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Abstract— The introduction of Software-Defined Networks (SDN) 

represents significant advancements in network design by separating 

control and forwarding planes. While SDN improves network 

administration productivity, it has many vulnerabilities which 

hackers can exploit. One such cyber-attack is Distributed Denial of 

Service (DDoS), which leads to many challenges. This paper aims to 

assess SDN vulnerabilities by using a novel technique, Entropy, that 

can detect DDoS attacks at an early stage. The methodology relies on 

Entropy to identify abnormal network behaviour, which may indicate 

DDoS attacks. In addition, a novel mitigation technique using flow 

drop rules enables the rapid and targeted suppression of malicious 

traffic. Therefore, it enhances the security of SDN network devices. 

The solution implements a three-stage DDoS attack detection system 

for the SDN environment. It involves data gathering, entropy 

calculation, and threshold-based detection to identify potential 

attacks.  
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I. INTRODUCTION  

Software-defined networks (SDN) are a revolutionary 

technique for simplifying network administration by 

separating the data and control planes.  

The introduction of SDN has allowed it to program the 

network control layer. As a result, it is possible to disconnect 

the physical network hardware from the control plane by 

moving the control logic from networking devices such as 

switches and routers in traditional networks to a centralised 

unit as the controller.   

Designing and implementing new protocols is easier 

because of the separation between the physical network and 

the controller. Examples of network services include access 

control, quality of service (QoS), enforcing new rules, 

bandwidth management, and traffic engineering. 

Although the concept of SDN might seem complicated 

with the separation of data and control plane, it is simple in 

execution. It will store Flow entries in tables on the data plane. 

A secure transport layer protocol provides secure 

communication with a controller about new entries not in the 

flow table. Each flow entry includes matching rules and 

actions so the data plane knows what to do when a flow 

matches another one. Each packet's header fields are checked 

against the flow table's matching rules. If a match is 

discovered, the switch will execute the action stated in that 

flow entry; otherwise, it will transmit the packet to its 

controller for further processing. A flow rule is then created 

and put in the switch flow tables along the selected route by 

the controller after it processes the header.   

Numerous security issues might arise due to the 

controller's centralised nature, as it acts as a single point of 

failure in the network, as demonstrated in reference [27]. The 

network is entirely down by taking out the controller, making 

the attacks much more effective. 

A distributed denial of service (DDoS) attack might cause 

the controller to become unresponsive. DDoS attacks include 

sending many packets to one or more hosts to overwhelm the 

target host's ability to respond. If the source addresses of 

incoming packets are spoofed, which almost are, the switch 

will not be able to find a match and will have to forward the 

packet to the controller instead. Aggregating valid and DDoS-

faked packets can tie the controller's resources into a state of 

continuous processing, which may exhaust them and render 

the controller inaccessible for packets that have just arrived. It 

may even cause the controller to go down, resulting in the loss 

of the SDN architecture.  

Because of the centralised nature of the controller in SDN, 

it is an ideal target for attackers to exploit. Because the attack 

packets are transmitted with many fake source IP addresses, 

the DDoS attack could create difficulties for both switches and 

the controller. Each time an attack packet arrives, a new flow 

rule must be formed, and as a result, the switch must record 

the packets in its memory and pass the header data to the 

controller to ensure the attack is successful. Receiving many 

malicious packets will use a significant amount of switch 

memory. It will ultimately result in the installation of several 

additional flow entries in the switch's flow tables. This may 

result in the exhaustion of memory and a significant slowdown 

of the flow table lookup, and in the worst-case situation, it 

may result in the switch being brought down. Meanwhile, 

these packets from across the network will be routed to the 

controller for further processing and analysis. Moreover, the 

enormous number of packets delivered to the controller, each 

consuming a portion of the controller's memory and 

processing capacity, may ultimately cause the controller to 

fail, as elaborated in reference [1]. 

DDoS attacks are more effective in SDN networks and do 

more damage than in traditional networks. Because of this, it 

is critical to have an efficient and trustworthy detection 

technique in place to identify such attacks. In big data centres 

with multiple switches, it is vital to discover the targeted 

network sections via the detection process. This will reduce 

the time it takes to implement a mitigation strategy. Switches 

have far less memory and power than controllers, making 
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them more vulnerable to failures. This makes the switches 

more vulnerable to these sorts of attacks. Therefore, it is 

essential to have fast emergency techniques in place to protect 

the switches from breaking down as soon as the first signals of 

an attack are detected.  

