been 

achieved with OPC UA up to now in the field of Computerized 

Numerical Control (CNC) machining and to extend this 

knowledge to examine its limits for real-time machine 

trajectory adaptation by using flexible G-code programming. 

Applications currently under development, which will not be 

presented in detail in this article, are the communication with 

an external AI module or an external force sensor. The first one 

uses image recognition to guide the machine in front of an 

unspecified work-piece. The second one regulates the radial 

depth of cut of the tool to extend its service life and improve the 

general efficiency of the process.  

II. RELATED WORK  

In the literature, the digitization of CNC machines is mainly 

used for process monitoring. In [7]–[11], OPC UA servers are 

created for the various components of experimental setups so 

all data can be monitored via a client and all elements of the 

setup can communicate with each other even if the controllers 

are from different manufacturers. Gui et al. [12] created a 

monitoring system for FANUC30i and SIEMENS 840D CNC 

systems using Visual Basic language for the FANUC and OPC 

for the SIEMENS system. A connectivity framework for 

Siemens 840D based on web service technologies and OPC UA 

called UNIFIK is presented in [4]. It enables the acquisition and 

display of programmable logic controller (PLC) variables. 

Some publications also mention the use of digitization to 

control the machine. Reiser et al. [13] have performed drilling 

tasks with a modular robot system. Each module had an OPC 

UA server, including a robot arm with CNC control and a 

virtual twin. G-code programs were uploaded to the controller 

using OPC UA which were then executed. The speed or 

accuracy of the OPC UA transfer is not addressed. 

Measurements were not presented. In the project of Lin et al. 

[14], motion commands from a cloud were converted into G-

code and forwarded to the controller of a Stäubli robot via OPC 

UA. Similarly, Madhyastha et al. [15] used OPC UA to 

remotely control a 3D printing machine. Shicong et al. [16] 

used OPC to connect a monitoring computer to a SINUMERIK 

840D. They developed a tool and program management system 

to optimize the production task scheduling using genetic 

algorithms. The common element is the use of the PLC to 

import external code into the control, and then execute it. The 

code is not altered once it has been sent to the control and the 

execution cannot be stopped from external devices once it has 

been started. The trajectory itself is not implemented during the 

program execution, which excludes any online adaptation from 

an external environment.  
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Philip Samuel et al. [17] have developed a system that 

converts a two-dimensional drawing into G-code, saves the data 

in an Excel file and sends it to a PLC via OPC UA (OPC 

Expert). This can be achieved using the file transfer and 

program selection methods of a Siemens OPC UA Server [18]. 

The process time has been monitored using Wireshark. 

Recorded time between write request from computer and write 

response from controller was 0.5 to 0.9 ms. For the program to 

be executed by the machine, there must either be an operator 

starting it or a function block added in the PLC enabling the 

start by writing a variable. However, with a CNC machine that 

was commissioned several years ago, it is sometimes 

complicated or even dangerous to access the internal system 

and use it to create new function blocks. In the case of Siemens 

products, a computer would have to be connected to the control 

and the correct PLC project would have to be found, adapted 

and re-uploaded. However, if the PLC project does not match 

the former project that was already loaded on the controller, it 

may cause the entire machine to stop working properly. The 

programs are not designed by the manufacturers to be rewritten 

by an external user. On the other hand, if the machine has to be 

started manually every time after a new program had been 

uploaded, it makes the system less appropriate for trajectory 

adaptation during the operation. So, it would be interesting to 

directly control the axes by writing CNC variables linked to a 

running flexible G-code programmed with synchronous 

actions. The program would have to be started only once. 

III. SYSTEM DESIGN 

The aim of this work is to adapt the trajectory of a CNC 

machine from an external program using OPC UA. The data 

exchange model is described in Fig. 1. The used CNC machine 

for the experiments is a 5-axes machine tool (DMU 75 

monoBLOCK from DMG MORI) with a Siemens 

SINUMERIK 840D sl control which has an integrated OPC UA 

server collecting the machine’s data (current position, machine 

parameter, user data, etc.). The client, which will read and write 

variables of the machine’s server, is written in Python using the 

“opcua” library and is running on a computer with Windows 10 

operating system and Visual Studio 2022. 

