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Abstract— Polymer composite materials are extensively employed in 

primary loadbearing structures across diverse industrial sectors such 

as aerospace, railway transportation, and wind energy. Detecting 

subcritical damage initiation in these structures is crucial for 

mitigating safety concerns and reducing maintenance costs. Non-

destructive testing (NDT) techniques play a pivotal role in assessing 

the structural health and integrity of composite materials. This paper 

provides a comprehensive review of common NDT techniques used 

for inspecting the integrity of composite materials. While each 

technique has its detection potential, none can offer a full diagnosis 

of the material's mechanical damage state. Depending on the damage 

mechanism and usage conditions, one technique may be preferred 

over another, or a combination of techniques may be necessary to 

improve the diagnosis of structural damage. Additionally, the study 

investigates the use of X-ray computed tomography (CT) as a non-

destructive imaging technique for carbon fiber sheet molding 

compounds (CF-SMCs), which are widely used for their efficiency 

and versatility. Despite CT being a powerful tool for various 

composites, it presents challenges for CF-SMCs due to the similar 

density of carbon fibers and the polymer matrix. This study aims to 

establish and provide valuable insights into different types of non-

destructive testing methods. 

 

Keywords— Enter key words or phrases in alphabetical order, 

separated by colon. 

I. INTRODUCTION  

Fibre-reinforced plastics (FRPs) and fibre-reinforced polymer 

composites (FRPCs) have gained extensive utilization across 

various industries due to their exceptional mechanical 

properties, including high tensile strength, low weight, and 

corrosion resistance [1, 2, 3]. FRPCs, consisting of a polymer 

matrix reinforced with fibres, are increasingly employed in 

aerospace, wind power, automotive, and civil engineering 

applications. Commonly used reinforcement materials include 

natural and synthetic fibres, such as carbon and glass fibres, 

incorporated in different forms like randomly oriented, 

unidirectional, and bidirectional configurations within the 

matrix [4]. While the fabrication methods [5] of composite 

materials have evolved to include automated processes like 

automated tape laying (ATL) [6] and automated fiber 

placement (AFP) [7], the manufacturing process still 

introduces defects and flaws, necessitating effective non-

destructive testing and evaluation (NDT&E) techniques. To 

reliably identify mechanical damage in materials, it is crucial 

to select the most appropriate non-destructive testing (NDT) 

techniques. Each technique has its limitations in terms of 

detecting and characterizing damage mechanisms at specific 

length scales. By considering these limitations, we can 

determine when each technique is best suited for detecting 

mechanical damage. In literature, readers can find more 

information about specific techniques or applications over a 

general purpose, some reviews are already available for NDT 

techniques [8-12] and others focus on Structural Health 

Monitoring (SHM) [13-16].  Structural Health Monitoring 

(SHM) involves permanently integrating sensors into 

materials to assess their condition. However, this paper does 

not delve into the development of SHM. Instead, it focuses on 

advanced data analysis, modeling, simulation, and 3D 

characterization to achieve comprehensive damage analysis. 

NDT techniques can be classified into many categories. 

Depending on the specific property or defect of interest, 

various NDT&E techniques can be employed. These 

techniques include, but are not limited to: microspy, density 

measurements, ultrasonic waves/acoustic emission, and 

acoustic emsission [18]. In the case of PMCs, numerous 

classification criteria such as contact and non-contact methods 

[19, 20] or direct and indirect methods are also available [21, 

22]. Indirect non-destructive testing (NDT) techniques assess 

how material deterioration affects its mechanical and physical 

properties without damaging the material itself. These 

properties include stiffness loss, energy dissipation, localized 

high strain, and electrical resistivity reduction (for conductive 

materials). These techniques provide a phenomenological 

interpretation and offer insights into global damage evolution 

at the macroscale. In the context of laminate composite 

materials, normalized stiffness evolution kinetics should be 

considered [23, 24]. In contrast, direct NDT techniques 

directly detect microstructural damage mechanisms like 

matrix cracking, fibre breakage, or debonding [18]. Generally, 

it is very important to understand and recognize the types of 

defects and damages of the material. In the literature, there are 

several references for defects and damages for (a) voids and 

porosity [25-28]; (b) fiber waviness and wrinkling [29-32], (c) 

delamination and debonding [33-35]; (d) impact damage [36-

38]; (e) simulated defects [39,40]. This article presents an 

overview of commonly employed non-destructive testing 

(NDT) techniques applied to composite materials. The main 

objective is to assess the structural health of these materials 

and estimate their remaining life under mechanical loading 

conditions. 

