
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

5

Raihan Haidar Arkan and Dr. Nur Sultan Salahuddin, SKom, MT, “Leaf Disease Detection Web Design using Django Framework for CNN

Models,” International Research Journal of Advanced Engineering and Science, Volume 8, Issue 4, pp. 5-11, 2023.

Leaf Disease Detection Web Design using Django

Framework for CNN Models

Raihan Haidar Arkan1, Dr. Nur Sultan Salahuddin, SKom, MT2

 1Master of Electrical Engineering, Gunadarma University, Depok, West Java, Indonesia-16424
2Faculty of Computer Science and Information Technology, Gunadarma University, Depok, West Java, Indonesia-16424

Abstract— Agriculture is one of the most important sectors of the

economy as it provides food for the world's growing population.

Plant diseases are a serious problem in agriculture and can lead to

reduced harvests and financial losses. The development of artificial

intelligence technology, especially Convolutional Neural Network

(CNN) has opened up opportunities to effectively detect plant

diseases through image analysis. This research aims to build a

system that can classify diseases and treatments on web-based plants

with the Django framework for CNN model. Based on data from 30

respondents taken using a Likert scale, in this research the model

that has been created and integrated on the website with the Django

framework can classify well and this web can provide

recommendations for handling diseases on plants based on the

classification results obtained. This system is expected to help

identify diseases in plants so that they can take preventive measures

and can be a tool of education for the community.

I. INTRODUCTION

Indonesia is an agricultural country in Southeast Asia with

most of its population working in the agricultural sector. One

of the plant products grown in Indonesia is potatoes, rice and

grapes. Agriculture is one of the economic fields that are very

important for the survival of the Indonesian people.

Agriculture serves as a provider of food needs for Indonesia's

growing population. Even so, the agricultural sector faces

many problems, one of which is diseases experienced by

plants such as vines, potatoes and rice. In biology, leaves are

used as indicators to measure plant health by observing the

color of the leaves, most of the symptoms of disease in plants

can be known on the leaves [1]. Because such diseases can be

identified by leaf color, it allows computers to be able to

detect such diseases to help humans. Diseases of these crops

can reduce crop quality, cause financial losses, and even

threaten the country's food security [2]. Therefore, the

detection of disease symptoms on plant leaves is expected to

help the process of handling and controlling diseases in plants.

Grapes with the scientific name Vitis Vinifera, is one of

the plants consumed by the people of Indonesia. Based on data

from the Central Statistics Agency (BPS), Bali dominates

wine production in Indonesia with a volume of 11,938 tons in

2022. This amount is equivalent to 88.32% of the total wine

production of 13,516 tons. Meanwhile, West Nusa Tenggara

occupies the second position with wine production of 384 tons

in 2022[3]. One of the factors affecting wine production is

diseases of the plant. Common diseases of grapes include

black measles, black rot and leaf blight. The disease in grapes

is difficult to distinguish with the naked eye, leading to

inaccurate results [4].

Potatoes (Solanum tuberosum) are the most recognized

staple food throughout the world and are foods that can be

processed into various processed forms. Based on data from

the Central Statistics Agency (BPS), East Java is the region

with the most potato production in Indonesia, which is

324,338 tons. This figure is equivalent to 23.83% of the

national total[5]. Diseases of potato plants, especially potato

leaves, are generally caused by fungi, for example, late blight

and early blight. The disease can spread throughout the potato

plant parts.

Governments and experts have recognized how important

it is to detect diseases in plants early as a prelude to preventive

measures. Plant diseases often go undiagnosed until they reach

a severe stage, causing crop failure[6]. About 40% of the

world's crop is lost to disease and pest infestation[7]. In the

past, farmers or agricultural experts used visual methods to

detect diseases in plants. However, this method has limitations

due to inaccuracies when identifying diseases in plants,

especially in cases where plant growing conditions are

affected by other variables. In addition, the manual

identification process requires a lot of time and effort, making

it inefficient if used on a larger scale. The introduction of

diseases in early-stage crops can enable farmers to take

effective preventive measures, such as the use of appropriate

pesticides and more efficient disease management, These plant

disease detection technologies can also help reduce excessive

pesticide use, which can have a negative impact on the

environment and human health.