The G-code running on the CNC machine is called flexible 

because of its unconventional usage of while-, for-loops, if-

conditions and goto-functions that enable to jump back or 

forward to a different line in the code. The machine is running 

in a continuous loop until it gets the start signal from the client. 

Once it is outside the loop, it reads the coordinates from the R-

parameters and moves to these points until the client sends the 

stop signal. Start and stop signals are transmitted by writing and 

reading R-parameters. Algorithm I summarizes the functioning 

of the G-code Program. R-parameters are readable and writable 

variables used to compute data in Siemens and Beckhoff 

controls. (Other manufacturers may name them differently.) 

They can be assigned to the spindle speed, the feed rate and any 

axis value. 

As there is a limited amount of available R-parameters (99 

per default, up to 999 by changing 28050 MM NUM R PARAM 

in the system settings), they must be constantly rewritten once 

the machine reaches their location. For the client to know when 

to overwrite the R-parameters there are two possibilities: 

1) The client observes constantly the current position of the 

machine and compares it with the point to be overwritten. This 

can be achieved reading the current actual position (node Id: 

/Channel/GeometricAxis/aaAcsRel[1,2,3]) or the current 

remaining distance (node Id: /Channel/GeometricAxis/aaDtew 

[1,2,3]). In either case, the distance to the next point is 

computed and when it is small enough, the point is considered 

reached and can be rewritten. The nodes can be read using 

request-respond or by creating a subscription. The limiting 

distance is evaluated in section V. 

 
ALGORITHM I. Flexible programming method 

1: Label1 
2: while not 𝑅𝑠𝑡𝑎𝑟𝑡 do 

3:  goto Label1 
4: end while 

5: Label2 
6: G1 X=R11 Y=R12 Z=R13 

7: G1 X=R21 Y=R22 Z=R23 

8: G1 X=R31 Y=R32 Z=R33 
9: ... 

10: if not 𝑅𝑠𝑡𝑜𝑝 then 

11:  goto Label2 
12: end if 

 

2) The G-code sets another R-parameter to indicate that the 

point has been passed. The client constantly reads this 

parameter or even creates a subscription to get informed about 

the change and overwrites the corresponding parameters. This 

can also be applied for longer lists of coordinates as long as at 

the end of this list there is an indicating R-parameter to signal 

that all points of the list have been passed.  

The advantage of the first method lies in its simplicity. The 

G-code does not need to write parameters at run-time. The 

system may therefore run more smoothly. The advantage of the 

second method is its reliability, lead in writing the parameters 

and requirement to read one parameter instead of three in each 

loop. Rather than needing to pursue the current position, it 

reflects the current line that has been written and can write 

several parameters at the same time. Therefore, it sends larger 

messages but at a lower frequency. 

 

 
Fig. 1. Simplified representation of the communication 
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IV. UP FRONT ANALYSIS 

A. Speed Tests 

The speed of OPC UA is highly variable depending on the 

speed of the network in which the different participants of the 

connection are installed. This may be a reason why it has not 

often been measured and discussed in the scientific community 

before. Cavalieri et al. [19] and Veichtlbauer et al. [20] have 

indeed evaluated the performance of OPC UA. Both found 

communication times of several milliseconds and highlighted 

the lack of real-time capabilities of this connection. 

When sending a trajectory, consecutive points can sometimes 

be very close to each other. Depending on the machine’s feed 

rate, the time between two points can be below one millisecond, 

thus ideally requiring real-time communication. As this is not 

the case, the client must be able to maintain the rhythm, 

otherwise it will not be able to update the parameters on time 

and the machine will follow the wrong trajectory. This could 

lead to a fatal error, where the operator could be harmed and the 

work-piece, the tool and the machine itself could be damaged. 