II. NDT & E TECHNIQUES 

Non-destructive testing and evaluation (NDT&E) 

encompasses a broad spectrum of analytical techniques. These 

techniques enable the assessment of material, component, or 

system properties without causing damage [41]. NDT&E 
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helps identify characteristic variations, defects, and 

discontinuities within the material or structure being 

evaluated. There are three main categories of NDT&E 

techniques: acoustic wave-based NDT&E, electromagnetic 

techniques-based NDT&E and imaging techniques-based 

NDT&E. 

A. Acoustic Emission 

Acoustic Emission (AE) testing is a dynamic and receptive 

technique employed to detect elastic waves generated by 

damage in composite materials [42]. Unlike Ultrasonic 

Testing (UT), AE technology captures the acoustic signal 

precisely at the moment when the defect occurs, making it an 

efficient method to monitor and detect defects like fiber 

breakage, matrix cracking, debonding, and delamination. AE 

measurement employs highly sensitive transducers arranged in 

arrays to detect elastic waves produced by the rapid release of 

internal energy within a material [43]. Originating in the 

1950s, this technology can detect frequency ranges from 

several Hz infrasonic waves to several MHz ultrasonic waves, 

with the majority of the released energy falling within the 1 

kHz to 1 MHz range [44]. 

The primary applications of AE-based NDT&E techniques 

include source location, structural defect detection, and health 

monitoring. Acoustic emissions (AE) offers a valuable tool for 

monitoring the development of damage within composite 

materials. This technique analyzes various signal 

characteristics, including amplitude, cumulative counts, 

energy, duration, and frequency spectrum, to provide insights 

into the damage process [45-52]. Although qualitative in 

nature, AE offers the ability to triangulate and pinpoint the 

location of the emission source, providing real-time damage 

detection. However, it lacks quantitative characterization such 

as defect dimensions, and the identification of damage 

mechanisms may be complex due to signal interference and 

overlapping amplitude ranges. 

To address these challenges, data processing techniques 

such as principal component analysis (PCA) and neural 

networks are employed to complement damage analysis and 

effectively classify AE events [53, 54]. Moreover, time-

frequency representation and localization during fatigue 

testing offer promising avenues for transient damage analysis, 

making AE a valuable tool for assessing mechanical damage 

in composite materials. 

B. Ultrasonic Testing 

Ultrasonic Testing (UT) is a versatile technique capable of 

utilizing a wide range of frequencies. The spectrum spans 

from low frequencies around 20 kHz to well above 1 GHz. 

However, for most industrial applications in composite 

materials [55], frequencies between 0.5 and 10 MHz are 

typically employed [56]. Ultrasonic NDT relies on transducers 

to generate high-frequency sound waves that travel into the 

composite material. These elastic waves fall into three main 

categories: volume waves, surface waves, and guided waves. 

UT employs various operating modes, including A-scan, B-

scan, C-scan, and D-scan [57-60]. Ultrasonic testing (UT) 

offers a versatile approach to NDT&E for composite 

materials. It utilizes transducers to generate high-frequency 

sound waves that travel through the material. Different 

transducer types are employed, including piezoelectric (most 

common), air-coupled, phased array, and electromagnetic 

acoustic [60-68]. A crucial UT method is C-scanning. This 

technique provides valuable data for characterizing defects 

and damage within the composite, offering both qualitative 

and quantitative information.  

UT excels at detecting various defects in composite 

structures, including delamination, porosity, cracks, and 

debonding. Phased array UT (PAUT), a powerful variant, 

offers exceptional flexibility by allowing manipulation of the 

ultrasonic beam through a process called beamforming. This 

enables precise focusing for enhanced defect detection. 

