
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

30

Sara Menetrey, Holger Schlegel and Martin Dix, “Trajectory Control of Computerized Numerical Control Machines from External Python

Program Using OPC UA,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 3, pp. 30-35, 2024.

Trajectory Control of Computerized Numerical

Control Machines from External Python Program

Using OPC UA

Sara Menetrey1, Holger Schlegel1, Martin Dix1

 1Department Production Systems and Processes, Chemnitz Technical University, Chemnitz, Germany

Abstract—Following the trend towards digitization, Computerized

numerical control (CNC) machines are lagging behind due to the lack

of compatibility between different manufacturers. The recently

developed Open Platform Communications – Unified Architecture

(OPC UA) is supposed to change that. The aim of this work is to find

the limits of this tool for trajectory planning. It sends the coordinates

of the path the machine must follow from an external source while

operating. The communication between a DMU 75 monoBlock

machine and a Python program is performed using the Python

”opcua” library to create an OPC UA Client and the inbuilt OPC UA

Server from the Siemens SINUMERIK 840D sl control. Speed

measurements have been made monitoring the tool tip position via

OPC UA and SINUMERIK trace function. The results were used to

determine the boundary conditions for the feed rate and the minimum

distance between two trajectory coordinates to obtain a viable

solution. The structure of the trajectory itself was also analyzed to find

suitable working conditions. After comparing these results with the

theory, a rule was set up to ensure the machine’s correct operation by

guiding it through an external system with OPC UA.

Keywords— CNC machining, Industry 4.0, OPC UA

I. INTRODUCTION

“Industry 4.0”, announcing the fourth Industrial Revolution, is

a recurring term in scientific papers over the past fifteen years

[1]. It contains several concepts, including the digitization of

manufacturing processes and the creation of “smart factories”,

i.e. machines equipped with sensors that are intended to obviate

the need for human supervision [2]. The digitization of the

industrial production is becoming increasingly interesting with

the rise of big data, Artificial Intelligence and the Internet of

Things [3]. Incorporating these new technologies to a

production system can help to improve the safety and efficiency

of a production process, reduce the energy costs, prevent and

predict maintenance and maximize the product quality [4]. For

this purpose, communication interfaces between machine,

sensors and the data processing algorithms are required. One

example is the communication standard Open Platform

Communications - Unified Architecture (OPC UA).

Released in 2008 OPC UA is an international standard (IEC

62541 [5]) for the platform independent secure transfer of data

in the automation field [6]. With the Client-Server

communication, it works as a request-respond mechanism, but

can also directly be used as a data and event notifier via the

publish-subscribe method.

The aim of this study is to investigate what has been

achieved with OPC UA up to now in the field of Computerized

Numerical Control (CNC) machining and to extend this

knowledge to examine its limits for real-time machine

trajectory adaptation by using flexible G-code programming.

Applications currently under development, which will not be

presented in detail in this article, are the communication with

an external AI module or an external force sensor. The first one

uses image recognition to guide the machine in front of an

unspecified work-piece. The second one regulates the radial

depth of cut of the tool to extend its service life and improve the

general efficiency of the process.

II. RELATED WORK

In the literature, the digitization of CNC machines is mainly

used for process monitoring. In [7]–[11], OPC UA servers are

created for the various components of experimental setups so

all data can be monitored via a client and all elements of the

setup can communicate with each other even if the controllers

are from different manufacturers. Gui et al. [12] created a

monitoring system for FANUC30i and SIEMENS 840D CNC

systems using Visual Basic language for the FANUC and OPC

for the SIEMENS system. A connectivity framework for

Siemens 840D based on web service technologies and OPC UA

called UNIFIK is presented in [4]. It enables the acquisition and

display of programmable logic controller (PLC) variables.

Some publications also mention the use of digitization to

control the machine. Reiser et al. [13] have performed drilling

tasks with a modular robot system. Each module had an OPC

UA server, including a robot arm with CNC control and a

virtual twin. G-code programs were uploaded to the controller

using OPC UA which were then executed. The speed or

accuracy of the OPC UA transfer is not addressed.

Measurements were not presented. In the project of Lin et al.