This research paper aims to develop a lightweight 

detection and mitigation system against DDoS attack threats 

using a simulation of Software-defined Networks in Mininet. 

II. BACKGROUND ON SDN 

2.1 Software-Defined Networks (SDN) 

SDNs are a new network design and administration 

method that uses software instead of hardware. In traditional 

networking, even slight changes in network circumstances 

would require large-scale reconfiguration of switches, routers, 

and other networking equipment. However, this approach is 

much more straightforward and flexible in SDN [2]. 

Figure 1 illustrates the interplay between a typical network 

node's data and control planes. The control plane is 

responsible for determining the network pathways and pushing 

them to the data plane so that data may be forwarded to its 

destination. It is thus necessary to adjust the settings of each 

device to change the flow policy once it has been created. 

Network operators may have to spend significant time re-

configuring devices regularly to keep pace with evolving 

bandwidth demands and network capacity in extensive 

networks, as illustrated in [3].  

As in the conventional network, the control plane is no 

longer spread across network nodes but rather centralised at 

the controller, which interacts with network nodes to set up the 

data plane over a southbound SDN protocol, as mentioned in 

[4]. OpenFlow is a southbound SDN protocol that enables 

controllers and network nodes to communicate.  

 

 
Fig. 1. SDN Data and Control Planes [3]. 

 

2.2 SDN Controllers 

SDN controllers are the network's brain at the heart of 

SDN network architecture. OpenFlow switches are connected 

using the southbound APIs, whereas SDN applications interact 

with the northbound APIs, as discussed in [5] (Bui and 

Aberkane, 2016). 

The controller employs different modules to execute 

various tasks, such as identifying network devices and 

acquiring network information. Controller add-ons can be 

incorporated to strengthen and broaden the controller's 

capabilities, such as network monitoring and detecting traffic 

anomalies. 

The POX controller is a popular choice among researchers 

and academics. POX's lightweight OpenFlow controller may 

benefit SDN research, teaching, and experimentation. With a 

simple and lightweight architecture, POX has been used to 

develop SDN projects and conduct academic research. POX is 

used to implement the suggested algorithm in this research 

project, although this does not imply that the approach is tied 

to a specific controller. Mininet, a virtualised network, will 

make the setup easier and more reusable [1]. 

2.3 SDN Security 

Attacks on well-known firms, banks, government agencies, 

and colleges are becoming more common, and data may be 

stolen, exposed, or altered in a malicious attack. Sadly, the 

SDN has several issues and weaknesses that make it an 

attractive target for criminals. In SDN, a wide range of threats 

might be identified. These SDN threats and OpenFlow issues 

will be discussed in the following sections. 

2.3.1 SDN Threat Vectors 

According to the authors in [6], there are seven types of 

threat vectors in SDN, as illustrated in Figure 2. Table 1 

outlines various risks to SDN and traditional networks, some 

specific to SDN while others affect both. The initial threat 

vector aims to flood switches by generating legitimate-looking 

traffic flows potentially caused by a switch failure. This 

method can potentially launch Denial of Service (DoS) attacks 

on networking equipment, including switches, constituting the 

second method of attack. The primary cause of this 

vulnerability lies in weaknesses within switches, allowing 

attackers to disrupt the network by redirecting traffic flows to 

other switches, consequently impeding network traffic. 

Switches in Software-Defined Networking (SDN) systems 

can be vulnerable to various attacks due to inherent 

weaknesses or misconfigurations. Some vulnerabilities of 

switches include Flow table Exhaustion, OpenFlow protocol 

vulnerability and misconfiguration of switches as illustrated in 

reference [26] 

The third danger vector is an assault on the 

communications between the control and data planes. Several 

ways to exploit this vulnerability include forging traffic flows 

and overloading the controller. As a result, DDoS attacks are 

directed towards the controller. TLS/SSL protocol flaws are 

the primary cause of this attack, as identified in [7]. 

Vulnerabilities in the controller are exploited in the fourth 

vector of attack against the control plane. The whole network 

might be brought down if an attack on the control plane is 

successful. Lack of communication between the management 

plane and controller is the sixth danger.  

Attackers may employ the third, fourth, and fifth threat 

vectors to launch a DDoS attack and knock down the whole 

system.  