Beyond PAUT, other innovative UT technologies are 

emerging, such as air-coupled UT (ACU), laser ultrasonic 

testing, and even techniques combining UT with infrared 

imaging or fiber optic sensors [69, 70]. These advancements 

underscore the ongoing development of UT for composites. 

UT plays a vital role in NDT&E for composite materials, 

offering a reliable defect detection and evaluation method. As 

UT technology continues to evolve, we can expect even more 

sophisticated techniques with the potential for automated and 

intelligent defect visualization. 

C. Non-linear Acoustic Enission 

Standard ultrasonic testing (UT) encounters difficulties 

when used to assess the health of composite materials. This 

stems from the complex way ultrasonic waves travel within 

these materials. Three key challenges are attenuation, 

dispersion, and noise. The precision of measurements is 

further complicated by the heterogeneous and anisotropic 

nature of composites and the complexity of damage 

mechanisms within them.  

Nonlinear acoustic methods emerge as a promising 

solution to overcome the limitations of standard UT for 

characterizing microscopic damage in composite materials. 

These methods fall into two primary categories: those based 

on classical nonlinear elasticity theory and those exploiting 

non-classical nonlinearities generated by microscopic damage. 

These nonlinearities arise from the material’s nonlinear strain-

stress behavior or atomic anharmonicity, while non-classical 

nonlinearities arise from the dissipative behavior of materials 

due to microscopic damage [71-73]. Several nondestructive 

testing (NDT) techniques serve as valuable tools for 

identifying and understanding the nature of damage within 

composite materials. These techniques include contact 

acoustic nonlinearity (CAN) [74-75], vibro-acoustic wave 

modulations [76-78], modulation transfer [79-80], memory 

effect [81], nonlinear elastic wave spectroscopy [82-84], time 

reversal signal processing, and the local defect resonance 

technique (LDR) [85-87]. LDR, for instance, has been found 

effective in characterizing delamination in composite 

specimens. However, one of the challenges of the LDR 

method is the requirement for prior knowledge of damage 

location and material properties. Techniques like nonlinear 

elastic wave spectroscopy and vibro-acoustic wave 

modulations have been utilized to detect damage caused by 
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impacts and penetration in composite laminates. In the realm 

of composite materials, nonlinear acoustic methods provide 

valuable insights into damage mechanisms, complementing 

the information obtained from traditional ultrasonic testing. 

III. ELECTROMAGNETIC TECHNIQUES 

A. Eddy Current Testing 

Eddy Current Testing Eddy current testing (ECT) and eddy 

current thermography (ECTT) are complementary 

electromagnetic NDT&E techniques that efficiently 

characterize surface and subsurface flaws in conductive 

materials like CFRP composites [88]. 

Eddy Current Testing (ECT) induces eddy currents in 

conductive samples using alternating current, monitoring 

impedance changes caused by defects, damage, or inclusions. 

Carbon Fiber Reinforced Polymer (CFRP), composed of 

unidirectional carbon fibre/epoxy plies, selectively conducts 

current due to its electrical networks formed by carbon fibres 

and contact points [89], making ECT suitable for mapping 

fibre features and inspecting defects in CFRP. Eddy current 

testing (ECT) offers a valuable non-destructive evaluation 

(NDE) technique for detecting defects and damage within 

Carbon Fiber Reinforced Polymer (CFRP) composites. 

However, its effectiveness relies heavily on two key factors: 

choosing the right probe shape [90] and employing 

appropriate signal processing techniques [91, 92]. Eddy 

Current Thermal Testing (ECTT) takes ECT a step further by 

combining it with thermal testing methods. A specific 

variation, Eddy Current Pulsed Thermography (ECPT), has 

shown great promise in identifying surface cracks within 

CFRP [93]. This technique analyzes temperature changes 

during a heating and cooling cycle, allowing researchers to 

determine the size and location of the cracks. However, due to 

material attenuation, ECPT faces limitations in detecting 

deeper delamination within CFRP laminates [94, 95]. 

Additionally, eddy currents are utilized to estimate damage 

during the production of CFRP plates and to detect fiber 

breakage [96, 97]. 