[14], motion commands from a cloud were converted into G-

code and forwarded to the controller of a Stäubli robot via OPC

UA. Similarly, Madhyastha et al. [15] used OPC UA to

remotely control a 3D printing machine. Shicong et al. [16]

used OPC to connect a monitoring computer to a SINUMERIK

840D. They developed a tool and program management system

to optimize the production task scheduling using genetic

algorithms. The common element is the use of the PLC to

import external code into the control, and then execute it. The

code is not altered once it has been sent to the control and the

execution cannot be stopped from external devices once it has

been started. The trajectory itself is not implemented during the

program execution, which excludes any online adaptation from

an external environment.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

31

Sara Menetrey, Holger Schlegel and Martin Dix, “Trajectory Control of Computerized Numerical Control Machines from External Python

Program Using OPC UA,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 3, pp. 30-35, 2024.

Philip Samuel et al. [17] have developed a system that

converts a two-dimensional drawing into G-code, saves the data

in an Excel file and sends it to a PLC via OPC UA (OPC

Expert). This can be achieved using the file transfer and

program selection methods of a Siemens OPC UA Server [18].

The process time has been monitored using Wireshark.

Recorded time between write request from computer and write

response from controller was 0.5 to 0.9 ms. For the program to

be executed by the machine, there must either be an operator

starting it or a function block added in the PLC enabling the

start by writing a variable. However, with a CNC machine that

was commissioned several years ago, it is sometimes

complicated or even dangerous to access the internal system

and use it to create new function blocks. In the case of Siemens

products, a computer would have to be connected to the control

and the correct PLC project would have to be found, adapted

and re-uploaded. However, if the PLC project does not match

the former project that was already loaded on the controller, it

may cause the entire machine to stop working properly. The

programs are not designed by the manufacturers to be rewritten

by an external user. On the other hand, if the machine has to be

started manually every time after a new program had been

uploaded, it makes the system less appropriate for trajectory

adaptation during the operation. So, it would be interesting to

directly control the axes by writing CNC variables linked to a

running flexible G-code programmed with synchronous

actions. The program would have to be started only once.

III. SYSTEM DESIGN

The aim of this work is to adapt the trajectory of a CNC

machine from an external program using OPC UA. The data

exchange model is described in Fig. 1. The used CNC machine

for the experiments is a 5-axes machine tool (DMU 75

monoBLOCK from DMG MORI) with a Siemens

SINUMERIK 840D sl control which has an integrated OPC UA

server collecting the machine’s data (current position, machine

parameter, user data, etc.). The client, which will read and write

variables of the machine’s server, is written in Python using the

“opcua” library and is running on a computer with Windows 10

operating system and Visual Studio 2022.

The G-code running on the CNC machine is called flexible

because of its unconventional usage of while-, for-loops, if-

conditions and goto-functions that enable to jump back or

forward to a different line in the code. The machine is running

in a continuous loop until it gets the start signal from the client.

Once it is outside the loop, it reads the coordinates from the R-

parameters and moves to these points until the client sends the

stop signal. Start and stop signals are transmitted by writing and

reading R-parameters. Algorithm I summarizes the functioning

of the G-code Program. R-parameters are readable and writable

variables used to compute data in Siemens and Beckhoff

controls. (Other manufacturers may name them differently.)

They can be assigned to the spindle speed, the feed rate and any

axis value.

As there is a limited amount of available R-parameters (99

per default, up to 999 by changing 28050 MM NUM R PARAM

in the system settings), they must be constantly rewritten once

the machine reaches their location. For the client to know when

to overwrite the R-parameters there are two possibilities:

1) The client observes constantly the current position of the

machine and compares it with the point to be overwritten. This

can be achieved reading the current actual position (node Id:

/Channel/GeometricAxis/aaAcsRel[1,2,3]) or the current

remaining distance (node Id: /Channel/GeometricAxis/aaDtew

[1,2,3]). In either case, the distance to the next point is

computed and when it is small enough, the point is considered

reached and can be rewritten. The nodes can be read using

request-respond or by creating a subscription. The limiting

distance is evaluated in section V.

ALGORITHM I. Flexible programming method

1: Label1
2: while not 𝑅𝑠𝑡𝑎𝑟𝑡 do

3: goto Label1
4: end while

5: Label2
6: G1 X=R11 Y=R12 Z=R13

7: G1 X=R21 Y=R22 Z=R23

8: G1 X=R31 Y=R32 Z=R33
9: ...

