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Abstract— Several studies have been done on the systems of shallow 

water with specific goals. In this paper, we derive the equations of 

shallow water systems, find their numerical solutions, simulate the 

results and study the behavior of shallow water waves over time with 

the aim of addressing disasters of water reservoirs. We have derived 

the partial differential equations of shallow water systems in three 

dimensions, solved them using finite difference method, implemented 

the solution for the system in Matlab and performed some simulations 

(for one dimension) to observe the behavior of waves over time. We 

observe that in the process of constructing water reservoirs, for 

example water dams, there is need to put into consideration the 

strength of any possible occurrence of waves. 
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I. INTRODUCTION  

A partial differential equation (popularly known as PDE) is an 

identity that relates independent variables, the dependent 

variable, and the partial derivatives of the dependent variable 

[1]. Generally, we can say that a partial differential equation is 

a relation containing one or more partial derivatives of 

unknown function depending on two or more independent 

variables [2]. 

Partial differentiation and partial integration occur even in 

ordinary processes of calculus where partial differential 

equations do not occur [3]. Partial differential equations have 

many diverse applications and are frequently encountered when 

modelling real life problems. The second order linear partial 

differential equations, in particular, have many engineering and 

scientific applications. Examples of this class of equations 

include the Laplace equation, the heat equation and the wave 

equation [4]. 

Shallow water equations are commonly used in many 

diverse areas of science. Of the many applications of shallow 

water equations, one of their most relevant applications is in 

geophysical fluid dynamics, where they provide an 

approximation for rotating stratified fluids. Their important 

property is that they can be obtained as the amplitude equations 

for the vertical normal modes of the continuously stratified 

fluids. For this reason, they become very useful in the analysis 

of large scale atmospheric circulation. Even though they are an 

essential tool in theoretical studies, these shallow water 

equations are also very useful in the process of designing 

Numerical Weather Prediction models by creating an ideal test 

model for the evaluation of time integration methods as well as 

for the investigation of various aspects of space discretization 

[5]. 

As a result of these numerous advantages and uses of 

Shallow water equations, several researchers have done several 

studies in connection to these equations. Philippe Courtier and 

Jean-Francois Geleyn, in July 1988, developed a global 

numerical weather prediction model with variable resolution as 

an application to the shallow-water equations [6]. In their study, 

they implement a spectral global shallow-water model with 

variable resolution. 

They prove that the only non-trivial conformal mapping 

which exists between the two spheres is based on the 

transformation introduced by Schmidt, but the pole of the 

collocation grid has no longer to coincide with the pole of 

dilatation. They then implement the technique in an explicit 

model, where only minor modifications to a uniform resolution 

model are needed. From their study, they find out that the semi-

implicit scheme and the nonlinear normal mode initialization 

work satisfactorily and in addition, results obtained from their 

one day forecasts show that the method is successful in dealing 

with the shallow-water equations. 

In 2010, Enrique D.Fernández, Nietoa, Pascal Nobleb Jean 

and Paul Vila published a paper (Shallow Water equations for 

Non-Newtonian fluids). In this paper, they provide a consistent 

thin layer theory for some Non-Newtonian fluids that are in-

compressible and flowing down an inclined plane under the 

effect of gravity. They also do the derivation of shallow water 

models in the case of power-law fluids and Bingham fluids [7]. 

In December 2017, Anna Geyer and Ronald Quirchmayr 

published a paper (Shallow water equations for equatorial 

tsunami waves). In this paper, they present derivations of 

shallow water model equations of Korteweg–de Vries and 

Boussinesq type for equatorial tsunami waves in the f-plane 

approximation and discuss their applicability. In their 

derivations, they consider two-dimensional one-layer oceanic 

flows in the equatorial region. They then use the methods from 

asymptotic analysis to derive two shallow water model 

equations for waves of small amplitude from the f-plane 

approximation of the Euler equations for divergence-free in-

compressible fluids [8]. These are just a few of the many studies 

that have been carried out on the system of shallow water 

equations. In our study we present the derivations of the shallow 

water equations in three dimensions from the Navier Stokes 

equations where we start by deriving the Navier Stokes 

equations. 

