
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

45

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

Enhancing DDoS Attack Detection in Software-

Defined Networks with Entropy-Based Techniques

Adam Gorine1, Mohamed Abdelrahman2

 1School of Computing and Creative Technology, UWE, Bristol, UK
2School of Computing and Creative Technology, UWE, Bristol, UK

Abstract— The introduction of Software-Defined Networks (SDN)

represents significant advancements in network design by separating

control and forwarding planes. While SDN improves network

administration productivity, it has many vulnerabilities which

hackers can exploit. One such cyber-attack is Distributed Denial of

Service (DDoS), which leads to many challenges. This paper aims to

assess SDN vulnerabilities by using a novel technique, Entropy, that

can detect DDoS attacks at an early stage. The methodology relies on

Entropy to identify abnormal network behaviour, which may indicate

DDoS attacks. In addition, a novel mitigation technique using flow

drop rules enables the rapid and targeted suppression of malicious

traffic. Therefore, it enhances the security of SDN network devices.

The solution implements a three-stage DDoS attack detection system

for the SDN environment. It involves data gathering, entropy

calculation, and threshold-based detection to identify potential

attacks.

Keywords— Software-defined networks (SDN), DDoS Attacks,

Entropy-Based Detection, Flow Drop Rules, Network Security,

Threat detection.

I. INTRODUCTION

Software-defined networks (SDN) are a revolutionary

technique for simplifying network administration by

separating the data and control planes.

The introduction of SDN has allowed it to program the

network control layer. As a result, it is possible to disconnect

the physical network hardware from the control plane by

moving the control logic from networking devices such as

switches and routers in traditional networks to a centralised

unit as the controller.

Designing and implementing new protocols is easier

because of the separation between the physical network and

the controller. Examples of network services include access

control, quality of service (QoS), enforcing new rules,

bandwidth management, and traffic engineering.

Although the concept of SDN might seem complicated

with the separation of data and control plane, it is simple in

execution. It will store Flow entries in tables on the data plane.

A secure transport layer protocol provides secure

communication with a controller about new entries not in the

flow table. Each flow entry includes matching rules and

actions so the data plane knows what to do when a flow

matches another one. Each packet's header fields are checked

against the flow table's matching rules. If a match is

discovered, the switch will execute the action stated in that

flow entry; otherwise, it will transmit the packet to its

controller for further processing. A flow rule is then created

and put in the switch flow tables along the selected route by

the controller after it processes the header.

Numerous security issues might arise due to the

controller's centralised nature, as it acts as a single point of

failure in the network, as demonstrated in reference [27]. The

network is entirely down by taking out the controller, making

the attacks much more effective.

A distributed denial of service (DDoS) attack might cause

the controller to become unresponsive. DDoS attacks include

sending many packets to one or more hosts to overwhelm the

target host's ability to respond. If the source addresses of

incoming packets are spoofed, which almost are, the switch

will not be able to find a match and will have to forward the

packet to the controller instead. Aggregating valid and DDoS-

faked packets can tie the controller's resources into a state of

continuous processing, which may exhaust them and render

the controller inaccessible for packets that have just arrived. It

may even cause the controller to go down, resulting in the loss

of the SDN architecture.

Because of the centralised nature of the controller in SDN,

it is an ideal target for attackers to exploit. Because the attack

packets are transmitted with many fake source IP addresses,

the DDoS attack could create difficulties for both switches and

the controller. Each time an attack packet arrives, a new flow

rule must be formed, and as a result, the switch must record

the packets in its memory and pass the header data to the

controller to ensure the attack is successful. Receiving many

malicious packets will use a significant amount of switch

memory. It will ultimately result in the installation of several

additional flow entries in the switch's flow tables. This may

result in the exhaustion of memory and a significant slowdown

of the flow table lookup, and in the worst-case situation, it

may result in the switch being brought down. Meanwhile,

these packets from across the network will be routed to the

controller for further processing and analysis. Moreover, the

enormous number of packets delivered to the controller, each

consuming a portion of the controller's memory and

processing capacity, may ultimately cause the controller to

fail, as elaborated in reference [1].

DDoS attacks are more effective in SDN networks and do

more damage than in traditional networks. Because of this, it

is critical to have an efficient and trustworthy detection

technique in place to identify such attacks. In big data centres

with multiple switches, it is vital to discover the targeted

network sections via the detection process. This will reduce

the time it takes to implement a mitigation strategy. Switches

have far less memory and power than controllers, making

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

46

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

them more vulnerable to failures. This makes the switches

more vulnerable to these sorts of attacks. Therefore, it is

essential to have fast emergency techniques in place to protect

the switches from breaking down as soon as the first signals of

an attack are detected.

This research paper aims to develop a lightweight

detection and mitigation system against DDoS attack threats

using a simulation of Software-defined Networks in Mininet.

II. BACKGROUND ON SDN

2.1 Software-Defined Networks (SDN)

SDNs are a new network design and administration

method that uses software instead of hardware. In traditional

networking, even slight changes in network circumstances

would require large-scale reconfiguration of switches, routers,

and other networking equipment. However, this approach is

much more straightforward and flexible in SDN [2].