In order to get an idea of the processing time of both methods, 

a temporal recording was made on the machine, in which the 

value of a real variable, coded on 32 bits, was recorded. This 

can be done via the trace function of the SINUMERIK 840D sl 

control. During the recording, the client rewrites the variable 

ten times without pause. The sequence of values is the 

following: 1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0. The 

resulting graph is shown in Fig. 2. It can be seen that each new 

value was written for the same duration of four milliseconds. 

This corresponds to the set interpolation cycle of the control, 

which represents the lower limit of the communication cycle 

duration. 

 

 
Fig. 2. Recording of a Global User Data during the test with trace function. 

 

To verify and refine these measurements the duration of 

reading and writing different R-parameters (also 32 bits) have 

been measured. For the results of table I, one, twenty and 

hundred R-parameters were read and written. The duration was 

recorded using the Python library “time”. To write and read 

multiple R-parameters at once, two functions were used. The 

first (V1) ran a loop to read/write each R-parameter 

individually. The second (V2) used the inbuilt function called 

get values from the Python opcua library to read (respectively 

set values to write) a list of parameters.  

V1 is between 14 and 30 % slower, with an average of over 

5 ms per parameter, than V2, which average is 4.3 ms per 

parameter. The standard deviation of the measurements were all 

under 6 %, so the duration of 4.3 ms will be taken as reference 

duration in the following. 

 
TABLE I. Time Measurements Results for Reading and Writing. 

Reading 

No. Parameters 1 20 100 

Function V1 V2 V1 V2 V1 

Minimum (ms) 0 78.0 83.2 396 493 

Maximum (ms) 10.25 115 114 474 562 

Average (ms) 4.35 86.9 99.3 428 537 

STD (ms) 3.44 7.26 7.46 22.2 15.4 

Median (ms) 5.15 83.4 99.1 422 538 

 

Writing 

No. Parameters 1 20 100 

Function V1 V2 V1 V2 V1 

Minimum (ms) 0 72.6 103 412 489 

Maximum (ms) 15.95 94.6 125 479 593 

Average (ms) 5.67 86.6 111 433 567 

STD (ms) 6.15 4.59 4.76 16.9 17.9 

Median (ms) 0 88.3 110 424 571 

B. Subscriptions 

Via subscriptions, parameters can be monitored, not written. 

The server publishes the information for any client who is 

interested in it, but it does not receive any information. The R-

parameter will still have to be written by request-respond, but 

the signaling R-parameter or the current position can be 

observed by subscription. To evaluate the duration difference, 

a similar speed test has been performed subscribing an R-

parameter via Python and running a G-code setting that 

parameter to different values. 

To create the subscription, an object from the class 

“SubHandler” was generated and used in the function create 

subscription, but this type of communication depends on the 

given publishing interval. Lowering this interval only works if 

the sampling rate of the parameter to be subscribed is lower. 

Thus, per definition, it is not possible for the subscription 

communication to be faster than the interpolation cycle of the 

machine. 

During the test, the parameter was set to ten different values 

consecutively. When the subscription recognized a change in its 

value, it printed the value to the Python prompt and the time at 

which it occurred. After repeating this procedure twenty times, 

the results showed that only two of the ten values were printed 

to the prompt (maximum four). Regardless of the publishing 

interval, he subscription was at most able to register two 

changes with a temporal delay of minimum 10 ms. The others 

were skipped. This does not make it more reliable than the 

request-respond system and will therefore not be considered 

further in the experiments. 



International Research Journal of Advanced Engineering and Science 
 ISSN (Online): 2455-9024 

 

 

33 

 
Sara Menetrey, Holger Schlegel and Martin Dix, “Trajectory Control of Computerized Numerical Control Machines from External Python 

Program Using OPC UA,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 3, pp. 30-35, 2024. 