10: if not 𝑅𝑠𝑡𝑜𝑝 then

11: goto Label2
12: end if

2) The G-code sets another R-parameter to indicate that the

point has been passed. The client constantly reads this

parameter or even creates a subscription to get informed about

the change and overwrites the corresponding parameters. This

can also be applied for longer lists of coordinates as long as at

the end of this list there is an indicating R-parameter to signal

that all points of the list have been passed.

The advantage of the first method lies in its simplicity. The

G-code does not need to write parameters at run-time. The

system may therefore run more smoothly. The advantage of the

second method is its reliability, lead in writing the parameters

and requirement to read one parameter instead of three in each

loop. Rather than needing to pursue the current position, it

reflects the current line that has been written and can write

several parameters at the same time. Therefore, it sends larger

messages but at a lower frequency.

Fig. 1. Simplified representation of the communication

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

32

Sara Menetrey, Holger Schlegel and Martin Dix, “Trajectory Control of Computerized Numerical Control Machines from External Python

Program Using OPC UA,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 3, pp. 30-35, 2024.

IV. UP FRONT ANALYSIS

A. Speed Tests

The speed of OPC UA is highly variable depending on the

speed of the network in which the different participants of the

connection are installed. This may be a reason why it has not

often been measured and discussed in the scientific community

before. Cavalieri et al. [19] and Veichtlbauer et al. [20] have

indeed evaluated the performance of OPC UA. Both found

communication times of several milliseconds and highlighted

the lack of real-time capabilities of this connection.

When sending a trajectory, consecutive points can sometimes

be very close to each other. Depending on the machine’s feed

rate, the time between two points can be below one millisecond,

thus ideally requiring real-time communication. As this is not

the case, the client must be able to maintain the rhythm,

otherwise it will not be able to update the parameters on time

and the machine will follow the wrong trajectory. This could

lead to a fatal error, where the operator could be harmed and the

work-piece, the tool and the machine itself could be damaged.

In order to get an idea of the processing time of both methods,

a temporal recording was made on the machine, in which the

value of a real variable, coded on 32 bits, was recorded. This

can be done via the trace function of the SINUMERIK 840D sl

control. During the recording, the client rewrites the variable

ten times without pause. The sequence of values is the

following: 1.0, 0.0, 2.0, 0.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0. The

resulting graph is shown in Fig. 2. It can be seen that each new

value was written for the same duration of four milliseconds.

This corresponds to the set interpolation cycle of the control,

which represents the lower limit of the communication cycle

duration.

Fig. 2. Recording of a Global User Data during the test with trace function.

To verify and refine these measurements the duration of

reading and writing different R-parameters (also 32 bits) have

been measured. For the results of table I, one, twenty and

hundred R-parameters were read and written. The duration was

recorded using the Python library “time”. To write and read

multiple R-parameters at once, two functions were used. The

first (V1) ran a loop to read/write each R-parameter

individually. The second (V2) used the inbuilt function called

get values from the Python opcua library to read (respectively

set values to write) a list of parameters.

V1 is between 14 and 30 % slower, with an average of over

5 ms per parameter, than V2, which average is 4.3 ms per

parameter. The standard deviation of the measurements were all

under 6 %, so the duration of 4.3 ms will be taken as reference

duration in the following.

TABLE I. Time Measurements Results for Reading and Writing.

Reading

No. Parameters 1 20 100

Function V1 V2 V1 V2 V1

Minimum (ms) 0 78.0 83.2 396 493

Maximum (ms) 10.25 115 114 474 562

Average (ms) 4.35 86.9 99.3 428 537

STD (ms) 3.44 7.26 7.46 22.2 15.4

Median (ms) 5.15 83.4 99.1 422 538

Writing

No. Parameters 1 20 100

Function V1 V2 V1 V2 V1

Minimum (ms) 0 72.6 103 412 489

Maximum (ms) 15.95 94.6 125 479 593

Average (ms) 5.67 86.6 111 433 567

STD (ms) 6.15 4.59 4.76 16.9 17.9

Median (ms) 0 88.3 110 424 571

B. Subscriptions

Via subscriptions, parameters can be monitored, not written.

The server publishes the information for any client who is

interested in it, but it does not receive any information. The R-

parameter will still have to be written by request-respond, but

the signaling R-parameter or the current position can be

observed by subscription. To evaluate the duration difference,

a similar speed test has been performed subscribing an R-

parameter via Python and running a G-code setting that

parameter to different values.