Figure 1 illustrates the interplay between a typical network

node's data and control planes. The control plane is

responsible for determining the network pathways and pushing

them to the data plane so that data may be forwarded to its

destination. It is thus necessary to adjust the settings of each

device to change the flow policy once it has been created.

Network operators may have to spend significant time re-

configuring devices regularly to keep pace with evolving

bandwidth demands and network capacity in extensive

networks, as illustrated in [3].

As in the conventional network, the control plane is no

longer spread across network nodes but rather centralised at

the controller, which interacts with network nodes to set up the

data plane over a southbound SDN protocol, as mentioned in

[4]. OpenFlow is a southbound SDN protocol that enables

controllers and network nodes to communicate.

Fig. 1. SDN Data and Control Planes [3].

2.2 SDN Controllers

SDN controllers are the network's brain at the heart of

SDN network architecture. OpenFlow switches are connected

using the southbound APIs, whereas SDN applications interact

with the northbound APIs, as discussed in [5] (Bui and

Aberkane, 2016).

The controller employs different modules to execute

various tasks, such as identifying network devices and

acquiring network information. Controller add-ons can be

incorporated to strengthen and broaden the controller's

capabilities, such as network monitoring and detecting traffic

anomalies.

The POX controller is a popular choice among researchers

and academics. POX's lightweight OpenFlow controller may

benefit SDN research, teaching, and experimentation. With a

simple and lightweight architecture, POX has been used to

develop SDN projects and conduct academic research. POX is

used to implement the suggested algorithm in this research

project, although this does not imply that the approach is tied

to a specific controller. Mininet, a virtualised network, will

make the setup easier and more reusable [1].

2.3 SDN Security

Attacks on well-known firms, banks, government agencies,

and colleges are becoming more common, and data may be

stolen, exposed, or altered in a malicious attack. Sadly, the

SDN has several issues and weaknesses that make it an

attractive target for criminals. In SDN, a wide range of threats

might be identified. These SDN threats and OpenFlow issues

will be discussed in the following sections.

2.3.1 SDN Threat Vectors

According to the authors in [6], there are seven types of

threat vectors in SDN, as illustrated in Figure 2. Table 1

outlines various risks to SDN and traditional networks, some

specific to SDN while others affect both. The initial threat

vector aims to flood switches by generating legitimate-looking

traffic flows potentially caused by a switch failure. This

method can potentially launch Denial of Service (DoS) attacks

on networking equipment, including switches, constituting the

second method of attack. The primary cause of this

vulnerability lies in weaknesses within switches, allowing

attackers to disrupt the network by redirecting traffic flows to

other switches, consequently impeding network traffic.

Switches in Software-Defined Networking (SDN) systems

can be vulnerable to various attacks due to inherent

weaknesses or misconfigurations. Some vulnerabilities of

switches include Flow table Exhaustion, OpenFlow protocol

vulnerability and misconfiguration of switches as illustrated in

reference [26]

The third danger vector is an assault on the

communications between the control and data planes. Several

ways to exploit this vulnerability include forging traffic flows

and overloading the controller. As a result, DDoS attacks are

directed towards the controller. TLS/SSL protocol flaws are

the primary cause of this attack, as identified in [7].

Vulnerabilities in the controller are exploited in the fourth

vector of attack against the control plane. The whole network

might be brought down if an attack on the control plane is

successful. Lack of communication between the management

plane and controller is the sixth danger.

Attackers may employ the third, fourth, and fifth threat

vectors to launch a DDoS attack and knock down the whole

system.

Attacks against administrative stations are the sixth danger

vector. A lack of reliable resources for cleanup and

investigation adds to the seventh danger vector. Using these

tools, you can quickly, securely, and correctly recover from an

attack, as pointed out in [8].

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

47

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

Fig. 2. The seven threat vectors of SDN [8]

TABLE 1. SDN Specific vs non-specific threats [8]

Threats
SDN

Specific
Risk to SDN

Vector 1 No
This threat can lead to DoS attacks with

increased potential impact.

Vector 2 No The impact is potentially increased.

Vector 3 Yes
Communication with centralised controllers

can be exploited

Vector 4 Yes
Hacking the controller could compromise the

entire network.

Vector 5 Yes
Malicious applications can now be easily

created and deployed on the controller.

Vector 6 No The impact is potentially increased.

Vector 7 No
It is still crucial to ensure fast recovery and
diagnosis when faults occur.

2.3.2 Denial of Service (DDoS) Attacks

Numerous security challenges afflict network security,

with denial of service (DoS) attacks a prominent concern.

Global instances across various cases and scenarios highlight

the widespread impact of such attacks. Additionally, the

centralised nature of Software-Defined Networks (SDNs) is

recognised as a vulnerability, making them particularly

susceptible to Distributed Denial of Service (DDoS) attacks.