V.  EPERIMENTAL PROTOCOL 

A. Settings 

For the experiments, a reference G-code has been generated 

using the computer-aided manufacturing software ESPRIT. For 

simplicity reasons, it only uses G1 (linear interpolation) 

commands. In order to implement multiple forms of G-

commands (G0, G2, etc.), other parameters could be written to 

define which form each line is supposed to be. To get an initial 

idea of feasibility, this option is first taken out of the equation.  

A Python script has been written to extract the coordinates 

of that generated G-code and put them in a list. Both methods 

presented in section III are also coded in Python. They take the 

list and write the coordinates to the right R-parameters at the 

right time which is either when the Tool Center Point (TCP) is 

considered close enough (defined later in (2)) to the point to 

reach next (method 1) or when the signaling R-parameter has 

changed its value (method 2). The key element of each method 

is shown as pseudocode in algorithms II and III.  

 
ALGORITHM II. Method 1 

 Input: 𝑙𝑖𝑠𝑡, 𝑁 

1: 𝑖𝑛𝑑𝑒𝑥 ←  𝑁 

2: while 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑖𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ do 

3:  if — 𝑎𝑎𝐷𝑡𝑒𝑤— < 𝛿 then 

4:   𝑅𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ←  𝑙𝑖𝑠𝑡[𝑖𝑛𝑑𝑒𝑥] 
5:   𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 1 

6:  end if 

7: end while 

 
ALGORITHM III. Method 2 

 Input: 𝑙𝑖𝑠𝑡, 𝑁 

1: 𝑖𝑛𝑑𝑒𝑥 ←  𝑁 

2: 𝑖𝑛𝑑𝑒𝑥𝐺𝑐𝑜𝑑𝑒 ←  0 

3: while 𝑖𝑛𝑑𝑒𝑥 <  𝑙𝑖𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ do 

4:  𝑟𝑒𝑎𝑑 𝑅0 

5:  if 𝑅0 = 0 then 

6: 
  

𝑅𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ←  𝑙𝑖𝑠𝑡 [𝑖𝑛𝑑𝑒𝑥: 𝑖𝑛𝑑𝑒𝑥 + ⌈
𝑁

2
⌉] 

7: 
  

𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + ⌈
𝑁

2
⌉ 

8:   𝑅0 ←  2 

9:  end if 

10:  if 𝑅0 = 1 then 

11: 
  

𝑅𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ←  𝑙𝑖𝑠𝑡 [𝑖𝑛𝑑𝑒𝑥 + ⌈
𝑁

2
⌉ : 𝑁] 

12: 
  

𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 𝑁 − ⌈
𝑁

2
⌉ 

13:   𝑅0 ←  2 

14:  end if 

15: end while 

In parallel, the machine is running a G-code that loops on 

reading the R-parameters and moving to the respective points. 

To compare the results, the TCP position is continuously read 

and saved by the Siemens integrated trace function. 

The influence of the following variables will be analyzed:  

• the machine feed rate (F in mm/min),  

• the smallest distance between two consecutive points 

(𝑑𝑚𝑖𝑛  in mm) for method 1,  

• the smallest distance between ⌈
𝑁

2
⌉ consecutive points (𝑑𝑚𝑖𝑛

𝑁  

in mm) for method 2,  

• the limiting distance between the TCP and the next point 

to be evaluated as passed (δ in mm),  

• the length of the set of R-parameter coordinates (N). 

B. Theory 

a) Method 1: In every loop, the position is read and 

occasionally three R-parameters are written. So the average 

duration of a loop (Δt in ms) in method 1 is expected to be 

between 12.9 and 25.8 ms. For the algorithm to have enough 

time to write all the coordinates and recognize the passed 

points, the following conditions from (1) and (2) must be 

met. 