To create the subscription, an object from the class

“SubHandler” was generated and used in the function create

subscription, but this type of communication depends on the

given publishing interval. Lowering this interval only works if

the sampling rate of the parameter to be subscribed is lower.

Thus, per definition, it is not possible for the subscription

communication to be faster than the interpolation cycle of the

machine.

During the test, the parameter was set to ten different values

consecutively. When the subscription recognized a change in its

value, it printed the value to the Python prompt and the time at

which it occurred. After repeating this procedure twenty times,

the results showed that only two of the ten values were printed

to the prompt (maximum four). Regardless of the publishing

interval, he subscription was at most able to register two

changes with a temporal delay of minimum 10 ms. The others

were skipped. This does not make it more reliable than the

request-respond system and will therefore not be considered

further in the experiments.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

33

Sara Menetrey, Holger Schlegel and Martin Dix, “Trajectory Control of Computerized Numerical Control Machines from External Python

Program Using OPC UA,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 3, pp. 30-35, 2024.

V. EPERIMENTAL PROTOCOL

A. Settings

For the experiments, a reference G-code has been generated

using the computer-aided manufacturing software ESPRIT. For

simplicity reasons, it only uses G1 (linear interpolation)

commands. In order to implement multiple forms of G-

commands (G0, G2, etc.), other parameters could be written to

define which form each line is supposed to be. To get an initial

idea of feasibility, this option is first taken out of the equation.

A Python script has been written to extract the coordinates

of that generated G-code and put them in a list. Both methods

presented in section III are also coded in Python. They take the

list and write the coordinates to the right R-parameters at the

right time which is either when the Tool Center Point (TCP) is

considered close enough (defined later in (2)) to the point to

reach next (method 1) or when the signaling R-parameter has

changed its value (method 2). The key element of each method

is shown as pseudocode in algorithms II and III.

ALGORITHM II. Method 1

 Input: 𝑙𝑖𝑠𝑡, 𝑁

1: 𝑖𝑛𝑑𝑒𝑥 ← 𝑁

2: while 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑖𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ do

3: if — 𝑎𝑎𝐷𝑡𝑒𝑤— < 𝛿 then

4: 𝑅𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ← 𝑙𝑖𝑠𝑡[𝑖𝑛𝑑𝑒𝑥]
5: 𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 1

6: end if

7: end while

ALGORITHM III. Method 2

 Input: 𝑙𝑖𝑠𝑡, 𝑁

1: 𝑖𝑛𝑑𝑒𝑥 ← 𝑁

2: 𝑖𝑛𝑑𝑒𝑥𝐺𝑐𝑜𝑑𝑒 ← 0

3: while 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑖𝑠𝑡 𝑙𝑒𝑛𝑔𝑡ℎ do

4: 𝑟𝑒𝑎𝑑 𝑅0

5: if 𝑅0 = 0 then

6:

𝑅𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ← 𝑙𝑖𝑠𝑡 [𝑖𝑛𝑑𝑒𝑥: 𝑖𝑛𝑑𝑒𝑥 + ⌈
𝑁

2
⌉]

7:

𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + ⌈
𝑁

2
⌉

8: 𝑅0 ← 2

9: end if

10: if 𝑅0 = 1 then

11:

𝑅𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ← 𝑙𝑖𝑠𝑡 [𝑖𝑛𝑑𝑒𝑥 + ⌈
𝑁

2
⌉ : 𝑁]

12:

𝑖𝑛𝑑𝑒𝑥 = 𝑖𝑛𝑑𝑒𝑥 + 𝑁 − ⌈
𝑁

2
⌉

13: 𝑅0 ← 2

14: end if

15: end while

In parallel, the machine is running a G-code that loops on

reading the R-parameters and moving to the respective points.

To compare the results, the TCP position is continuously read

and saved by the Siemens integrated trace function.

The influence of the following variables will be analyzed:

• the machine feed rate (F in mm/min),

• the smallest distance between two consecutive points

(𝑑𝑚𝑖𝑛 in mm) for method 1,

• the smallest distance between ⌈
𝑁

2
⌉ consecutive points (𝑑𝑚𝑖𝑛

𝑁

in mm) for method 2,

• the limiting distance between the TCP and the next point

to be evaluated as passed (δ in mm),

• the length of the set of R-parameter coordinates (N).