The primary goal of such attacks is to prevent network

services from functioning. This might be accomplished by

using all the network bandwidth or consuming the memory

and CPU on the service provider nodes. To overwhelm the

service, the attacker sends large numbers of packets to suck up

all of the available bandwidth or takes over the whole

processing capacity of the service provider nodes. Sending a

large number of UDP packets, for example, might be used to

produce the attacking traffic and prevent regular

communication from reaching its target [9]. The complexity of

attack prevention, detection, and mitigation must be increased

as these attacks constantly evolve, and hackers are always

searching for new ways to develop DDoS attacks.

In Distributed Denial of Service (DDoS) attacks, attackers

often use compromised sources to send numerous packet

streams. A proficient attacker may manipulate packet fields

and traffic characteristics to evade detection solely based on

traffic categorisation rules. This manipulation aims to deceive

defence mechanisms, making these altered packets appear as

regular traffic, as mentioned in reference [9].

2.3.3 DDoS Attacks Operation

The attacker identifies vulnerable computers or nodes that

may be accessed over the internet. The attacker has to ensure

that the hosts they choose can execute the application they

want to use. An attacker may take control of the host computer

by exploiting any vulnerabilities that have been discovered.

These scripts are meant to utilise a portion of their host

system's resources so that their owners would not be able to

notice any significant concerns about the system's

performance. Conversely, the code is meant to be concealed in

the best possible manner to evade detection by the host

system's programs. Zombies must be in contact with each

other and the attacker to find out which hosts may participate

in the attack or to utilise them to update the Host's code. UDP,

TCP, and ICMP protocols are all used to communicate with

each Host, which a handler manages. The attacker sets up the

attack, including the target victim's IP address, the attack

traffic's port, length, TTL, traffic type, and other details. All of

these properties may be changed during the attack phase to

evade detection, as referenced in 11].

III. LITERATURE REVIEW

This section highlights past and current research done on

DDoS attack detection and mitigation techniques in Software

Defined Networks. It shed light on various techniques, from

hardware-based defences to entropy-based detection systems,

highlighting the new research on the security and resilience of

SDNs against new cyber threats. Despite the progress made to

date, current techniques have challenges and limitations.

Therefore, more research needs to be done on the security of

SDNs.

The researchers in reference [12] presented a hardware-

based defensive system in SDN architecture to combat HTTP

GET Flooding attacks by implementing a per-URL counting

technique on an FPGA-based defensive system and extending

the NetFPGA-based OpenFlow switch. This FPGA is a

technique to distinguish the network traffic based on the

differences between regular users' and bots' behaviours.

In a separate study by [13], researchers proposed a

detection method for detecting DDoS attacks using the

Sequential Probability Ratio Test (SPRT). They classified

flow events connected with an interface for precise detection,

demonstrating faster response times, increased options and

improved accuracy compared to previous FPGA-based

detection techniques.

Researchers [14] suggested countermeasures against UDP

flooding by monitoring the quantity of incoming or outgoing

packets. They used the controller to distinguish normal and

malicious traffic based on packet quantity, enabling the

detection of a high number of packets immediately.

Their work [15] utilised the maximum entropy value and

flow-based traffic attributes, such as source and destination IP

addresses and ports. They developed a comprehensive system

for detecting and mitigating DDoS attacks, worm propagation,

and port scan attacks.

The study also involved comparing CPU and flow table

size usage between two data collecting methods, native

OpenFlow and sFlow, on real network traffic data. For

instance, adopting sFlow helped reduce the number of factors

that needed calculation, resulting in decreased communication

between switches and controllers. This reduction contributed

to a lower false-positive rate for their technique.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

48

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

The primary mitigation strategy described in reference [16]

included implementing drop actions and higher-priority

bidirectional flow rules, effectively reducing the attack

surface. However, it's important to note that their experimental

setup featured only one switch, and the emphasis on the

deployment location for mitigation was limited. Using a

predetermined threshold value, the researchers successfully

distinguished between legitimate and malicious

communications. It's worth mentioning that the method's

accuracy may be affected by the sample flow rate.

In reference [17], the authors proposed that Entropy-based

DDoS attacks were run locally at each local edge switch using

a modified version of Open vSwitch in a mininet emulator and

a FloodLight controller to decrease communication costs.

They tested the system using the CAIDA dataset and

compared detection and false-positive rates at various

monitoring intervals. Flow rules with a drop action were

installed at the source switch of the attack to drop the attacked

packets. Their study found that shorter monitoring intervals

led to a faster detection time. They highlighted the importance

of detecting attacks on the networks directly linked to local

edge switches.

In another research paper [18], the authors developed

anomaly detection on SOHO and ISP networks using well-

established techniques such as maximum Entropy, Network

Traffic Anomaly Detection (NETAD), Rate-Limiting and

Threshold Random Walk with Credit-Based Rate Limiting

(TRW-CB). They found that the home networks' accuracy was

superior to Internet Service Providers but lacked explicit

mitigation methods.