Attacks against administrative stations are the sixth danger 

vector. A lack of reliable resources for cleanup and 

investigation adds to the seventh danger vector. Using these 

tools, you can quickly, securely, and correctly recover from an 

attack, as pointed out in [8]. 
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Fig. 2. The seven threat vectors of SDN [8] 

 

TABLE 1. SDN Specific vs non-specific threats [8] 

Threats 
SDN 

Specific 
Risk to SDN 

Vector 1 No 
This threat can lead to DoS attacks with 

increased potential impact. 

Vector 2 No The impact is potentially increased. 

Vector 3 Yes 
Communication with centralised controllers 

can be exploited 

Vector 4 Yes 
Hacking the controller could compromise the 

entire network. 

Vector 5 Yes 
Malicious applications can now be easily 

created and deployed on the controller. 

Vector 6 No The impact is potentially increased. 

Vector 7 No 
It is still crucial to ensure fast recovery and 
diagnosis when faults occur. 

 

2.3.2 Denial of Service (DDoS) Attacks 

Numerous security challenges afflict network security, 

with denial of service (DoS) attacks a prominent concern. 

Global instances across various cases and scenarios highlight 

the widespread impact of such attacks. Additionally, the 

centralised nature of Software-Defined Networks (SDNs) is 

recognised as a vulnerability, making them particularly 

susceptible to Distributed Denial of Service (DDoS) attacks. 

The primary goal of such attacks is to prevent network 

services from functioning. This might be accomplished by 

using all the network bandwidth or consuming the memory 

and CPU on the service provider nodes. To overwhelm the 

service, the attacker sends large numbers of packets to suck up 

all of the available bandwidth or takes over the whole 

processing capacity of the service provider nodes. Sending a 

large number of UDP packets, for example, might be used to 

produce the attacking traffic and prevent regular 

communication from reaching its target [9]. The complexity of 

attack prevention, detection, and mitigation must be increased 

as these attacks constantly evolve, and hackers are always 

searching for new ways to develop DDoS attacks. 

In Distributed Denial of Service (DDoS) attacks, attackers 

often use compromised sources to send numerous packet 

streams. A proficient attacker may manipulate packet fields 

and traffic characteristics to evade detection solely based on 

traffic categorisation rules. This manipulation aims to deceive 

defence mechanisms, making these altered packets appear as 

regular traffic, as mentioned in reference [9]. 

2.3.3 DDoS Attacks Operation 

The attacker identifies vulnerable computers or nodes that 

may be accessed over the internet. The attacker has to ensure 

that the hosts they choose can execute the application they 

want to use. An attacker may take control of the host computer 

by exploiting any vulnerabilities that have been discovered. 

These scripts are meant to utilise a portion of their host 

system's resources so that their owners would not be able to 

notice any significant concerns about the system's 

performance. Conversely, the code is meant to be concealed in 

the best possible manner to evade detection by the host 

system's programs. Zombies must be in contact with each 

other and the attacker to find out which hosts may participate 

in the attack or to utilise them to update the Host's code. UDP, 

TCP, and ICMP protocols are all used to communicate with 

each Host, which a handler manages. The attacker sets up the 

attack, including the target victim's IP address, the attack 

traffic's port, length, TTL, traffic type, and other details. All of 

these properties may be changed during the attack phase to 

evade detection, as referenced in 11]. 

III. LITERATURE REVIEW 

This section highlights past and current research done on 

DDoS attack detection and mitigation techniques in Software 

Defined Networks. It shed light on various techniques, from 

hardware-based defences to entropy-based detection systems, 

highlighting the new research on the security and resilience of 

SDNs against new cyber threats. Despite the progress made to 

date, current techniques have challenges and limitations. 

Therefore, more research needs to be done on the security of 

SDNs. 

The researchers in reference [12] presented a hardware-

based defensive system in SDN architecture to combat HTTP 

GET Flooding attacks by implementing a per-URL counting 

technique on an FPGA-based defensive system and extending 

the NetFPGA-based OpenFlow switch. This FPGA is a 

technique to distinguish the network traffic based on the 

differences between regular users' and bots' behaviours. 

In a separate study by [13], researchers proposed a 

detection method for detecting DDoS attacks using the 

Sequential Probability Ratio Test (SPRT). They classified 

flow events connected with an interface for precise detection, 

demonstrating faster response times, increased options and 

improved accuracy compared to previous FPGA-based 

detection techniques.  