 

 𝐹 × ∆𝑡

60000
< 𝑑𝑚𝑖𝑛 (1) 

 

 𝐹 × ∆𝑡

60000
< 2 × 𝛿 (2) 

 

b) Method 2: In every loop, the R0 parameter is read and 

occasionally written. Three other R-parameters times ⌈
𝑁

2
⌉ are 

also written from time to time, so the looping time should 

be between 4.3 and 4.3 × (3 ⌈
𝑁

2
⌉ + 1) ms. As the 

functioning condition is 𝑑𝑚𝑖𝑛
𝑁 > ⌊

𝑁

2
⌋ × 𝑑𝑚𝑖𝑛, (3) is 

sufficient. 

 𝐹 × 4.3 × (3 ⌈
𝑁
2

⌉ + 1)

60000
< ⌊

𝑁

2
⌋ × 𝑑𝑚𝑖𝑛 

(3) 

To verify these equations, the following experiments were 

conducted. 

VI. EXPERIMENTS 

For each method, the same trajectory list is tested. In order 

to observe the feed rate’s influence, the programs with δ equal 

to 𝑑𝑚𝑖𝑛  (method 1) and N equal to 7 (method 2) are executed 

for different feed rates, with values of 𝑑𝑚𝑖𝑛  starting from 0.5 

mm. Then, this value is decreased until failure in order to get 

the limiting 𝑑𝑚𝑖𝑛 for each feed rate. Examples of the resulting 

trajectory graphs are shown in Fig. 3. 

Every recording shows short periods of time (on average 40 

ms) in which the feed of the machine drops to zero. Thus, the 

tool comes to a standstill repeatedly. This is caused by the 

required synchronization, between each G-code loop, 

programmed with the command STOPRE. It stands for ”Stop 

Prediction” and deactivates the Look-ahead of the control. 

Since the R-parameters are read in the pre-run and not in the 

main run, their values are not updated in the loop without 

synchronization. The frequency of these stops depends on the 

length of the G-code loop. The longer the loop, the smaller the 

frequency of stops. When the frequency of the interruptions is 

too high or when their placement is inconvenient, especially 

while working on the work-piece, these fractures in the 

trajectory can damage the tool and reduce its lifetime. 
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(a) Method 1 with 𝐹 = 500 mm/min 

 

 
(b) Method 2 with 𝑁 = 7 and 𝐹 = 700 mm/min 

Fig. 3. Trajectory of the X-axis during the 𝑑𝑚𝑖𝑛/feed rate influence test of 

method 1 (a) and 2 (b). 

A. Results 

As predicted, repetitions of the same trajectory parts occur 

when the feed rate is too high compared to the distance between 

two points of the path. Method 1 demonstrates a limiting value 

of 0.15 mm for 𝑑𝑚𝑖𝑛 when the feed rate equals 500 mm/min. 

Fig. 4 displays the measured dependencies for method 1. The 

curve presents a standard deviation of 0.053 mm to the 

theoretical curve. This may be due to the limited number of 

measurements made for each of the combinations. As 

demonstrated earlier in the speed test, transmission times are 

variable. A longer time on a passage, where the consecutive 

points are very close may cause an error. This explains the 

variability of the errors observed.  

Method 2 does not exhibit any repetitions in the trajectory 

no matter how small the distance between the points is. The 

experiments were interrupted when arriving to a minimum 

distance of 0.001 mm at a feed rate of 600 mm/min because the 

smallest distance between two points in the G-code from which 

the list had been generated, had been underbid. Testing with a 

smaller 𝑑𝑚𝑖𝑛would in reality not change the list of coordinates. 

In this concrete example, the program must write the 

coordinates of four points during a period of time determined 

by the minimum distance between three consecutive points. 

Looking at the trajectory, this distance 𝑑𝑚𝑖𝑛
𝑁  is actually equal to 

0.1 mm and not 3 × 𝑑𝑚𝑖𝑛 = 0.003 mm. With the additional 

time of 40 ms caused by the synchronization pause, the time 

available is 50 ms, which is enough to write four points. As all 

curves produced under the conditions of (3) are valid, this 

inequality is verified, but it is possible to considerably improve 

trajectory accuracy by knowing the real value of 𝑑𝑚𝑖𝑛 
𝑁  and 

taking into account the synchronization time. 