Joint-entropy-based DDoS detection using several packet

attributes was suggested by [19]. They used flow time, packet

length, source address, and destination port as the main factors

to identify distinct forms of DoS and DDoS attacks. In

addition, they ran tests on virtual campus networks built on

top of SDN architecture.

A practical and lightweight framework for detecting and

mitigating DDoS attacks in SDN has been suggested by [20].

They first gathered network traffic data using the SDN

controller and sFlow agents. Then, they adopted an entropy-

based approach to quantify network characteristics. They

developed a Support Vector Machine (SVM) classifier for

timely and accurate attack detection, coupled with mitigation

mechanisms based on blacklists and traffic relocation.

Authors in [21] proposed SAFETY as an innovative

approach for detecting and preventing TCP SYN flooding.

This method combines programming with the visibility of

 Software-Defined Networking (SDN). It also includes an

entropy technique to assess the unpredictability of flow data.

The entropy data consists of the IP address of the destination

and a subset of TCP flags, effectively enhancing the

identification and mitigation of TCP SYN flooding.

The research conducted by [22] recommended using Fast

Entropy algorithms by the SDN controller to detect DDoS

attacks. Real-time prevention of DDoS attacks was achieved

by harnessing SDN capabilities in conjunction with the Fast

Entropy approach. This technique employs SDN and the Fast

Entropy algorithm to collect and analyse data efficiently,

detect DDoS incidents, block malicious packets, and redirect

legitimate flows to the designated destination.

DDoS attacks may be detected in SDN environments

utilising the entropy measure and the changes in host role

profiles for detecting under-attack states, according to [23]. In

addition, they approached the problem of time while gathering

data. They applied a statistical approach to evaluate flow data

supplied by OpenFlow switches, identifying early-stage DDoS

attacks.

Entropy-based algorithms, while capable of identifying

DDoS attacks, have notable limitations. One significant

constraint is the calculation of the probability distribution of a

feature using a single value. Although this method proves

useful for data analysis, it results in the loss of the distribution

of the examined characteristic. Consequently, in certain

circumstances, the anomalous effects might be obscured. Also,

it could not distinguish between distinct distributions with the

same degree of uncertainty as this technique. Since there is no

randomisation in malicious communication, it will go

undetected by the system.

IV. METHODOLODY

This detection system is based on two fundamental

principles: the Entropy fluctuation of the destination IP

address and the traffic Flow Rate. Using Entropy will provide

us with a lightweight and effective solution for SDN

architecture with a single controller that can be implemented

quickly and effectively simultaneously.

4.1 Entropy-Based DDoS Detection

Entropy-based DDoS Detection is a cybersecurity technique

that uses entropy analysis, focusing on destination IP

addresses and their duplication frequency, to identify and

mitigate Distributed Denial of Service (DDoS) attacks. The

method involves calculating entropy values, establishing a

baseline under normal conditions, and triggering alerts or

countermeasures when the computed Entropy consistently

deviates from the baseline, indicating potential DDoS threats.

4.1.1 Entropy Calculation

Entropy, also known as the Shannon-Wiener index, is a

fundamental concept in information theory. In this context, it

quantifies the unpredictability or randomness of a random

variable, specifically the final destination IP. The entropy

range is [0, log2m], where 'm' represents the number of

destination IP addresses (equal to 1 when m=1). In scenarios

like a DDoS attack, where all traffic converges on a single

destination, network entropy reaches its minimum. On the

contrary, Entropy reaches its maximum when viable

destinations are distributed evenly [24].

The detection mechanism relies on entropy analysis, as

described by [25]. Entropy analysis involves using fixed-size

windows to collect data, with window size determined by

packet count or elapsed time. The window size, determined by

the quantity of packets transmitted within a designated time

frame, is used to group packets based on their destination IP

addresses.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

49

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

The characteristic metric is the destination IP address, and

randomness is gauged by the frequency of different

destination IP addresses within the window. The relative

frequency Fi for each IP address IPi is calculated using

Equation below:

Where ni is the number of packets with destination IP address

IPi and n is the total number of packets.

This formula computes the entropy H based on the relative

frequencies of different destination IP addresses within the

observed packet window. Which is calculated as follows:

Entropy reaches its maximum when the relative

frequencies of all 'm' IP addresses are equal. For example, in a

scenario with 50 packets, each having a unique destination and

a computed probability (Fi=1/50), the Entropy is 5.643.

However, if 10 out of the 50 packets flow to a single

destination address, the Entropy decreases to 5.213.

In a normally functioning network, increased packets

directed to a single host or a small group result in decreased

Entropy, indicating unusual behaviour. An observed decrease

in Entropy during an attack is an early detection signal. SDN

networks, particularly susceptible to DDoS attacks, necessitate

swift detection. The detection window encompasses fifty

packets to achieve a trade-off between speed and

computational load [25]. For entropy calculations, a new

module in the pox controller collects fifty packets,

corresponding to a window of fifty flow start requests. Based

on flow start rates, a timer determines the collection time

utilised in the subsequent detection step. The controller

calculates the shortest path for each flow but doesn't save

computed pathways by default. A function tracks calculated

pathways to aid in determining attack routes."