Technological developments in the field of artificial

intelligence, especially in the field of machine learning and

deep learning, have opened up new ways to be able to detect

diseases in plants. In machine learning, the Convolutional

Nerual Network (CNN) technique has proven to be very

effective in pattern recognition on image data. Using image

analysis of disease-infected plants, CNNs can recognize

relevant characteristics in images and learn complex patterns

that allow CNNs to accurately identify different types of

diseases in plants [8].

Although a lot of research has been done on the use of

machine learning to detect plant diseases, there are still some

issues that need to be addressed such as lack of verified

datasets, machine learning model development requires large

and varied datasets to train. However, the lack of a

representative dataset on a wide range of diseases in plants is

an obstacle to the development of accurate models. The next

problem faced is the level of accuracy, accuracy in the disease

detection system in plants is very important. If the disease is

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

6

Raihan Haidar Arkan and Dr. Nur Sultan Salahuddin, SKom, MT, “Leaf Disease Detection Web Design using Django Framework for CNN

Models,” International Research Journal of Advanced Engineering and Science, Volume 8, Issue 4, pp. 5-11, 2023.

misdiagnosed, farmers may suffer greater losses and improper

disease control due to inaccurate recognition.

Based on the issue described earlier, to overcome these

various obstacles, this research aims to create a classification

system for diseases in plant leaves and how to treat plants

based on the web by utilizing the Django framework that can

help build websites that can identify diseases in plant leaves

and provide treatment recommendation. The system uses the

Django framework that allows a web to perform classification

using CNN technology which can train disease detection

models on plant leaves with diverse datasets. This web-based

system aims to quickly and accurately identify plant leaf

diseases, while also serving as an educational tool for

controlling and preventing them.

II. RESEARCH METHOD

 2.1. Design Stage

At this stage, the entire structure of the website that will be

built is designed. In the program design, this research uses

Google Colab to conduct classification training on the model

to be used. At the website development stage, this research is

assisted by the Django framework which can facilitate website

development because the Django framework allows users to

create back-end and front-end parts in one environment.

Figure 1. Flowchart

Flowchart display in figure 1. Shows how a web-based

disease classification system works. The way this system

works starts when the user uploaded or inputs image on the

main display of the website, after the upload process, the

Django framework precisely the views.py file will preprocess

the image according to the image settings when the model is

created, after the preprocessing process, the image features

that have been inputted will be extracted so that the model can

make predictions based on the features possessed by the

image. After the prediction process is complete, the model will

provide the prediction results with the largest percentage and

will be displayed on the main display of the web in the

classification results section.

When the prediction results are generated, the Django

framework will also send treatment recommendations

according to the program that has been created. The program

to give these treatment recommendations uses a condition

system, where the results of recommendations will be

displayed according to the results of the prediction.

In the design process there are several points that need to

be designed to describe the system, the following are the

points to build this research model:

1. The purpose of the system, the system built on this

research is a web that can identify a disease in plants and

provide a treatment recommendation to deal with or

prevent the disease from being too severe based on images

uploaded to the web.

2. The way the system works, the system in this research uses

a web base with the Django framework. This system will

provide input identification results in the form of images of

plant’s leaf that have a disease, after identifying the

disease from the input in the form of images, the system

will provide treatment recommendations according to the

identification results.

3. Framework, a web that can identify diseases, uses Django

as a framework that allows the web to use CNN model to

identify diseases and provide treatment recommendations

for handling identified plant diseases.

4. Datasets, datasets used each amount to approximately

1000 to 2000 images for training all types of plants and

their diseases. In this dataset, image data has been

separated into 3 (three parts), namely, data, val, and train.

5. Model, this system uses models that are trained using the

CNN or Convolutional Neural Network method which is

usually widely used to recognize and classify images.

6. Type of disease, in this system can detect types of plants

namely grapes, potatoes and rice. Diseases that can be

detected by this system are:

a. Grape

i. Black Rot

ii. Esca/Black Measley

iii. Leaf Blight

b. Potato

i. Early Blight

ii. Late Blight

c. Rice

i. Brown Spot Disease

ii. Hispa

iii. Leaf Blight

2.2. Block Diagram

The block diagram system is important in the development

of a research that produces applications or tools, because

block diagrams provide how an application works as a whole.