Researchers [14] suggested countermeasures against UDP 

flooding by monitoring the quantity of incoming or outgoing 

packets. They used the controller to distinguish normal and 

malicious traffic based on packet quantity, enabling the 

detection of a high number of packets immediately. 

Their work [15] utilised the maximum entropy value and 

flow-based traffic attributes, such as source and destination IP 

addresses and ports. They developed a comprehensive system 

for detecting and mitigating DDoS attacks, worm propagation, 

and port scan attacks. 

The study also involved comparing CPU and flow table 

size usage between two data collecting methods, native 

OpenFlow and sFlow, on real network traffic data. For 

instance, adopting sFlow helped reduce the number of factors 

that needed calculation, resulting in decreased communication 

between switches and controllers. This reduction contributed 

to a lower false-positive rate for their technique. 
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The primary mitigation strategy described in reference [16] 

included implementing drop actions and higher-priority 

bidirectional flow rules, effectively reducing the attack 

surface. However, it's important to note that their experimental 

setup featured only one switch, and the emphasis on the 

deployment location for mitigation was limited. Using a 

predetermined threshold value, the researchers successfully 

distinguished between legitimate and malicious 

communications. It's worth mentioning that the method's 

accuracy may be affected by the sample flow rate. 

In reference [17], the authors proposed that Entropy-based 

DDoS attacks were run locally at each local edge switch using 

a modified version of Open vSwitch in a mininet emulator and 

a FloodLight controller to decrease communication costs. 

They tested the system using the CAIDA dataset and 

compared detection and false-positive rates at various 

monitoring intervals. Flow rules with a drop action were 

installed at the source switch of the attack to drop the attacked 

packets. Their study found that shorter monitoring intervals 

led to a faster detection time. They highlighted the importance 

of detecting attacks on the networks directly linked to local 

edge switches. 

In another research paper [18], the authors developed 

anomaly detection on SOHO and ISP networks using well-

established techniques such as maximum Entropy,  Network 

Traffic Anomaly Detection (NETAD), Rate-Limiting and 

Threshold Random Walk with Credit-Based Rate Limiting 

(TRW-CB). They found that the home networks' accuracy was 

superior to Internet Service Providers but lacked explicit 

mitigation methods. 

Joint-entropy-based DDoS detection using several packet 

attributes was suggested by [19]. They used flow time, packet 

length, source address, and destination port as the main factors 

to identify distinct forms of DoS and DDoS attacks. In 

addition, they ran tests on virtual campus networks built on 

top of SDN architecture. 

A practical and lightweight framework for detecting and 

mitigating DDoS attacks in SDN has been suggested by [20]. 

They first gathered network traffic data using the SDN 

controller and sFlow agents. Then, they adopted an entropy-

based approach to quantify network characteristics. They 

developed a Support Vector Machine (SVM) classifier for 

timely and accurate attack detection, coupled with mitigation 

mechanisms based on blacklists and traffic relocation. 

Authors in [21] proposed SAFETY as an innovative 

approach for detecting and preventing TCP SYN flooding. 

This method combines programming with the visibility of 

 Software-Defined Networking (SDN). It also includes an 

entropy technique to assess the unpredictability of flow data. 

The entropy data consists of the IP address of the destination 

and a subset of TCP flags, effectively enhancing the 

identification and mitigation of TCP SYN flooding. 

The research conducted by [22] recommended using Fast 

Entropy algorithms by the SDN controller to detect DDoS 

attacks. Real-time prevention of DDoS attacks was achieved 

by harnessing SDN capabilities in conjunction with the Fast 

Entropy approach. This technique employs SDN and the Fast 

Entropy algorithm to collect and analyse data efficiently, 

detect DDoS incidents, block malicious packets, and redirect 

legitimate flows to the designated destination. 

DDoS attacks may be detected in SDN environments 

utilising the entropy measure and the changes in host role 

profiles for detecting under-attack states, according to [23]. In 

addition, they approached the problem of time while gathering 

data. They applied a statistical approach to evaluate flow data 

supplied by OpenFlow switches, identifying early-stage DDoS 

attacks. 