The entropy function, utilising destination IP addresses

and their duplication frequency, calculates Entropy (Ec).

Under normal to low traffic conditions, a default entropy value

sets the initial entropy threshold value (Eth). If the computed

Entropy (Ec) consistently falls below the threshold for five

consecutive instances, it raises suspicion of an attack,

triggering the need for additional analysis.

4.1.2 Selecting a threshold.

Given the window size set at 50 and the assumption of 50

or more connected hosts, selecting an appropriate threshold for

DDoS detection is critical to entropy-based detection. In the

new function, each set of 50 Packets in messages is parsed for

their destination IP addresses, and the Entropy of the list is

calculated for each group. This estimated Entropy is then

compared to a predefined threshold. A cyberattack is deemed

to have occurred if the estimated Entropy has been below the

threshold for at least five consecutive entropy periods. With

250 attack packets, this corresponds to a detection rate of 5

entropy periods, providing the network with an early warning.

Experimentation with values from one to five successive

periods revealed that using five periods yielded the lowest

number of false negatives, positives and the lowest false

positive rate. In a window of 50 packets with a network of 50

or more hosts, maximum Entropy occurs when each of the 50

packets is evenly distributed across all hosts. During an attack,

the significant increase in packets directed to the same

destination host or subnet renders the target inaccessible to

legitimate traffic for an extended period, aligning with the

attack's primary goal. The assault involves directing packets

towards a single host or subnet. As long as the assault rate on

a host exceeds the regular traffic level, which is typically the

case, the number of packets sent to that Host within a given

time period increases, leading to a decrease in Entropy by a

certain percentage. Falling below the threshold is considered

an indication of an ongoing assault.

4.1.3 Mitigating through Flow Drop Rules

The algorithm must implement attack mitigation measures

if a switch is identified as being under attack. Possible

approaches include installing flows in the attack paths to drop

packets until the attack ceases or blocking the incoming ports

from which the attack traffic is arriving.

While these methods effectively mitigate the attack and

provide time for network operators to identify the attack

sources before the controller or switches break down, their

adoption also impacts legitimate traffic. Legitimate network

services may become unavailable or respond slowly due to the

measures taken.

Controllers are typically designed with high capacities,

ensuring they do not crash rapidly. However, switches have

limited resources and are less resilient against attacks. During

an ongoing attack, the flow table on switches may fill with a

large number of short flows, eventually leading to switch

failure. To safeguard the integrity of network switches, the

selected strategy involves implementing port blocking and

packet dropping as a mitigation measure.

Fig. 3. Mitigation by dropping packets.

Consider the network topology depicted in Figure 3, which

consists of three switches and four hosts forming a tree

structure. Let's consider a scenario where host 4 (highlighted

in red) initiates an attack on host 1 (highlighted in green). Our

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

50

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

strategy entails blocking all packets from the infected Host at

the closest point to the attack source—specifically, port 2 on

switch 3.

4.2 Proposed Mitigation Algorithm

The algorithm presented as a flowchart in Figure 4

illustrates the proposed detection and mitigation method.

Our work process can be divided into three main functions:

calculation, detection, and mitigation.

In the calculation phase, we will gather data from

incoming traffic around the network and count the rate of

every destination IP address. We will compute their entropy

values by grouping every 50 packets within the session. Then,

we will compare the entropy value against the pre-set

threshold of 1.26. The entropy value should consistently stay

below the threshold for five consecutive periods to detect a

potential network attack.

Upon attack detection, the system will pull the data from

our calculations to identify the attack path and block the port

connected to the infected Host.

Fig. 4. Proposed Solution-Flowchart

V. EXPERIMENTAL SETUP

In this setup, we use Mininet to simulate a virtualised

network environment, providing a flexible and scalable

platform for conducting experiments on DDoS attacks and

mitigation in software-defined networks. The design of the

network topology is carefully planned to reflect the specific

experimental scenarios we intend to investigate.

Our network topology is structured as a tree, featuring two

levels of depth and eight fanouts, consisting of nine switches

and 64 hosts, as depicted in Figure 5. Mininet serves as the

network emulator in this experiment, simulating a real

network and functioning as an industry-standard tool for SDN

implementation.

The initial step in our testing is selecting a controller. POX

was the preferred controller in our testing as it is a well-known

controller valued for its speed, lightweight nature, and

compatibility with Linux, Mac OS X, and Windows, and it has

topology discovery capabilities.

Fig. 5. Mininet Topology

5.1 Test Scenarios and Results

To have a solid test for our solution, we must test the

system under two different types of DDoS attacks:

1. Concentrated DDoS Attacks: In this scenario, all the

attack traffic is directed towards a single host.

2. Scattered DDoS Attacks: This involves distributing the

attack traffic among multiple hosts.

This comprehensive testing approach allows us to test the

entropy calculation when the attack is scattered, and it will be

harder to detect as the value depends on randomness.