Figure 2. Block Diagram

2.3. Image Upload Process

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

7

Raihan Haidar Arkan and Dr. Nur Sultan Salahuddin, SKom, MT, “Leaf Disease Detection Web Design using Django Framework for CNN

Models,” International Research Journal of Advanced Engineering and Science, Volume 8, Issue 4, pp. 5-11, 2023.

This process occurs on the client side or the main display

of the classification website. In this process, the user will

choose the type of plant that he wants to identify the disease.

Figure 3. Upload Process

This process is commonly referred to as the input block in

the diagram block. The following is an explanation during the

image upload process:

1. This process involves 3 files namely, home.html, urls, py,

and views.py. On the website display (home.html) the

image upload process will be triggered when the user

presses the "classify" button.

2. When the classify button is triggered, the browser sends an

HTTP POST request to the URL specified in Django's

form attribute. Then urls.py is tasked with matching the

requested URL to the view function.

2.4. Home.html Program

In this section will explain about programs related to the

process of uploading images on the website display precisely

in home.html.

<Form method="Post" action="{% URL 'classify' %}

"enctype="multipart/form-data">

{% csrf_token %}

<label for="model">Select Plant Type</label>

<select name="model" id="model">

 <option value="model_potato">Potato</option>

 <option value="model_rice">Rice</option>

 <option value="model_grape">Grape</option>

</select>

<input type="file" name="image" accept="image/*">

<input type="submit" name="upload_button"

value="Classify">

</form>

This program functions as a <form></form> used to access

Django's backend. In this form there is a function to select a

model with the model name and a function to upload an

image with the image name and a button value = "Classify" to

send a request.

2.5. urls.py Program

This file serves to redirect each request from HTTP POST

to the specified URL

urlpatterns = [

path('', views.index, name='index'),

]

The urlpatterns function is used to store any kind of URL

pattern needed in a Django project. Each URL pattern is

defined using the path function. Path ('', views.index,

name='index') The program defines a URL pattern that

connects URLs with the home display function in the views

module so that the URL generated by default is

https://localhost:8000/.

2.6. views.py Program

The program in the views.py file is used to receive requests

from forms on the main display or client side. In this case, the

request received is in the form of a request model used to

select the type of plant and a request image used to receive

and send the inputted image.

Get the model and image

selected_model = request. POST['model']

uploaded_image = request. FILES['image']

Get the uploaded image from the form

uploaded_image = form.instance.image

The function of the request program. POST['model'] is to

receive requests from the main view in the form of plant types,

in this case it will later be used to determine the cnn model to

be used for training, requests for this plant type will be stored

in the selected_model variable, while request. FILES['image']

is a program to receive digital images that have been uploaded

by the user, these digital images will be stored in

uploaded_image variables which will later be used as input for

Image Preprocessing.

2.7. Prediction Process on the Web

This process involves views.py and a trained cnn model. In

this process, when a request from the form on the main display

of the website is received by the views.py in the previous

program, then the image and plant type request that has been

received will be processed. In this process views.py is tasked

with loading cnn models that have been trained with the hdf5

extension (.h5).

Figure 4. Prediction Process

2.7.1. Defining Disease Classes

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

8

Raihan Haidar Arkan and Dr. Nur Sultan Salahuddin, SKom, MT, “Leaf Disease Detection Web Design using Django Framework for CNN

Models,” International Research Journal of Advanced Engineering and Science, Volume 8, Issue 4, pp. 5-11, 2023.

Before carrying out the process involving prediction, a

class name is defined to name the prediction results according

to the index.

class_names_potato = {

0: 'Potato Early Blight',

1: 'Potato Healthy',

2: 'Potato Late Blight'

}

The above program is an example of defining a disease

class name, because without a defined class name, the result of

a prediction is only a number without any class name or

disease name.

2.7.2. Preprocessing Image

In this program, Preprocess Image is carried out before

making predictions using the model that has been trained. The

purpose of the program is to prepare a digital image uploaded

by the user to match the image format used by the model.

img_upload = image.load_img(uploaded_image.path,

target_size=(256, 256))

img_array = image.img_to_array(img_upload)

img_array = np.expand_dims(img_array, axis=0)

img_array /= 255.0

1. img_upload. In this program, the image uploaded by the

user will be read through the path that has been written on

the previous variable, namely uploaded_image and the

image will be resized to 256x256 pixels to match the size

used by the model during the training process.

2. image.img_to_array(img_upload). After the image is

loaded, it will then be converted to an array or numpy

array. Thus the image to be represented by an array of

numbers can be understood by the model as input.