In summary, Eddy Current Testing (ECT) has proven 

highly effective in identifying various surface and sub-surface 

flaws within CFRP materials, including cracks, delamination, 

and fiber damage. Its advantages include rapid inspection 

speeds and high signal-to-noise ratios, with signal amplitude 

providing insights into the extent of damage. As a result, ECT 

holds promise for Structural Health Monitoring (SHM) of 

composites. However, ongoing research and development are 

essential to enhance ECT probes, particularly for inspecting 

highly anisotropic CFRP materials and those with intricate 

fibre arrangements. 

B. Infrared Thermography 

Infrared thermography (IRT) offers a unique non-

destructive testing and evaluation (NDT&E) technique for 

identifying defects in materials. It leverages how different 

materials, including the material itself and any hidden flaws, 

respond to thermal energy. Unlike other methods, IRT relies 

on the principle that variations in material composition cause 

variations in thermal radiation, specifically in the infrared 

spectrum [98]. This allows IRT to detect these differences as 

temperature changes on the material's surface. In the case of 

polymer composite materials, two principal variants of IRT 

are predominantly used: passive and active thermography. 

Passive infrared thermography (PIRT) involves inspecting 

the surface of the sample without applying any external heat 

stimulation. This variant is particularly useful, for instance, in 

detecting impact damage [99] or under conditions of tensile 

mechanical loading. In this case, when the load increases 

passive IT allows evaluation of the thermo-elastic effects 

occurring with a linear decrease in the specimen temperature 

in the elastic domain. Then, with the increase in the 

mechanical load level, the damage initiation generates 

localized heat which can be also observed as a global 

temperature increase in the material [100].  Utilizing passive 

infrared thermography (PIRT) to assess self-heating behaviour 

offers significant advantages, notably in reducing both the 

time and cost of experimental studies [25, 101, 102]. 

Consequently, this technique is predominantly employed to 

investigate critical damage to materials. The reliability of this 

method in the case of polymer composites has been 

successfully demonstrated for different materials such as 

carbon/epoxy composites [102] and glass fibre composites 

[103]. It must be mentioned that active thermography 

increases inspection accuracy as well as reduces the influence 

of environmental noises.  

Infrared thermography (IRT) has emerged as a valuable 

tool for uncovering and measuring hidden damage within 

fiber-reinforced polymer composites (FRPCs) [104].Infrared 

thermography (IRT) has become a widely adopted technique 

for non destructive evaluation (NDE) of defects in composite 

materials. It complements other NDE methods like lock-in 

thermography [105], optically excited lock-in thermography 

(OLT) [106], ultrasound [107], and pulsed thermography 

[108]. 

Lock-in thermography has been used to monitor 

delamination propagation in situ during compressive 

mechanical tests, successfully observing delamination 

buckling and growth [109].  Optically excited lock-in 

thermography (OLT) demonstrates promise for precise 

measurement of simulated delamination depth in glass fiber-

reinforced polymer (GFRP) composites. Ultrasound combined 

with pulsed thermography has been effective in delamination 

detection, although pulsed thermography has also limitations. 

For instance, in the assessment of delamination areas with 

varying energy levels. Pulsed thermography overcomes such 

limitations to determine defects in thick composites (FRPCs). 

Other useful NDT tools such as thermoelastic stress analysis 

(TSA) can also be used to evaluate defects in adhesive areas of 

CFRP [110, 111, 112]. TSA subjects a tested sample to cyclic 

tensile loading within the elastic region of the material [113]. 

TSA has demonstrated its capability to detect and evaluate 

debonded areas in CFRP, showing higher sensitivity to 

"kissing bond" defects compared to lock-in thermography. 

Other techniques such as vibro-thermography and ultrasonic 

thermography have been used to investigate voids, matrix 

cracking, and fibre breakage in composite materials. For 

minor damages such as joint delamination, ultrasonic 
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thermography is preferred [114], while for more complex 

geometries vibro-thermography has shown greater 

effectiveness.  

Infrared thermography (IRT) has emerged as a valuable 

tool for non-destructive evaluation (NDE) of composite 

materials. Its ability to detect a wide range of defects, 

including delamination, debonding, impact damage, voids, and 

fiber-matrix cracking, makes it a versatile technique for 

assessing the health of composite structures. IRT has been 

extensively employed in NDE of fiber-reinforced polymer 

composites (FRPs), providing crucial insights into the 

structural integrity of these materials. 