Additionally, we will vary the attack rate in each test run,

ranging from 15% to 75%, for both concentrated and scattered

attack types.

The experiment contains five different DDoS attacks.

Initially, three different attack rates target a single host.

Subsequently, we launch two different attack rates on four

hosts connected to the same switch and subnet.

Throughout the experiment, regular traffic is maintained

across all switches, with packets randomly generated and sent

to all hosts.

A script manually triggers the execution of attacks,

explicitly initiating them after one-fourth of the simulation's

duration.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

51

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

Throughout a Mininet session, IP addresses are

systematically assigned to all hosts, starting from 10.0.0.1. For

a single-host attack, we randomly chose a host in a switch and

directed it to send attack packets to another host. In contrast,

the remaining hosts and switches continued normal operations.

In the case of a four-host attack, a randomly selected host

transmits attack packets while the rest of the network

functions without disruption.

In the three test cases involving a single-host attack, the

attack rates were set at 25%, 50%, and 75% of the attack

traffic to normal traffic ratio. Throughout the entire testing

process, two Scapy applications operated in the background—

one generating regular traffic and the other initiating an attack

that accelerated packet delivery. This unintentionally led to a

scenario where between 9 and 14 packets out of 50 were sent

to the same destination IP address during the 25% rate attack.

This unplanned outcome was associated with occasional

minor issues in Mininet. To remedy this, the attack rates were

adjusted to augment the number of attack packets in the other

two scenarios. At the 50% rate, 26 out of 50 packets were

directed to the same destination IP address, and at the 75%

rate, 39 out of 50 packets faced a similar targeting.

Subnet attacks will be executed at two distinct attack rates:

50% and 75%. Notably, the 25% attack rate is not employed in

subnet attacks. In the case of four hosts, the 25% attack rate

results in an average of 12 attack packets, distributing three

packets to each Host. This rate is considered standard for the

controller and does not pose a significant threat.

We established a subnet comprising four hosts to assess an

attack on a group of hosts. In a 50% rate attack, each Host

received between 5 and 7 packets; in a 75% rate attack, each

Host obtained between 9 and 10 packets. Although the

variation in attack packet numbers was unintentional, it

inadvertently increased the proportion of attack traffic in the

test, decreasing the entropy value. For instance, in a 25% rate

attack on a single host, the attack packets ranged from 9 to 14,

accounting for 18% to 28% of the total attack packets sent.

Fig. 6. DDoS packet count against regular traffic

In practical terms, DDoS attacks exhibit significantly

higher intensity than what is apparent on the surface. Most

often, attacks generate traffic that is many times greater than

typical traffic patterns. For example, a standard attack might

generate 250 packets per second, whereas regular traffic only

produces 50 packets per second (refer to Figure 6). If such an

attack persists in a controller without mitigation, it will

exhaust all of the controller's resources in processing the

attack packets.

5.2 Attack on One Host

This section examines the impact of an attack on a specific

host. Each graph is generated from 10 runs, each involving

4000 packets for the test. However, we focus on 60-packet

windows, specifically during the occurrence of the attack. The

attack is consistently initiated during the 15th window. On the

horizontal axis, each point signifies a window comprising 50

packets, while on the vertical axis, each point represents the

Entropy for the corresponding window.

The data presented in the graph represents mean values

from ten runs. Figure 7 illustrates the change in Entropy

during a 25% rate attack. The blue line corresponds to regular

traffic across all graphs, while the red line depicts the Entropy

shift during the launch of attack traffic. Figure 7 delineates the

contrast between the Entropy values for regular and abnormal

traffic.

The first six entropies in the graph are consistently lower

than our threshold of 1.26. The lowest point in the confidence

interval for regular traffic is 1.24, and the highest point for

attack entropy is 1.36. In the initial test with a 25% rate attack,

no attack was detected due to the disparity between our

suggested threshold and the entropy value. While three values

were below the threshold, the absence of five consecutive

values prevented the detection of the attack.

Fig. 7. 25% Rate Attack on One Host

In Figure 8, the results of our approach become evident.

Our findings reveal the effectiveness of detecting any attack

that consumes 50% or more of the incoming bandwidth when

directed at a single site. The simulation was conducted ten

times with a 50% success rate, enabling us to calculate the

success rate based on these ten iterations. Notably, no false

negatives were detected, even when an attack was ongoing but

went unnoticed by the controller. This underscores the

capability of detecting DDoS attacks within the first 250

arriving packets with a 100% success rate. This success rate

holds true across all other instances without any undetected

attacks.

Two higher-rate tests were conducted on the same Host to

examine more concentrated attacks, as shown in Figures 13

and 14. Figure 8 illustrates an attack with a 50% success rate,

while Figure 9 depicts a 75% success rate attack on a single

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

52

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

host. Both simulations are compared against typical traffic

volume to illustrate the difference in Entropy between the two

scenarios.