3. Np. expand_dims(img_array, axis=0). Deep learning

models accept input in batches, therefore it is necessary to

add batch dimensions to the image array in order for the

model to process them. After this operation the images will

have dimensions (1,256,256,3), where 1 indicates that

there is 1 image in the batch.

4. img_array /= 255.0. This step is normalized in the image

array to change the value from 0 to 255 to 0 to 1. This

normalization is necessary because deep learning models

tend to be better at coping with data that has a more

uniform scale of values, while a range of 0 to 1 makes it

easier for the model to process.

2.7.3. Determining Plant Type

After the digital image that has been uploaded passes

through Image Preprocessing, the next step is to load the cnn

model according to the type of plant chosen by the user.

Because each type of plant selected by the user has a different

cnn model.

if selected_model == 'model_potato':

model =

tf.keras.models.load_model('model_potato_v2.h5')

current_class_names = class_names_potato

Elif selected_model == 'model_rice':

model = tf.keras.models.load_model('model_rice_v1.h5')

current_class_names = class_names_rice

Elif selected_model == 'model_grape':

model = tf.keras.models.load_model('model_grape_v2.h5')

current_class_names = class_names_grape

The if selected_model program is a condition program that

if the type of plant selected by the user will affect the model

that will be used to make predictions. Program tf.keras.

models. load_model used to load trained cnn models. And

current_class_names is a program used to determine the class

of diseases by index.

2.7.4. Making Prediction

The program in this section is made to make predictions on

uploaded digital images, this prediction process will use a cnn

model selected based on the choice of plant types that have

been selected by the user. This prediction program will also

convert the softmax output into percentage form to make it

easier to see.

predictions = model.predict(img_array)

predicted_class_index = np.argmax(predictions[0])

predicted_class =

current_class_names[predicted_class_index]

probability =

"{:.2f}".format(Predictions[0][predicted_class_index] * 100)

The above program is an implementation of the prediction

process using a pre-trained deep learning model. The goal of

this program is to predict classes from input in the form of

images (img_array) based on pretrained models.

1. model.predict(img_array). In this program model.predict is

used to predict the image brought by the img_array. When

the image is inputted, the model will generate probability

predictions. The results of these predictions will be stored

in the predictions variable.

2. np.argmax(predictions[0]). After getting the probability

prediction results from the model, the next step is to

determine the class that has the highest probability,

therefore the np.argmax command is used.

3. class_names[predicted_class_index]. After obtaining the

class index with the highest probability, the program

searches for class names corresponding to that index based

on class_names variables containing class names

according to the number of classes in the dataset.

4. probability. The program contained in this variable serves

to calculate the probability of prediction in percentage

form.

2.7.5. Prediction Percentage Formula

The method used by Conlutional Neural Networks to

generate probability values is from the value of each neuron

which indicates the extent to which the digital image input

matches the class concerned, then this score will be converted

into probability through the softmax activation function.

The softmax activation function is responsible for

converting the output layer score into probability with a

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

9

Raihan Haidar Arkan and Dr. Nur Sultan Salahuddin, SKom, MT, “Leaf Disease Detection Web Design using Django Framework for CNN

Models,” International Research Journal of Advanced Engineering and Science, Volume 8, Issue 4, pp. 5-11, 2023.

maximum value of 1. The formula used by softmax activation

to determine probability can be seen in the equation below:

Information:

 = The probability of the input image x belongs to

class i.

 = Score generated by the I-th neuron

N = Total number of classes

To get a score value on the Convolutional Neural Network

can be obtained by a combination of weight and input given to

the neuron. The process involves the addition of weighted sum

and the application of the activation function.

1. Weighted Sum. Each neuron input is multiplied by the

corresponding weight after which the results of

multiplication are summed. In equation, x is the input of

the neuron and w is the weight.

2. Application of activation function. After Weighted Sum is

performed, the z value is usually used as input for the

activation function. This function will convert the z value

into an output that has a non-linear nature. For example in

ReLU activation, the α output of the neuron can be

calculated as:

2.8. Recommendation Program

The recommendation process also takes place on the

views.py and uses a condition system to determine which

recommendations to display. The Recommendation System

will provide handling recommendations based on predictions

issued by the model.