C. Terahertz Testing 

Terahertz (THz) waves, electromagnetic waves with 

frequencies between 0.1 THz and 10 THz, and 

electromagnetic wavelengths ranging from 30 μm to 3 mm 

[115], possess the unique ability to penetrate various non-

conducting materials such as ceramics, glass, polymers, 

rubber, and composites [116]. Applied as an NDT method on 

GFRP composite materials, it allows the identification of 

changes in fibre volume fraction in the specimens [117].  
THz technology is a promising newcomer to the field of 

non-destructive testing and evaluation (NDT&E). It has shown 

effectiveness in detecting various defects within fiber-

reinforced polymer composites (FRPCs). These include 

delamination (internal separation of layers), debonding in 

adhesive layers (loss of adhesion), and impact damage. THz 

systems work by sending short THz waves through the 

material. By analyzing the reflected or transmitted waves, 

these systems can identify hidden features and potential 

problems within the composite [118]. 

These waves have been successfully used to characterize 

flaws and material parameters in glass fibre-reinforced 

polymer (GFRP), including voids [119, 120], delamination 

[121], and fiber orientation [122]. THz technology can also be 

used for thick-woven GFRP as well as to detect water 

ingression in aircraft honeycomb panels [123]. In the 

frequency range of 0.1-1THz, the pulse can penetrate in depth 

up to 100mm for the CFRP laminates. For woven CFRP 

laminates, polarization-resolved THz techniques allow the 

identification of different types of damage [124, 125, 126]. On 

the other hand, for impacted CFRP specimens, it is also 

preferred to use one of the following methods: THz time-

domain spectroscopy (THz-TDS) systems and vibro-

thermography (VT) systems. However, THz provide more 

detailed results on subsurface defects compared to VT. 

IV. IMAGING TECHNIQUES 

A. Digital Image Correlation 

Digital Image Correlation (DIC) is a powerful optical 

technique that provides a non-contact way to measure strains 

and displacements across a material's entire surface, under 

static or dynamic loads [73, 127-129]. It provides both in-

plane (2D) and out-of-plane (3D) deformation maps, offering 

macroscopic results. DIC works by capturing a sequence of 

images with a digital camera. The sample's surface is first 

prepared with a random speckle pattern. By analyzing these 

images before and after applying a mechanical load, DIC 

software calculates the precise deformations and strains that 

occur across the entire surface. 

DIC offers the unique advantage of providing real-time 

data. Unlike point-based measurements, DIC analyzes the 

entire surface (full-field) to create detailed maps of 

deformation vectors (how the material moves) and strain 

(changes in size or shape). These maps can be generated in 

both 2D and 3D. DIC is a versatile technique that can be 

applied at various scales. It can analyze deformations on a 

microscopic level or be used to assess large structures (macro-

scale). The accuracy of DIC measurements depends on factors 

like the resolution of the camera's pixels and the number of 

pixels used in the analysis. Higher resolution and more pixels 

generally lead to more precise results. DIC excels at 

identifying areas with high strain concentration, which can 

indicate potential damage zones in composite laminates, 

especially near stress concentrations. This makes it a valuable 

tool for understanding how damage initiates and grows in 

these materials. 

Applications of DIC in composite materials include 

monitoring and measuring transient strain and deformation 

during manufacturing processes, detecting gaps and overlaps 

between composite tows, and evaluating damage progression 

near stress risers. DIC has been used to characterize 

deformation and damage in thermoplastic composites, 

glass/polypropylene composites [130], and carbon fiber-

reinforced polymers (CFRPs).  

While DIC can't directly reveal the microscopic cause of 

damage, it efficiently identifies areas on the material's surface 

where high strain concentrates. These zones often correspond 

to damage initiation or growth at larger scales (mesoscopic or 

macroscopic) within the composite. 