Entropy-based algorithms, while capable of identifying 

DDoS attacks, have notable limitations. One significant 

constraint is the calculation of the probability distribution of a 

feature using a single value. Although this method proves 

useful for data analysis, it results in the loss of the distribution 

of the examined characteristic. Consequently, in certain 

circumstances, the anomalous effects might be obscured. Also, 

it could not distinguish between distinct distributions with the 

same degree of uncertainty as this technique. Since there is no 

randomisation in malicious communication, it will go 

undetected by the system. 

IV. METHODOLODY 

This detection system is based on two fundamental 

principles: the Entropy fluctuation of the destination IP 

address and the traffic Flow Rate. Using Entropy will provide 

us with a lightweight and effective solution for SDN 

architecture with a single controller that can be implemented 

quickly and effectively simultaneously.  

4.1 Entropy-Based DDoS Detection 

Entropy-based DDoS Detection is a cybersecurity technique 

that uses entropy analysis, focusing on destination IP 

addresses and their duplication frequency, to identify and 

mitigate Distributed Denial of Service (DDoS) attacks. The 

method involves calculating entropy values, establishing a 

baseline under normal conditions, and triggering alerts or 

countermeasures when the computed Entropy consistently 

deviates from the baseline, indicating potential DDoS threats. 

4.1.1 Entropy Calculation 

Entropy, also known as the Shannon-Wiener index, is a 

fundamental concept in information theory. In this context, it 

quantifies the unpredictability or randomness of a random 

variable, specifically the final destination IP. The entropy 

range is [0, log2m], where 'm' represents the number of 

destination IP addresses (equal to 1 when m=1). In scenarios 

like a DDoS attack, where all traffic converges on a single 

destination, network entropy reaches its minimum. On the 

contrary, Entropy reaches its maximum when viable 

destinations are distributed evenly [24]. 

The detection mechanism relies on entropy analysis, as 

described by [25]. Entropy analysis involves using fixed-size 

windows to collect data, with window size determined by 

packet count or elapsed time. The window size, determined by 

the quantity of packets transmitted within a designated time 

frame, is used to group packets based on their destination IP 

addresses.  
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The characteristic metric is the destination IP address, and 

randomness is gauged by the frequency of different 

destination IP addresses within the window. The relative 

frequency Fi for each IP address IPi is calculated using 

Equation below: 

  

Where ni is the number of packets with destination IP address 

IPi and n is the total number of packets. 

This formula computes the entropy H based on the relative 

frequencies of different destination IP addresses within the 

observed packet window. Which is calculated as follows: 

              

 

Entropy reaches its maximum when the relative 

frequencies of all 'm' IP addresses are equal. For example, in a 

scenario with 50 packets, each having a unique destination and 

a computed probability (Fi=1/50), the Entropy is 5.643. 

However, if 10 out of the 50 packets flow to a single 

destination address, the Entropy decreases to 5.213. 

In a normally functioning network, increased packets 

directed to a single host or a small group result in decreased 

Entropy, indicating unusual behaviour. An observed decrease 

in Entropy during an attack is an early detection signal. SDN 

networks, particularly susceptible to DDoS attacks, necessitate 

swift detection. The detection window encompasses fifty 

packets to achieve a trade-off between speed and 

computational load [25]. For entropy calculations, a new 

module in the pox controller collects fifty packets, 

corresponding to a window of fifty flow start requests. Based 

on flow start rates, a timer determines the collection time 

utilised in the subsequent detection step. The controller 

calculates the shortest path for each flow but doesn't save 

computed pathways by default. A function tracks calculated 

pathways to aid in determining attack routes." 

The entropy function, utilising destination IP addresses 

and their duplication frequency, calculates Entropy (Ec). 

Under normal to low traffic conditions, a default entropy value 

sets the initial entropy threshold value (Eth). If the computed 

Entropy (Ec) consistently falls below the threshold for five 

consecutive instances, it raises suspicion of an attack, 

triggering the need for additional analysis. 

4.1.2 Selecting a threshold. 

Given the window size set at 50 and the assumption of 50 

or more connected hosts, selecting an appropriate threshold for 

DDoS detection is critical to entropy-based detection. In the 

new function, each set of 50 Packets in messages is parsed for 

their destination IP addresses, and the Entropy of the list is 

calculated for each group. This estimated Entropy is then 

compared to a predefined threshold. A cyberattack is deemed 

to have occurred if the estimated Entropy has been below the 

threshold for at least five consecutive entropy periods. With 

250 attack packets, this corresponds to a detection rate of 5 

entropy periods, providing the network with an early warning. 