Figure 5. Flowchart Recommendation

if predicted_class == 'Disease A':

treatment = 'Recommendation A'

trsource = 'Source A'

elif predicted_class == 'Disease B':

treatment = 'Recommendation B'

trsource = 'Source B'

.

.

.

elif predicted_class == 'Disease N':

treatment = 'Recommendation N'

trsource = 'Source N'

In the recommendation program, the results of the

recommendations to be displayed will match the disease

predicted by the model. This recommendation program

utilizes the condition system to provide treatment

recommendations based on identified diseases. The results

displayed by this recommendation program also include the

handling resources used to recommend the treatment.

III. RESULTS AND DISCUSSION

3.1. Web Display

This stage is testing the website to see if the web that has

been built can be accessed and test if the website in this

research can classify properly and provide treatment

recommendations on how to prevent diseases in plants.

The web is built using a mix of various languages such as

HTML, Python, JavaScript, and CSS. The web built on this

research uses a framework provided by Django, making it

easier for researchers to create a web classification of diseases

in plants.

Figure 5. Website Display

Figure 5, is an image of the appearance of the website built

in this research. This website has several features such as:

1. Choosing the type of plant. This feature allows users to

select the desired type of plant, this feature will use a

model that matches the type of plant selected.

2. Image upload feature. It is the main feature of this website

as input to run the identification process by pressing the

"classify" button after selecting the image you want to

classify.

3.2. Display of Classification Result

After identifying the disease in the image uploaded by the

user. The results will be displayed in the "Classification

Results" section. The results displayed are images that have

been uploaded or that become inputs, disease predictions, and

probabilities. Then in the "Recommendations" section there

are recommendations on how to treat or prevent diseases that

have been identified by the model along with the source of

recommendations for handling the disease used.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

10

Raihan Haidar Arkan and Dr. Nur Sultan Salahuddin, SKom, MT, “Leaf Disease Detection Web Design using Django Framework for CNN

Models,” International Research Journal of Advanced Engineering and Science, Volume 8, Issue 4, pp. 5-11, 2023.

Figure 6. Display of Classification Result

3.3. Website Test Result according Respondent

This research uses the Likert Scale and the Technology

Acceptance Model (TAM) as the basis for determining the

questionnaire, where there are several criteria for determining

the level of technology acceptance to users.

Table 1. Perceived Easy of Use

Perceived Easy of Use

1 Django-based Leaf Disease Detection Website is easy to learn

2 Django-based Leaf Disease Detection Website is easy to use

3 Django-based Leaf Disease Detection Website is easy to access

Table 2. Perceived Usefulness

Perceived Usefulness

1
The use of the Django-based Leaf Disease Detection Website makes it

easy to determine the disease on the leaves.

2
The use of Django-based Leaf Disease Detection Website helps to
speed up the determination of plant disease treatment.

3
Django-based Leaf Disease Detection Website can be an educational

tool in recognizing and treating plant diseases.

4
I found it helpful to use the Django-based Leaf Disease Detection
Website when identifying leaf diseases.

Table 3. Attitude Toward Using

Attitude Toward Using

1
I use the Django-based Leaf Disease Detection Website because it

suits my needs.

2
I like using the Django-based Leaf Disease Detection Website because
there is a guide to using it

Table 4. Actual Use

Actual Use

1 Overall, I am satisfied with the leaf disease classification website.

2 Django-based Leaf Disease Detection Website has good accuracy

3
I will use the Django-based Leaf Disease Detection Website to

identify plant diseases.

The assessment carried out in this research using a Likert

scale has provisions based on points from strongly agree to

strongly disagree.

Table 5. Context Value

Context Value

Strongly Agree (SA) 5

Agree (A) 4

Neutral (N) 3

Disagree (D) 2

Strongly Disagree (SD) 1

The questionnaire in this research utilizes the Google Form

feature to collect respondent data and is distributed online on

the internet. Respondents in this study had 30 respondents.

Based on the answers and the number of respondents, it can be

seen the percentage index of acceptance of the Django-based

Plant Leaf Disease Classification Web to users.