DIC can assess the strength and integrity of adhesive 

bonds by measuring strain distribution at the joint interface. It 

helps visualize how cracks initiate and propagate within 

composite laminates, providing valuable insights into fracture 

mechanics. DIC can be used to study how composite materials 

respond to repeated loading, aiding in the prediction of fatigue 

life. Applying speckles to very large structures can be 

expensive, limiting DIC's use in some scenarios. Despite this 

limitation, DIC remains a valuable tool for testing large 

composite structures because it offers two key advantages: 

Unlike point-based measurements, DIC analyzes the entire 

surface, providing a comprehensive picture of deformation 

and strain, and DIC avoids physically touching the material, 

making it suitable for delicate or sensitive composites. 

By providing insights into how composite materials deform 

and potentially damage under load, DIC plays a crucial role in 

their structural health assessment. 

B. Shearogrphy 

Shearography is a powerful NDT&E technique that utilizes 

lasers for full-field inspection of composite structures [131]. 

Unlike some methods, it offers a significant advantage: 

capturing wide-area, qualitative images that reveal variations 

in both in-plane and out-of-plane displacements across the 

entire material surface. This method utilizes laser 
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interferometry and the analysis of speckle patterns to identify 

both surface and subsurface defects, such as delamination or 

debonding, within the composite material. The resulting fringe 

pattern corresponds to variations in the out-of-plane 

displacement gradient of the test surface. 

 A coherent laser beam illuminates the composite surface. 

The light scatters off the rough texture, creating a random 

speckle pattern. This speckle pattern then passes through a 

device called a beam splitter. This device cleverly splits the 

image into two slightly offset copies. Both copies are then 

focused onto a detector. Each point on the detector receives 

light from two slightly different areas on the original surface. 

This creates a "shear vector" that captures any subtle 

differences in how the surface deforms. The technique uses 

various stressing methods like temperature changes, pressure, 

or sound waves to expose hidden flaws. Defects like 

delamination (internal separation) cause the surface to deform 

differently, which is picked up by the shear vector and 

displayed as anomalies in the final image [132]. Shearography 

offers a qualitative approach for assessing the size and depth 

of delamination in fiber-reinforced polymer composites 

(FRPCs). This technique analyzes the dynamic responses of 

defects to applied excitation [133]. 

Despite its effectiveness in detecting defects, 

characterizing fiber breakage or matrix cracking, or 

matrix/fiber debonding remains challenging due to the 

microscopic to mesoscopic nature of the damage mechanisms. 

While shearography offers a valuable tool for detecting 

defects in fiber-reinforced polymer composites (FRPs), its 

sensitivity to environmental disturbances can pose challenges 

in industrial settings. However, this technique boasts two 

significant advantages: its exceptional ability to measure out-

of-plane displacement gradients in the sub-micrometer range 

and its non-destructive nature when inspecting FRPCs. These 

capabilities make shearography a promising candidate for non-

destructive evaluation (NDT&E), particularly for structural 

health monitoring (SHM) of composite materials. Ongoing 

research aims to reduce uncertainty and improve the 

quantitative assessment of defects using shearography. 

Generally, this method is widely adopted in the aeronautics to 

evaluate the composite parts.  

Early detection of defects is crucial for preventing failures 

in composite materials. Shearography excels at identifying 

two such critical issues: debonding (loss of adhesion between 

layers) and the initiation of delamination (internal separation 

of layers) [133-139]. These defects can cause stress 

concentrations, which significantly increase the risk of failure 

under load. 

C. X-Ray Tomography 

Ensuring the integrity of composite materials without 

harming them can be a challenge. Thankfully, X-ray 

technology offers two non-destructive testing (NDT) 

techniques that come to the rescue: X-ray CT and radiography 

[140-141]. X-ray CT blasts X-rays through the composite 

from different angles, capturing multiple images to create a 

stack of virtual slices, which are combined to form a detailed 

3D representation of the composite's interior, unveiling its 

internal landscape [142].  A 3D image allows for incredible 

benefits, including precise measurements of internal features 

like porosity, shapes, sizes, and distribution throughout the 

material. Additionally, virtual exploration enables users to 

slice through the image in any direction, providing a closer 

look at specific areas of interest. Enhanced visualization 

techniques such as color coding or transparency can further 

improve understanding of the internal structure. 