B. Theory

a) Method 1: In every loop, the position is read and

occasionally three R-parameters are written. So the average

duration of a loop (Δt in ms) in method 1 is expected to be

between 12.9 and 25.8 ms. For the algorithm to have enough

time to write all the coordinates and recognize the passed

points, the following conditions from (1) and (2) must be

met.

 𝐹 × ∆𝑡

60000
< 𝑑𝑚𝑖𝑛 (1)

 𝐹 × ∆𝑡

60000
< 2 × 𝛿 (2)

b) Method 2: In every loop, the R0 parameter is read and

occasionally written. Three other R-parameters times ⌈
𝑁

2
⌉ are

also written from time to time, so the looping time should

be between 4.3 and 4.3 × (3 ⌈
𝑁

2
⌉ + 1) ms. As the

functioning condition is 𝑑𝑚𝑖𝑛
𝑁 > ⌊

𝑁

2
⌋ × 𝑑𝑚𝑖𝑛, (3) is

sufficient.

 𝐹 × 4.3 × (3 ⌈
𝑁
2

⌉ + 1)

60000
< ⌊

𝑁

2
⌋ × 𝑑𝑚𝑖𝑛

(3)

To verify these equations, the following experiments were

conducted.

VI. EXPERIMENTS

For each method, the same trajectory list is tested. In order

to observe the feed rate’s influence, the programs with δ equal

to 𝑑𝑚𝑖𝑛 (method 1) and N equal to 7 (method 2) are executed

for different feed rates, with values of 𝑑𝑚𝑖𝑛 starting from 0.5

mm. Then, this value is decreased until failure in order to get

the limiting 𝑑𝑚𝑖𝑛 for each feed rate. Examples of the resulting

trajectory graphs are shown in Fig. 3.

Every recording shows short periods of time (on average 40

ms) in which the feed of the machine drops to zero. Thus, the

tool comes to a standstill repeatedly. This is caused by the

required synchronization, between each G-code loop,

programmed with the command STOPRE. It stands for ”Stop

Prediction” and deactivates the Look-ahead of the control.

Since the R-parameters are read in the pre-run and not in the

main run, their values are not updated in the loop without

synchronization. The frequency of these stops depends on the

length of the G-code loop. The longer the loop, the smaller the

frequency of stops. When the frequency of the interruptions is

too high or when their placement is inconvenient, especially

while working on the work-piece, these fractures in the

trajectory can damage the tool and reduce its lifetime.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

34

Sara Menetrey, Holger Schlegel and Martin Dix, “Trajectory Control of Computerized Numerical Control Machines from External Python

Program Using OPC UA,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 3, pp. 30-35, 2024.

(a) Method 1 with 𝐹 = 500 mm/min

(b) Method 2 with 𝑁 = 7 and 𝐹 = 700 mm/min

Fig. 3. Trajectory of the X-axis during the 𝑑𝑚𝑖𝑛/feed rate influence test of

method 1 (a) and 2 (b).

A. Results

As predicted, repetitions of the same trajectory parts occur

when the feed rate is too high compared to the distance between

two points of the path. Method 1 demonstrates a limiting value

of 0.15 mm for 𝑑𝑚𝑖𝑛 when the feed rate equals 500 mm/min.

Fig. 4 displays the measured dependencies for method 1. The

curve presents a standard deviation of 0.053 mm to the

theoretical curve. This may be due to the limited number of

measurements made for each of the combinations. As

demonstrated earlier in the speed test, transmission times are

variable. A longer time on a passage, where the consecutive

points are very close may cause an error. This explains the

variability of the errors observed.

Method 2 does not exhibit any repetitions in the trajectory

no matter how small the distance between the points is. The

experiments were interrupted when arriving to a minimum

distance of 0.001 mm at a feed rate of 600 mm/min because the

smallest distance between two points in the G-code from which

the list had been generated, had been underbid. Testing with a

smaller 𝑑𝑚𝑖𝑛would in reality not change the list of coordinates.

In this concrete example, the program must write the

coordinates of four points during a period of time determined

by the minimum distance between three consecutive points.

Looking at the trajectory, this distance 𝑑𝑚𝑖𝑛
𝑁 is actually equal to

0.1 mm and not 3 × 𝑑𝑚𝑖𝑛 = 0.003 mm. With the additional

time of 40 ms caused by the synchronization pause, the time

available is 50 ms, which is enough to write four points. As all

curves produced under the conditions of (3) are valid, this

inequality is verified, but it is possible to considerably improve

trajectory accuracy by knowing the real value of 𝑑𝑚𝑖𝑛
𝑁 and

taking into account the synchronization time.