Table 6. Frequensy of Perceived Easy of Use Data

S
SA A N D SD

A
F % F % F % F % F %

1 9 30.0 11 36.6 8 26.6 2 6.6 0 0 3.9

2 9 30.0 13 43.3 7 23.3 1 3.3 0 0 4.0

3 9 30.0 11 36.6 8 26.6 2 6.6 0 0 3.9

Table 7. Frequensy of Perceived Usefulness Data

S
SA A N D SD

A
F % F % F % F % F %

1 11 36.6 13 43.4 5 16.6 1 3.3 0 0 4.1

2 10 33.3 11 36.6 9 30.0 0 0 0 0 4.0

3 16 53.3 10 33.3 3 10.0 1 3.3 0 0 4.3

4 12 40.0 13 43.3 5 16.6 0 0 0 0 4.2

Table 8. Frequensy of Attitude Toward Using Data

S
SA A N D SD

A
F % F % F % F % F %

1 10 33.3 11 36.6 7 23.3 2 6.6 0 0 3.9

2 8 26.6 16 53.3 4 13.3 2 6.6 0 0 4.0

Table 9. Frequensy of Actual Use Data

S
SA A N D SD

A
F % F % F % F % F %

1 11 36.6 13 43.3 4 13.3 2 6.6 0 0 4.1

2 5 16.6 16 53.3 7 23.3 2 6.6 0 0 3.8

3 10 33.3 16 53.3 3 10.0 1 3.3 0 0 4.1

Based on respondents regarding the Actual Usage criteria

in table 6 to table 9, out of 30 respondents gave an average

score of 4 (Agree) that the website built in this study can

function properly in direct use by users

3.4. Grape Leaf Disease Treatment Recommendations

This stage displays the classification results of grape

diseases with recommendations for handling them on the

classification website that has been built in this research.

There are 3 types of grape diseases that can be classified,

namely Black Measles, Black Rot, and Leaf Blight. The

following are the recommendations generated based on the

classification results of the 3 grape diseases:

1. Black Measles : “This disease should be treated in the

same way as you would Eutypa or Botryosphaeria dieback.

Avoid making large cuts during pruning and do not prune

during periods of high humidity. Seal wounds or spray

fungicide after pruning.”

2. Black Rot : “Organic Control: As soon as it enters the

blooming stage, you can spray Bacillus thuringiensis |

Chemical Control: Chemical application is done in a

preventive manner. Strat spraying is approximately two

weeks before blooming with captan + mycobutanil or

mancozeb + mycobutanil. Just before the flowers bloom,

you can also use carbaryl or imidacloprid. Post-bloom

spray mancozeb + mycobutanil, imidacioprid or

azadirachtin. Ten days after blooming, you can also use a

mixture of captan and sulfur on your vines. Since most

grape varieties become immune to infection three to four

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

11

Raihan Haidar Arkan and Dr. Nur Sultan Salahuddin, SKom, MT, “Leaf Disease Detection Web Design using Django Framework for CNN

Models,” International Research Journal of Advanced Engineering and Science, Volume 8, Issue 4, pp. 5-11, 2023.

weeks after blooming, chemical sprays should be avoided

at that time.”

3. Leaf Blight : “The disease can be effectively tackled

through the combined use of culture, sanitation, resistance

and fungicide sprays. This integrated approach to disease

control minimizes reliance on one type of control over

another and usually results in a high percentage of quality

fruit.”

3.5. Potato Leaf Disease Treatment Recommendations

This stage displays the results of recommendations for

handling potato diseases based on the classification results.

This classification website can provide recommendations for

handling 2 diseases that can be classified, namely Late Blight

and Early Blight, the following are recommendations for

handling each disease in potato plants:

1. Early Blight : “These diseases can be minimized by

maintaining optimal growing conditions, including proper

fertilization, irrigation, and other pest management. Plant

older and longer-season varieties. The use of fungicides is

only justified if the disease appears early enough to cause

economic losses.”

2. Late Blight : “Late blight is controlled by removing cull

piles, using proper harvesting and storage practices, and

using fungicides when necessary. Air drainage to facilitate

daily drying of foliage is important.”

3.6. Rice Leaf Disease Treatment Recommendations

This stage displays the results of recommendations for

handling rice plant diseases based on the classification results,

there are 3 diseases that can be detected on the classification

website, namely Brown Spot, Hispa, and Blast, the following

are the results of recommendations for handling rice diseases

that can be classified:

1. Brown Spot: “Use fungicides (e.g., iprodione,

propiconazole, azoxystrobin, trifloxystrobin, and

carbendazim) as seed treatments. Warm water (53-54°C)

for 10-12 minutes before planting to control primary

infections at the seedling stage.”