Finally, to verify (2), a similar test has been executed 

varying δ with 𝑑𝑚𝑖𝑛 = 0.2 mm and 𝐹 = 400 mm/min. All 

resulting curves with δ smaller than 𝑑𝑚𝑖𝑛 show errors. Only 

after a value larger than 0.15 mm the trajectory was sure to be 

correct. For security reasons, it is therefore advisable to add a 

safety coefficient of at least 1.5 on the lower side of the 

inequality in (2) in order to expect a viable outcome. 

 

 
Fig. 4. Dependency between 𝐹 and 𝑑𝑚𝑖𝑛 for method 1. 

VII. DISCUSSION 

Even if the machine is now able to cover all the points given 

to it in the right order and without repetition, there remains the 

problem due to the pause time. Unfortunately, “STOPRE” is the 

only way to actualize the R-parameter while the program is 

running. Another solution suggested by Siemens is to use the 

online tool compensation ($TOFF). Simultaneously to the 

movement, the tool size would be modified without having to 

synchronize the program with “STOPRE”. Thus, the trajectory 

would be completely smooth, but the basic trajectory would 

have to be set from the beginning and the linear interpolation 

from point to point would no longer be given. Instead, there is 

an unclear movement in the period between two different tool 

lengths. Similarly, online adaptation has been successfully 

achieved writing the $AA OFF variable, which creates a 

superimposed movement in whatever axis is selected. The only 

difference to $TOFF, is that the generated offset does not take 
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into account the orientation of the tool. It compensates along 

the machine axes X, Y and Z. To do so, a synchronous action 

command, like the following, has to be added to the existing G-

code: 

IDS = 1 WHENEVER Condition DO $AA OFF[Y] = $R0 

This is a viable solution to achieve for instance small 

adaptations in purpose of optimization, but it is not a feasible 

option when the goal is to define the entire trajectory while 

operating. Its disadvantages are the same as for the tool offset: 

no more real control over the trajectory, no interpolation, 

complex determination of the axis in which the offset is desired. 

Another approach could be to use the file transfer method 

of the Siemens OPC UA server in order to import subprograms 

that would always have the same name but different content and 

to have the G-code again running in a loop, but this time 

executing the subprograms instead of reading the R-parameters. 

However, to actualize the subprogram, a “STOPRE” command 

must again be integrated into the G-code loop and the problem 

would be the same. Therefore, this is only a presentation 

variation of the already existing methods that have been tested, 

although its speed limitation could be different and would need 

to be analyzed. 

To avoid excessive usage of the tools or even accidents, it 

is conceivable to adapt the trajectory so that the stops are at 

times when it is not dangerous to have them, for example, after 

the tool retracts. Additional retraction could even be 

implemented to circumvent this problem, but this would 

elongate the manufacturing time. 

VIII. CONCLUSION 

This work presents a successful way to control the trajectory 

of a CNC machine from an external source while moving and 

thus enables online adaptations. The external python code was 

able to communicate with the Siemens control using OPC UA. 

R-parameters and current positions were read and written via 

request-respond in order to generate the requested path. The 

speed of the OPC UA communication was measured and found 

to be close to the duration of the machine’s interpolation cycle 

(4 ms/parameter). Writing several parameters at the same time 

using the inbuilt function of the Python “opcua” library was 

proved to be up to 23 % faster than writing each parameter one 

after the other. Requirements for faultless implementation 

involving the machine feed rate and the minimal distance 

between points of the trajectory have been established and 

verified by testing it with a SINUMERIK 840D sl CNC control. 

The system requires synchronization pauses of about 40 ms in 

order to read the modified R-parameter values. During this 

time, the feed rate falls down to zero. Depending on the 

requirements of the applications, there are possibilities to get 

round the problem by positioning the pauses thoughtfully. In 

application where this does not pose a problem, the presented 

solution is viable and allows on-line adaptation of the 

trajectory. 
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