While X-ray CT offers a 3D view, X-ray radiography takes 

a simpler approach. It captures a single 2D image of the 

composite, similar to a bone X-ray. This image reveals 

variations in X-ray absorption within the material, allowing 

for the detection of larger defects like cracks or delamination 

within the composite layers [143-147]. X-ray CT shines in its 

ability to visualize and measure internal features that would be 

impossible to see from the outside. This makes it a valuable 

tool for inspecting defects and damage in composite materials 

and structures, ultimately helping to improve design and 

manufacturing processes [145-147]. However, X-ray CT does 

have some limitations. Initially, the equipment needed for X-

ray CT can be complex and expensive to operate and maintain. 

X-rays involve ionizing radiation, which requires safety 

precautions when using the equipment. The size of the sample 

that can be scanned using X-ray CT is often limited, making it 

less suitable for very large structures.  

Despite these drawbacks, X-ray CT has been instrumental 

in studying damage in Carbon Fiber Reinforced Polymers 

(CFRP). It allows researchers to observe how damage starts 

and grows in CFRP structures, such as under low-velocity 

impacts or during drilling [148]. X-ray CT can even track the 

progression of damage, from tiny voids to large delaminations 

within the material. 

Despite its advantages, X-ray CT has limitations due to the 

complexity of equipment, harmful radiation, and the limited 

size of samples that can be inspected, usually confined to lab 

environments.  X-ray computed tomography (X-ray CT) has 

become a cornerstone of non-destructive evaluation (NDE) for 

defect and damage characterization in carbon fiber reinforced 

polymers (CFRPs). This technique offers exceptional 

capabilities for observing the initiation and progression of 

various damage mechanisms, including low-velocity impact 

(LVI) damage and drilling-induced delamination, within 

CFRP structures. X-ray CT enables precise evaluation of 

damage evolution, from the formation of small, spherical 

voids [148] to extensive delamination. 

X-ray CT doesn't work in isolation. It often teams up with 

other NDT&E techniques, like ultrasonic C-scan, to provide 

even more detailed and precise information about defects and 

damage. For instance, combining X-ray CT's differential 

phase and dark-field images with ultrasonic C-scan data 

allows for a thorough investigation of delamination and 

impact damage in CFRP materials [148]. While X-ray CT has 

its complexities and limitations, it remains one of the most 

powerful tools in the NDT&E toolbox for composite 

materials. The insights it provides on defects and damage are 

invaluable for optimizing manufacturing processes and 

ensuring the quality of composite structures. 
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V. CONCLUSIONS 

This review highlights the importance of Non-Destructive 

Testing and Evaluation (NDT&E) for ensuring the quality and 

performance of composite materials. Different techniques 

offer unique advantages and disadvantages, but when used 

together, they provide a comprehensive picture of a 

composite's health. The review explores various NDT&E 

categories. Acoustic wave techniques include Acoustic 

Emission (AE), which excels at real-time damage detection 

but lacks precise measurement capabilities. Ultrasonic Testing 

(UT) is a versatile method for finding defects like 

delamination and cracks. Advanced UT methods are under 

development, and Nonlinear Acoustic Techniques show 

promise for detecting microscopic damage within composites. 

Electromagnetic techniques offer valuable tools as well. 

Eddy Current Testing (ECT) is effective for finding surface 

and subsurface flaws in carbon fiber composites. Infrared 

Thermography (IRT) is useful for revealing hidden damage 

using heat signatures, while Terahertz (THz) Testing is a 

promising new technique for detecting various defects in 

fiber-reinforced composites. 

Imaging techniques play a crucial role in NDT&E. Digital 

Image Correlation (DIC) is a non-contact method for 

measuring strains and pinpointing potential damage zones. 

Shearography is another valuable technique for full-field 

inspection to detect critical defects like delamination 

initiation. 

Finally, X-ray techniques offer powerful tools for detailed 

inspection. X-ray Tomography (X-ray CT) provides a 3D 

imaging tool for defects and internal features, while X-ray 

Radiography offers a simpler 2D imaging approach for 

detecting larger defects within composite layers. 

The best approach often involves combining multiple 

NDT&E techniques to leverage their strengths. This 

comprehensive understanding of a composite's health is 

crucial for improving design, manufacturing, and overall 

performance of these versatile materials. 
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