Experimentation with values from one to five successive 

periods revealed that using five periods yielded the lowest 

number of false negatives, positives and the lowest false 

positive rate. In a window of 50 packets with a network of 50 

or more hosts, maximum Entropy occurs when each of the 50 

packets is evenly distributed across all hosts. During an attack, 

the significant increase in packets directed to the same 

destination host or subnet renders the target inaccessible to 

legitimate traffic for an extended period, aligning with the 

attack's primary goal. The assault involves directing packets 

towards a single host or subnet. As long as the assault rate on 

a host exceeds the regular traffic level, which is typically the 

case, the number of packets sent to that Host within a given 

time period increases, leading to a decrease in Entropy by a 

certain percentage. Falling below the threshold is considered 

an indication of an ongoing assault.  

4.1.3 Mitigating through Flow Drop Rules 

The algorithm must implement attack mitigation measures 

if a switch is identified as being under attack. Possible 

approaches include installing flows in the attack paths to drop 

packets until the attack ceases or blocking the incoming ports 

from which the attack traffic is arriving. 

While these methods effectively mitigate the attack and 

provide time for network operators to identify the attack 

sources before the controller or switches break down, their 

adoption also impacts legitimate traffic. Legitimate network 

services may become unavailable or respond slowly due to the 

measures taken. 

Controllers are typically designed with high capacities, 

ensuring they do not crash rapidly. However, switches have 

limited resources and are less resilient against attacks. During 

an ongoing attack, the flow table on switches may fill with a 

large number of short flows, eventually leading to switch 

failure. To safeguard the integrity of network switches, the 

selected strategy involves implementing port blocking and 

packet dropping as a mitigation measure. 

 

 
Fig. 3. Mitigation by dropping packets. 

 

Consider the network topology depicted in Figure 3, which 

consists of three switches and four hosts forming a tree 

structure. Let's consider a scenario where host 4 (highlighted 

in red) initiates an attack on host 1 (highlighted in green). Our 
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strategy entails blocking all packets from the infected Host at 

the closest point to the attack source—specifically, port 2 on  

switch 3. 

4.2 Proposed Mitigation Algorithm 

The algorithm presented as a flowchart in Figure 4 

illustrates the proposed detection and mitigation method.  

Our work process can be divided into three main functions: 

calculation, detection, and mitigation.  

In the calculation phase, we will gather data from 

incoming traffic around the network and count the rate of 

every destination IP address. We will compute their entropy 

values by grouping every 50 packets within the session. Then, 

we will compare the entropy value against the pre-set 

threshold of 1.26. The entropy value should consistently stay 

below the threshold for five consecutive periods to detect a 

potential network attack. 

Upon attack detection, the system will pull the data from 

our calculations to identify the attack path and block the port 

connected to the infected Host. 

 

 
Fig. 4. Proposed Solution-Flowchart 

V. EXPERIMENTAL SETUP  

In this setup, we use Mininet to simulate a virtualised 

network environment, providing a flexible and scalable 

platform for conducting experiments on DDoS attacks and 

mitigation in software-defined networks. The design of the 

network topology is carefully planned to reflect the specific 

experimental scenarios we intend to investigate. 

Our network topology is structured as a tree, featuring two 

levels of depth and eight fanouts, consisting of nine switches 

and 64 hosts, as depicted in Figure 5. Mininet serves as the 

network emulator in this experiment, simulating a real 

network and functioning as an industry-standard tool for SDN 

implementation. 

The initial step in our testing is selecting a controller. POX 

was the preferred controller in our testing as it is a well-known 

controller valued for its speed, lightweight nature, and 

compatibility with Linux, Mac OS X, and Windows, and it has 

topology discovery capabilities.  

 

 
Fig. 5. Mininet Topology 

5.1 Test Scenarios and Results 

To have a solid test for our solution, we must test the 

system under two different types of DDoS attacks:  

1. Concentrated DDoS Attacks: In this scenario, all the 

attack traffic is directed towards a single host. 

2. Scattered DDoS Attacks: This involves distributing the 

attack traffic among multiple hosts. 

This comprehensive testing approach allows us to test the 

entropy calculation when the attack is scattered, and it will be 

harder to detect as the value depends on randomness. 

Additionally, we will vary the attack rate in each test run, 

ranging from 15% to 75%, for both concentrated and scattered 

attack types. 