We there after solve these shallow water equations using 

finite difference method and implement the same in Matlab 

software, but in one-dimension to study the behavior of the 

waves in shallow waters over time. Our main goal is to establish 
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whether we can use these partial differential equations for 

shallow water systems to control disasters associated with the 

breaking of water reservoirs (dams). 

An example is the tragedy that occurred on 9th May 2018 at 

around 7:15 p.m in Nakuru, Kenya where one of the eight dams 

located in Solai, Nakuru County, burst its banks draining down 

close to 190 million liters of water and sweeping away homes, 

people and social amenities, leading to deaths of more than 47 

people [20]. This is the main motivation for this paper; to find 

out if we can use the partial differential equations for shallow 

waters during the construction of Dams to control and avoid 

disasters. 

Model Development 

Shallow Water Equations 

Shallow water equations are hyperbolic or parabolic partial 

differential equations that govern fluids flow in coastal regions, 

rivers and channels. In other words, the shallow water equations 

describe the evolution of a hydro-static homogeneous (constant 

density), in-compressible flow on the surface of the sphere. 

They describe a thin layer of fluid with constant density in 

hydro-static balance, bounded from below by the bottom 

topography and from above by a free surface. They exhibit a 

rich variety of features, because they have many conservation 

laws. The propagation of a tsunami can be described accurately 

by these equations until the wave approaches the shore [9]. 

Shallow water system can also be applied when constructing 

water reservoirs such as dams. They can be used to control the 

disasters that can be associated with such reservoirs. They are 

derived from the physical conservation laws for mass and 

momentum and are valid for problems in which vertical (height) 

dynamics can be neglected compared to horizontal effects 

(length). 

Derivation of Shallow Water Equations 

To derive the systems of equations for shallow waters, we 

follow four basic steps as outlined in [10]. These are: 

I Derive the Navier-Stokes equations from the 

conservation laws. 

II Ensemble average the Navier-Stokes equations to 

account for the turbulent nature of ocean flow. 

III Specify boundary conditions for the Navier-Stokes 

equations for a water column. 

IV Use the boundary conditions to integrate the Navier-

Stokes equations over depth. 

We follow the derivation technique step by step as in [4]. 

Derivation of the Navier-Stokes Equations 

In this step, we shall derive the Navier-Stokes Equations 

from the conservation laws. We proceed as follows: 

Mass Conservation 

For the case of mass conservation, we consider mass 

balance over a control volume Ω and then proceed to derive the 

continuity equation. Thus, 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉
Ω

= −∫ (𝜌𝑣⃗) ⋅ 𝑛⃗⃗𝑑𝐴
𝜕Ω

     (3.1) 

where 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉
Ω

 is the time rate of change of total mass in Ω, 

∫ (𝜌𝑣⃗) ⋅ 𝑛⃗⃗𝑑𝐴
𝜕Ω

 is the net mass flux across boundary of Ω, 𝜌 is 

the fluid density (𝐾𝑔 𝑚3⁄ ), 

 𝑣⃗ =  [
𝑢
𝑣
𝑤
]  

is the fluid velocity (m/s), and 𝑛⃗⃗ is the outward unit normal 

vector on the boundary ∂Ω. 

We then need to re-express equation (3.1). Let us recall the 

Gauss’ Divergence Theorem [7] that we are going to use to re-

express equation 3.1 (to ensure that the integration in both left-

hand and right-hand sides is over the surface but not boundary). 

The Theorem states that: 

∫ ▽
Ω

⋅ 𝐹𝑑𝐴 =  ∫ 𝐹 ⋅ 𝑛⃗⃗𝑑Ω
𝜕Ω

,                       (3.2) 

Where Ω is the region of the plane, and ∂Ω is the boundary of 

the plane. 

Applying this theorem to the right hand side of equation 3.1, 

we obtain 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉
Ω

= −∫ ▽⋅ (𝜌𝑣⃗)𝑑𝑉
Ω

.                 (3.3) 

Now, to obtain continuity equation, we apply Reynold’s 

Transport Theorem to equation (3.3) (to get rid of the derivative 

operator outside the left-hand integral). Recall that the 

Reynold’s Transport Theorem [11], [12] is as shown in 

equation (3.4). 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉 =  ∫ (

𝐷𝜌

𝐷𝑡
+  𝜌∇ ⋅ 𝑣⃗⃗⃗) 𝑑𝑉

Ω𝑡Ω𝑡
.               (3.4) 

The proof to this theorem can be found in [13]. 