As the attack rate increases, the window of opportunity

becomes more pronounced and narrower. This results in a

significant reduction in the amount of information available to

the attacker. The acceleration in the attack rate, combined with

a fixed number of attack packets, leads to a higher proportion

of attack packets within the window. Consequently, the attack

graph becomes more profound and narrower, reflecting the

more substantial decrease in Entropy observed in the 75%

example.

Fig. 8. 50% Attack Rate Traffic

Fig. 9. 75% Rate Attack on One Host

5.3 Attack on Multiple Hosts

In this section, we examined Entropy's effectiveness in

detecting attacks on the controller involving four hosts within

the same subnet. Given that the baseline for detection was set

at a 1.26 rate on one Host, the threshold was maintained at the

same level. During ten runs of attacks on a subnet with a 50%

rate, the Entropy consistently registered values lower than the

threshold. Figure 10 illustrates a decrease in Entropy that is

well below the threshold but higher than the 50% rate

observed on a single host.

Moving on to Figure 11, it represents a 75% rate attack on

four hosts. Notably, there is a sharp drop in Entropy when a

substantial number of packets are directed to the same subnet.

The confidence interval for both the 75% rate attack on a

single host and the 75% rate on a subnet shows the highest

confidence interval.

Both tests achieved a 100% success rate in all 20 runs,

demonstrating that the system could effectively detect the

attack, even when distributed across four hosts. However, it is

important to note that the entropy value was higher than the

attack on a single host, given that the total number of attack

packets targeting each Host had decreased.

Fig. 10. 50% Rate Attack on Multiple Hosts

Fig. 11. 75% Rate Attack on Multiple Hots

VI. CONCLUSION

This research aims to provide a reliable and lightweight

method for detecting various DDoS attacks during their early

propagation phases in SDN networks and suggests a

mitigation technique. Unlike attacks on traditional networks,

where the goal is often to overwhelm a specific service with

excessive traffic, DDoS attacks in SDN can be more dispersed

to evade detection while still targeting the controller and

switches. To be effective in SDN, a detection mechanism must

identify both single and multiple victim attacks with minimal

latency to allow for swift mitigation strategies.

Upon integrating our solution into the controller, not only

does it recognise malicious activity, but it also identifies the

specific attack vectors being targeted. The high detection rates

for varied traffic patterns in our data demonstrate that the

algorithm can perform effectively across various network

settings and is not restricted to a single network scenario.

Entropy was used as a detection tool in this study, and we

could identify attacks on a single host or a subnet of hosts in a

network. Notably, our technique correctly identified subnet

attacks even when the number of packets sent to the controller

was as low as 50% of the total traffic. When we adopted a

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

53

Adam Gorine, and Mohamed Abdelrahman, “Enhancing DDoS Attack Detection in Software-Defined Networks with Entropy-Based

Techniques,” International Research Journal of Advanced Engineering and Science, Volume 9, Issue 2, pp. 45-53, 2024.

threshold of a 50% rate of attack packets per total traffic, our

strategy demonstrated a 100% success rate. In scenarios where

DDoS attacks constitute 75% to 100% of all traffic in non-

SDN networks, our approach outperformed the nearest

technique in identifying the attack.

This paper presents a three-stage DDoS attack detection

system designed for SDN environments. During the

calculation phase, data is gathered from incoming network

traffic, and the rate of each destination IP address is computed.

Entropy values are calculated by grouping every 50 packets,

and these results are compared against a predefined threshold

of 1.26. A potential network attack is identified if the entropy

value consistently stays below the threshold for five

consecutive periods. Upon detection, the system uses the

calculated data to identify the attack path and subsequently

blocks the port connected to the infected Host while legitimate

traffic continues to flow unimpeded.

REFERENCES

[1] Faizullah, S., Ebadati E., O. M., Zhani, M. F. "A Comprehensive Survey
on Security Challenges and Countermeasures in Software-Defined

Networking." IEEE Communications Surveys & Tutorials, 23(1),

pp.577-614, 2021
[2] Mohammed Samaka, Mohammed Abdelkader Khalil, Hossam S.

Hassanein, "Cloud SDN: A Survey on SDN-based Cloud Networking,"

IEEE Access, vol. 9, pp. 138677-138704, 2021.

[3] Zhiqiang Zhang, Rongxing Lu, Raymond K. Wong, Xuemin (Sherman)

Shen, "Challenges and Solutions of Software-Defined Networking: A

Comprehensive Survey," IEEE Communications, vol. 23, no. 2, pp. 916-
961, 2021.

[4] Zhenyu Li, Haoyang Lu, Jun Li, Guangjie Han, "A Decade of Software-
Defined Networking (SDN): A Bibliometric Analysis," IEEE Access,

vol. 9, pp. 80910-80923, 2021.

[5] Xiaoyu Zhang, Heng Zhang, Liang Zhang, Zhiyuan Guo, Yushu Liu,
"Towards a Generic Interface for Programmable Data Plane of Open

vSwitch," IEEE Access, vol. 9, pp. 126090-126101, 2021.