The experiment contains five different DDoS attacks. 

Initially, three different attack rates target a single host. 

Subsequently, we launch two different attack rates on four 

hosts connected to the same switch and subnet. 

Throughout the experiment, regular traffic is maintained 

across all switches, with packets randomly generated and sent 

to all hosts. 

A script manually triggers the execution of attacks, 

explicitly initiating them after one-fourth of the simulation's 

duration.  
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Throughout a Mininet session, IP addresses are 

systematically assigned to all hosts, starting from 10.0.0.1. For 

a single-host attack, we randomly chose a host in a switch and 

directed it to send attack packets to another host. In contrast, 

the remaining hosts and switches continued normal operations. 

In the case of a four-host attack, a randomly selected host 

transmits attack packets while the rest of the network 

functions without disruption. 

In the three test cases involving a single-host attack, the 

attack rates were set at 25%, 50%, and 75% of the attack 

traffic to normal traffic ratio. Throughout the entire testing 

process, two Scapy applications operated in the background—

one generating regular traffic and the other initiating an attack 

that accelerated packet delivery. This unintentionally led to a 

scenario where between 9 and 14 packets out of 50 were sent 

to the same destination IP address during the 25% rate attack. 

This unplanned outcome was associated with occasional 

minor issues in Mininet. To remedy this, the attack rates were 

adjusted to augment the number of attack packets in the other 

two scenarios. At the 50% rate, 26 out of 50 packets were 

directed to the same destination IP address, and at the 75% 

rate, 39 out of 50 packets faced a similar targeting. 

Subnet attacks will be executed at two distinct attack rates: 

50% and 75%. Notably, the 25% attack rate is not employed in 

subnet attacks. In the case of four hosts, the 25% attack rate 

results in an average of 12 attack packets, distributing three 

packets to each Host. This rate is considered standard for the 

controller and does not pose a significant threat. 

We established a subnet comprising four hosts to assess an 

attack on a group of hosts. In a 50% rate attack, each Host 

received between 5 and 7 packets; in a 75% rate attack, each 

Host obtained between 9 and 10 packets. Although the 

variation in attack packet numbers was unintentional, it 

inadvertently increased the proportion of attack traffic in the 

test, decreasing the entropy value. For instance, in a 25% rate 

attack on a single host, the attack packets ranged from 9 to 14, 

accounting for 18% to 28% of the total attack packets sent. 

 
Fig. 6. DDoS packet count against regular traffic 

 

In practical terms, DDoS attacks exhibit significantly 

higher intensity than what is apparent on the surface. Most 

often, attacks generate traffic that is many times greater than 

typical traffic patterns. For example, a standard attack might 

generate 250 packets per second, whereas regular traffic only 

produces 50 packets per second (refer to Figure 6). If such an 

attack persists in a controller without mitigation, it will 

exhaust all of the controller's resources in processing the 

attack packets. 

5.2  Attack on One Host 

This section examines the impact of an attack on a specific 

host. Each graph is generated from 10 runs, each involving 

4000 packets for the test. However, we focus on 60-packet 

windows, specifically during the occurrence of the attack. The 

attack is consistently initiated during the 15th window. On the 

horizontal axis, each point signifies a window comprising 50 

packets, while on the vertical axis, each point represents the 

Entropy for the corresponding window. 

The data presented in the graph represents mean values 

from ten runs. Figure 7 illustrates the change in Entropy 

during a 25% rate attack. The blue line corresponds to regular 

traffic across all graphs, while the red line depicts the Entropy 

shift during the launch of attack traffic. Figure 7 delineates the 

contrast between the Entropy values for regular and abnormal 

traffic. 

The first six entropies in the graph are consistently lower 

than our threshold of 1.26. The lowest point in the confidence 

interval for regular traffic is 1.24, and the highest point for 

attack entropy is 1.36. In the initial test with a 25% rate attack, 

no attack was detected due to the disparity between our 

suggested threshold and the entropy value. While three values 

were below the threshold, the absence of five consecutive 

values prevented the detection of the attack. 

 

 
Fig. 7. 25% Rate Attack on One Host 

 

In Figure 8, the results of our approach become evident. 