2. Hispa : “Organic Control: To this day, there are no

effective biological controls for this disease that are

commercially available. Experiments are ongoing to test

the feasibility of products based on Streptomyces or

Pseudomonas bacteria on fungus and disease incidence or

spread. | Chemical Control: Seed treatment with thiram is

effective against this disease. Fungicides containing

azoxystrobin, or active ingredients from the triazole or

strobilurin family can also be sprayed at the seedling,

tillering, and panicle emergence stages to control blast

disease. One or two fungicide applications at planting time

can be effective in controlling this disease.”

IV. CONCLUSION

Based on the data provided by 30 respondents in this

research, the average value obtained on each statement

submitted gets a value of 4 or tends to a value of 4 so that it

falls into the Agree category. This proves that the

classification website built in this study functions well, can be

accepted by users, and can be a means of education for the

community and help people who have a hobby of gardening or

plant lovers to identify plant diseases and carry out prevention

or treatment based on recommendations for handling the

identified disease.

The Django framework can be an option to help build

websites for classification and provide prevention

recommendations based on prediction results. This is because

the Django framework provides a variety of libraries,

modules, and APIs that can be used freely so there is no need

to do programming from scratch.

REFERENCES

[1] M. M. Ali, N. A. Bachik, N. ‘Atirah Muhadi, T. N. Tuan Yusof, and C.

Gomes, “Non-destructive techniques of detecting plant diseases: A
review,” Physiol. Mol. Plant Pathol., vol. 108, 2019, doi:

10.1016/j.pmpp.2019.101426.

[2] P. K. Mugithe, R. V. Mudunuri, B. Rajasekar, and S. Karthikeyan,
“Image Processing Technique for Automatic Detection of Plant Diseases

and Alerting System in Agricultural Farms,” Proc. 2020 IEEE Int. Conf.

Commun. Signal Process. ICCSP 2020, pp. 1603–1607, 2020, doi:
10.1109/ICCSP48568.2020.9182065.

[3] R. Mustajab, “Bali Miliki Produksi Anggur Terbesar di Indonesia pada

2022,” DataIndonesia.id, 2023. https://dataindonesia.id/sektor-
riil/detail/bali-miliki-produksi-anggur-terbesar-di-indonesia-pada-2022

(accessed Aug. 09, 2023).

[4] S. S. Simanjuntak, H. Sinaga, K. Telaumbanua, and A. Andri,
“Klasifikasi Penyakit Daun Anggur Menggunakan Metode GLCM,

Color Moment dan K*Tree,” J. SIFO Mikroskil, vol. 21, no. 2, pp. 93–

104, 2021, doi: 10.55601/jsm.v21i2.754.
[5] S. Widi, “Produksi Kentang Indonesia Terbanyak di Jawa Timur pada

2021,” DataIndonesia.id, 2022. https://dataindonesia.id/agribisnis-

kehutanan/detail/produksi-kentang-indonesia-terbanyak-di-jawa-timur-
pada-2021 (accessed Aug. 09, 2023).

[6] E. Maria, F. Fadlin, and M. Taruk, “Diagnosis Penyakit Tanaman Padi

Menggunakan Metode Promethee,” Inform. Mulawarman J. Ilm. Ilmu

Komput., vol. 15, no. 1, pp. 27–31, 2020, [Online]. Available: https://e-

journals.unmul.ac.id/index.php/JIM/article/view/2844.

[7] H. P. Angjaya, K. Gunadi, and R. Adipranata, “Pengenalan Penyakit
pada Tanaman Pokok di Indonesia dengan Metode Convolutional Neural

Network,” J. Infra, 2021, [Online]. Available:

http://publication.petra.ac.id/index.php/teknik-
informatika/article/view/11426%0Ahttp://publication.petra.ac.id/index.p

hp/teknik-informatika/article/viewFile/11426/10036.

[8] J. S. H. Al-Bayati and B. B. Ustundag, “Artificial Intelligence in Smart
Agriculture: Modified Evolutionary Optimization Approach for Plant

Disease Identification,” 4th Int. Symp. Multidiscip. Stud. Innov. Technol.

ISMSIT 2020 - Proc., 2020, doi: 10.1109/ISMSIT50672.2020.9255323.