[6] Chunmei Liu, Jianglong Li, Longxiang Gao, Kai Xing, Zhaoming Lu,
"A Comprehensive Survey on Software-Defined Networking: Concepts,

Technologies, and Applications," IEEE Internet of Things Journal, vol.

8, no. 21, pp. 15933-15955, 2021.
[7] Holz, R., Kiermaier, T., Kammenhuber, N., Carle, G., "X.509 forensics:

Detecting and localising the SSL/TLS men-in-the-middle," in European

Symposium on Research in Computer Security, pp. 217-234, Springer,

Berlin, Heidelberg, 2012.

[8] Chunmei Liu, Jianglong Li, Longxiang Gao, Kai Xing, Zhaoming Lu,

"A Comprehensive Survey on Software-Defined Networking: Concepts,
Technologies, and Applications," IEEE Internet of Things Journal, vol.

8, no. 21, pp. 15933-15955, 2021.

[9] Holz, R., Riedmaier, T., Kammenhuber, N., Carle, G., "X.509 forensics:
Detecting and localising the SSL/TLS men-in-the-middle," in European

Symposium on Research in Computer Security (ESORICS), pp. 217-234,
Springer, Berlin, Heidelberg, 2012

[10] Dridi, L., Zhani, M.F., "SDN-guard: DoS attacks mitigation in SDN

networks," in 5th IEEE International Conference on Cloud Networking
(Cloudnet), pp. 212-217, 2016

[11] Huaqiang Yuan, Keqin Li, Jingqiang Lin, Huansheng Ning, "A Survey

on DDoS Attacks and Defense Mechanisms in SDN-Based IoT
Networks," IEEE Access, vol. 9, pp. 40829-40839, 2021.

[12] Jinsoo Park, Eunji Lee, Jongsub Moon, "Mitigation of HTTP Flooding

Attacks Using SDN Controller with NetFPGA-Based OpenFlow
Switch," IEEE Access, vol. 8, pp. 103893-103906, 2020.

[13] Dong, P., Du, X., Zhang, H., Xu, T., "A detection method for a novel

DDoS attack against SDN controllers by vast new low-traffic flows," in
IEEE International Conference on Communications (ICC), pp. 1-6,

2016.

[14] Tung, Y.H., Wei, H.C., Ti, Y.W., Tsou, Y.T., Saxena, N., Yu, C.M.,
"Counteracting UDP flooding attacks in SDN," Electronics, vol. 9, no.

8, p. 1239, 2020.

[15] Giotis, K., Argyropoulos, C., Androulidakis, G., Kalogeras, D.,
Maglaris, V., "Combining OpenFlow and sFlow for an effective and

scalable anomaly detection and mitigation mechanism on SDN

environments," Computer Networks, vol. 62, pp. 122-136, 2014.
[16] Hamed HaddadPajouh, Hassan Habibi Gharakheili, Rasool Jalili, Amin

Tootoonchian, Albert Y. Zomaya, "sFLow-Assisted Anomaly Detection

and Mitigation in Software-Defined Networks," IEEE Transactions on
Network and Service Management, vol. 17, no. 3, pp. 1555-1569, 2020.

[17] Narges Mehran, Gholamreza Shahrokh Abadi, "An Entropy-Based

Distributed Denial of Service Detection Scheme in Software Defined
Networks," Journal of Network and Systems Management, vol. 29, no. 2,

pp. 402-426, 2021.

[18] Mohammed Al-Fayoumi, Adnan Abu-Mahfouz, Mohamed Nabeel,

Abderahmane Tamdjid, "A Survey on Anomaly Detection Techniques in

Software-Defined Networking," IEEE Access, vol. 8, pp. 214146-
214167, 2020.

[19] Mao, J., Deng, W., Shen, F., "DDoS flooding attack detection based on

joint-entropy with multiple traffic features," in 12th IEEE International
Conference On Big Data Science And Engineering

(TrustCom/BigDataSE), pp. 237-243, 2018.

[20] Hu, D., Hong, P., Chen, Y., "FADM: DDoS flooding attack detection
and mitigation system in software-defined networking," in IEEE Global

Communications Conference, pp. 1-7, 2017.

[21] Hemavathy R, Dr. M. S. Rajasree, "Entropy-based Detection and
Mitigation of TCP SYN Flood Attack in SDN," in International

Conference on Inventive Computation Technologies (ICICT), pp. 98-

103. 2021.
[22] Saman Taghavi Zargar, James Joshi, David Tipper, "A Comparative

Study of DDoS Attack Detection and Mitigation in SDN and Cloud

Computing Environments," IEEE Access, vol. 9, pp. 52933-52949,

2021.

[23] Duy, PT, Pham, V.H., "A role-based statistical mechanism for DDoS

attack detection in SDN," in 5th NAFOSTED Conference on Information
and Computer Science (NICS), pp. 177-182. 2018

[24] Li, L., Zhou, J., Xiao, N., "DDoS attack detection algorithms based on

entropy computing," in International Conference on Information and
Communications Security, pp. 452-466, Berlin, 2007.