Finally, to verify (2), a similar test has been executed

varying δ with 𝑑𝑚𝑖𝑛 = 0.2 mm and 𝐹 = 400 mm/min. All

resulting curves with δ smaller than 𝑑𝑚𝑖𝑛 show errors. Only

after a value larger than 0.15 mm the trajectory was sure to be

correct. For security reasons, it is therefore advisable to add a

safety coefficient of at least 1.5 on the lower side of the

inequality in (2) in order to expect a viable outcome.

Fig. 4. Dependency between 𝐹 and 𝑑𝑚𝑖𝑛 for method 1.

VII. DISCUSSION

Even if the machine is now able to cover all the points given

to it in the right order and without repetition, there remains the

problem due to the pause time. Unfortunately, “STOPRE” is the

only way to actualize the R-parameter while the program is

running. Another solution suggested by Siemens is to use the

online tool compensation ($TOFF). Simultaneously to the

movement, the tool size would be modified without having to

synchronize the program with “STOPRE”. Thus, the trajectory

would be completely smooth, but the basic trajectory would

have to be set from the beginning and the linear interpolation

from point to point would no longer be given. Instead, there is

an unclear movement in the period between two different tool

lengths. Similarly, online adaptation has been successfully

achieved writing the $AA OFF variable, which creates a

superimposed movement in whatever axis is selected. The only

difference to $TOFF, is that the generated offset does not take

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

35

Sara Menetrey, Holger Schlegel and Martin Dix, “Trajectory Control of Computerized Numerical Control Machines from External Python

Program Using OPC UA,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 3, pp. 30-35, 2024.

into account the orientation of the tool. It compensates along

the machine axes X, Y and Z. To do so, a synchronous action

command, like the following, has to be added to the existing G-

code:

IDS = 1 WHENEVER Condition DO $AA OFF[Y] = $R0

This is a viable solution to achieve for instance small

adaptations in purpose of optimization, but it is not a feasible

option when the goal is to define the entire trajectory while

operating. Its disadvantages are the same as for the tool offset:

no more real control over the trajectory, no interpolation,

complex determination of the axis in which the offset is desired.

Another approach could be to use the file transfer method

of the Siemens OPC UA server in order to import subprograms

that would always have the same name but different content and

to have the G-code again running in a loop, but this time

executing the subprograms instead of reading the R-parameters.

However, to actualize the subprogram, a “STOPRE” command

must again be integrated into the G-code loop and the problem

would be the same. Therefore, this is only a presentation

variation of the already existing methods that have been tested,

although its speed limitation could be different and would need

to be analyzed.

To avoid excessive usage of the tools or even accidents, it

is conceivable to adapt the trajectory so that the stops are at

times when it is not dangerous to have them, for example, after

the tool retracts. Additional retraction could even be

implemented to circumvent this problem, but this would

elongate the manufacturing time.

VIII. CONCLUSION

This work presents a successful way to control the trajectory

of a CNC machine from an external source while moving and

thus enables online adaptations. The external python code was

able to communicate with the Siemens control using OPC UA.

R-parameters and current positions were read and written via

request-respond in order to generate the requested path. The

speed of the OPC UA communication was measured and found

to be close to the duration of the machine’s interpolation cycle

(4 ms/parameter). Writing several parameters at the same time

using the inbuilt function of the Python “opcua” library was

proved to be up to 23 % faster than writing each parameter one

after the other. Requirements for faultless implementation

involving the machine feed rate and the minimal distance

between points of the trajectory have been established and

verified by testing it with a SINUMERIK 840D sl CNC control.

The system requires synchronization pauses of about 40 ms in

order to read the modified R-parameter values. During this

time, the feed rate falls down to zero. Depending on the

requirements of the applications, there are possibilities to get

round the problem by positioning the pauses thoughtfully. In

application where this does not pose a problem, the presented

solution is viable and allows on-line adaptation of the

trajectory.

ACKNOWLEDGMENT

The authors acknowledge the support of the project “AI-

supported, partially automated disassembly of traction batteries

(KaDoTE)” that is funded by the German Federal Ministry for

Economic Affairs and Climate Protection.