Our findings reveal the effectiveness of detecting any attack 

that consumes 50% or more of the incoming bandwidth when 

directed at a single site. The simulation was conducted ten 

times with a 50% success rate, enabling us to calculate the 

success rate based on these ten iterations. Notably, no false 

negatives were detected, even when an attack was ongoing but 

went unnoticed by the controller. This underscores the 

capability of detecting DDoS attacks within the first 250 

arriving packets with a 100% success rate. This success rate 

holds true across all other instances without any undetected 

attacks. 

Two higher-rate tests were conducted on the same Host to 

examine more concentrated attacks, as shown in Figures 13 

and 14. Figure 8 illustrates an attack with a 50% success rate, 

while Figure 9 depicts a 75% success rate attack on a single 
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host. Both simulations are compared against typical traffic 

volume to illustrate the difference in Entropy between the two 

scenarios. 

As the attack rate increases, the window of opportunity 

becomes more pronounced and narrower. This results in a 

significant reduction in the amount of information available to 

the attacker. The acceleration in the attack rate, combined with 

a fixed number of attack packets, leads to a higher proportion 

of attack packets within the window. Consequently, the attack 

graph becomes more profound and narrower, reflecting the 

more substantial decrease in Entropy observed in the 75% 

example. 

 

 
Fig. 8. 50% Attack Rate Traffic 

 

 
Fig. 9. 75% Rate Attack on One Host 

5.3  Attack on Multiple Hosts 

In this section, we examined Entropy's effectiveness in 

detecting attacks on the controller involving four hosts within 

the same subnet. Given that the baseline for detection was set 

at a 1.26 rate on one Host, the threshold was maintained at the 

same level. During ten runs of attacks on a subnet with a 50% 

rate, the Entropy consistently registered values lower than the 

threshold. Figure 10 illustrates a decrease in Entropy that is 

well below the threshold but higher than the 50% rate 

observed on a single host. 

Moving on to Figure 11, it represents a 75% rate attack on 

four hosts. Notably, there is a sharp drop in Entropy when a 

substantial number of packets are directed to the same subnet. 

The confidence interval for both the 75% rate attack on a 

single host and the 75% rate on a subnet shows the highest 

confidence interval. 

Both tests achieved a 100% success rate in all 20 runs, 

demonstrating that the system could effectively detect the 

attack, even when distributed across four hosts. However, it is 

important to note that the entropy value was higher than the 

attack on a single host, given that the total number of attack 

packets targeting each Host had decreased. 

 

 
Fig. 10. 50% Rate Attack on Multiple Hosts 

 

 
Fig. 11. 75% Rate Attack on Multiple Hots 

VI. CONCLUSION 

This research aims to provide a reliable and lightweight 

method for detecting various DDoS attacks during their early 

propagation phases in SDN networks and suggests a 

mitigation technique. Unlike attacks on traditional networks, 

where the goal is often to overwhelm a specific service with 

excessive traffic, DDoS attacks in SDN can be more dispersed 

to evade detection while still targeting the controller and 

switches. To be effective in SDN, a detection mechanism must 

identify both single and multiple victim attacks with minimal 

latency to allow for swift mitigation strategies. 

Upon integrating our solution into the controller, not only 

does it recognise malicious activity, but it also identifies the 

specific attack vectors being targeted. The high detection rates 

for varied traffic patterns in our data demonstrate that the 

algorithm can perform effectively across various network 

settings and is not restricted to a single network scenario.  

Entropy was used as a detection tool in this study, and we 

could identify attacks on a single host or a subnet of hosts in a 

network. Notably, our technique correctly identified subnet 

attacks even when the number of packets sent to the controller 

was as low as 50% of the total traffic. When we adopted a 
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threshold of a 50% rate of attack packets per total traffic, our 

strategy demonstrated a 100% success rate. In scenarios where 

DDoS attacks constitute 75% to 100% of all traffic in non-

SDN networks, our approach outperformed the nearest 

technique in identifying the attack.  

This paper presents a three-stage DDoS attack detection 

system designed for SDN environments. During the 

calculation phase, data is gathered from incoming network 

traffic, and the rate of each destination IP address is computed. 

Entropy values are calculated by grouping every 50 packets, 

and these results are compared against a predefined threshold 

of 1.26. A potential network attack is identified if the entropy 

value consistently stays below the threshold for five 

consecutive periods. Upon detection, the system uses the 

calculated data to identify the attack path and subsequently 

blocks the port connected to the infected Host while legitimate 

traffic continues to flow unimpeded. 
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