REFERENCES

[1] D. Horváth and R. Z. Szabó, “Driving forces and barriers of industry 4.0:

Do multinational and small and medium-sized companies have equal
opportunities?,” Technological forecasting and social change, vol. 146,

pp. 119–132, 2019.

[2] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry

4.0,” Business & information systems engineering, vol. 6, pp. 239–242,

2014.

[3] O. K. Marc Bayer, “From individual solutions to an integrated concept:
How companies can implement the digital factory,” Industry 4.0: The

importance of an overarching digitalization strategy, 2021.

[4] C. Martínez Ruedas, F. J. Adame-Rodríguez, and J. M. Díaz-Cabrera, “A
low-cost’plug and play’connectivity and integration system for sinumerik

cnc machines to join industry 4.0,” Available at SSRN 4334474.

[5] “Opc unified architecture,” international standard, International
Electrotechnical Commission, TC 65/SC 65E - Devices and integration in

enterprise systems, 2020.

[6] O. Foundation, “Opc foundation unified architecture.” https://
opcfoundation.org/about/opc-technologies/opc-ua/.

[7] A. Martins, J. Lucas, H. Costelha, and C. Neves, “Cnc machines

integration in smart factories using opc ua,” Journal of Industrial
Information Integration, p. 100482, 2023.

[8] G. Martinov, P. Nikishechkin, A. Al Khoury, and A. Issa, “Control and

remote monitoring of the vertical machining center by using the opc ua
protocol,” in IOP Conference Series: Materials Science and Engineering,

vol. 919, p. 032030, IOP Publishing, 2020.
[9] M. André, L. João, C. Hugo, and N. Carlos, “Developing an opc ua server

for cnc machines [j],” Procedia Computer Science, vol. 180, 2021.

[10] D. Mourtzis, N. Milas, and N. Athinaios, “Towards machine shop 4.0: a
general machine model for cnc machine-tools through opc-ua,” Procedia

CIRP, vol. 78, pp. 301–306, 2018.

[11] J. Rodrigues and E. Ribeiro, “Virtualization and optimization of processes
in industry 4.0,” in International Conference of Progress in Digital and

Physical Manufacturing, pp. 197–205, Springer, 2021.

[12] L. Gui, T. Y. Ruan, Z. Z. Wang, A. C. Sun, and M. Xu, “Cnc online
monitoring system based on internet of things,” Advanced Materials

Research, vol. 1079, pp. 672–678, 2015.

[13] R. Reiser, B. Thiele, T. Bellmann, P. Koch, and C. Walter, “Real-time
simulation and virtual commissioning of a modular robot system with opc

ua,” in ISR Europe 2022; 54th International Symposium on Robotics, pp.

1–8, VDE, 2022.
[14] H.-I. Lin and Y.-C. Hwang, “Integration of robot and iiot over the opc

unified architecture,” in 2019 International Automatic Control

Conference (CACS), pp. 1–6, IEEE, 2019.
[15] H. V. Madhyastha and C. Okwudire, “Remotely controlled

manufacturing: A new frontier for systems research,” in Proceedings of

the 21st International Workshop on Mobile Computing Systems and
Applications, pp. 62–67, 2020.

[16] P. Shicong, W. Guocheng, and T. Fuqiang, “Design and realization of cnc

machine tool management system using internet of things,” Soft
Computing, vol. 26, no. 20, pp. 10729–10739, 2022.

[17] A. K. Philip Samuel, A. Shyamkumar, and H. Ramesh, “Industry 4.0-

connected drives using opc ua,” in Industry 4.0 and Advanced
Manufacturing: Proceedings of I-4AM 2019, pp. 3–12, Springer, 2021.

[18] SIEMENS, “Sinumerik 840dsl/828d sinumerik access mymachine / opc

ua configuration manual,” SINUMERIK, vol. 146, pp. 119–132, 2018.

[19] S. Cavalieri and F. Chiacchio, “Analysis of opc ua performances,”

Computer Standards & Interfaces, vol. 36, no. 1, pp. 165–177, 2013.

[20] A. Veichtlbauer, M. Ortmayer, and T. Heistracher, “Opc ua integration
for field devices,” in 2017 IEEE 15th International Conference on

Industrial Informatics (INDIN), pp. 419–424, IEEE, 2017.