Applying this theorem to the left-hand side of equation (3.3) we 

obtain equation (3.5). 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉 =  ∫ (

𝜕𝜌

𝜕𝑡
+  𝜌∇ ⋅ 𝑣⃗⃗⃗) 𝑑𝑉

ΩΩ
 .              (3.5) 

It is also important to note that for a fixed domain Ω; that is, 

not evolving with time, we can interchange 
𝑑

𝑑𝑡
 with integral 

(Also, ▽ρ = 0 for in-compressible fluid). 

This implies that equation (3.3) becomes equation (3.6). 

∫
𝜕𝜌

𝜕𝑡
𝑑𝑉 + ∫ ▽⋅ (𝜌𝑣⃗⃗⃗)𝑑𝑉 = 0

ΩΩ
.                     (3.6) 

Assuming that ρ is smooth, then equation (3.6) becomes 

equation (3.7); 

∫ (
𝜕𝜌

𝜕𝑡
+ ▽⋅ (ρ𝑣⃗⃗⃗)) 𝑑𝑉 = 0

Ω
.              (3.7) 

Because Ω is arbitrary, we obtain the continuity equation 

(3.8). 
𝜕𝜌

𝜕𝑡
+▽⋅ (𝜌𝑣⃗) = 0                        (3.8) 

Momentum Equation 

In the next step, we derive the momentum equation, by 

considering linear momentum balance over a control volume Ω. 

That is, 
𝑑

𝑑𝑡
∫ 𝜌𝑣⃗𝑑𝑉 =  − ∫ (𝜌𝑣⃗)𝑣⃗ ∙ 𝑛⃗⃗𝑑𝐴 +  ∫ 𝜌𝑏⃗⃗𝑑𝑉 + ∫ 𝑇⃗⃗𝑛⃗⃗𝑑𝐴

𝜕ΩΩ𝜕ΩΩ
 

(3.9) 

If we apply Gauss’s theorem to the first and the third right-hand 

side of equation (3.9), we obtain equation (3.10); 
𝑑

𝑑𝑡
∫ 𝜌𝑣⃗𝑑𝑉 + ∫ ▽⋅ (𝜌𝑣⃗𝑣⃗)𝑑𝑉 − ∫ 𝜌𝑏⃗⃗𝑑𝑉 − ∫ ▽⋅ 𝑇⃗⃗𝑑𝑉 = 0

𝜕ΩΩΩΩ
. 

(3.10) 

Applying Reynold’s Transport Theorem to the first term of 

equation (3.10), we obtain equation (3.11); 

∫
𝜕

𝜕𝑡
(𝜌𝑣 ⃗⃗⃗ ⃗ )𝑑𝑉 + ∫ ▽⋅ (𝜌𝑣⃗𝑣⃗)𝑑𝑉 − ∫ 𝜌𝑏⃗⃗𝑑𝑉 − ∫ ▽⋅ 𝑇⃗⃗𝑑𝑉 = 0

𝜕ΩΩΩΩ
 

.                 (3.11) 

With the assumption that 𝜌𝑣⃗ is smooth, and the fact that 𝛺 

is arbitrary, we obtain equation (3.12): 
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𝜕

𝜕𝑡
(𝜌𝑣⃗) +▽⋅ (𝜌𝑣⃗𝑣⃗) − 𝜌𝑏⃗⃗ −▽⋅ 𝑇⃗⃗ = 0               (3.12) 

This is the momentum equation. 

Our next step is now to obtain the Navier-Stokes equation 

from the continuity and momentum equations already obtained 

above. In order to achieve this, we make some assumptions 

about the fluid in the areas of the density ρ, the body forces 𝑏⃗⃗ 

and the stress tensor 𝑇⃗⃗. These assumptions are: 

The fluid is incompressible, that is, the volume and density 

does not change with pressure. 

Salinity and temperature of the fluid are constant (sea 

water). 

Sea water is a Newtonian fluid (constant viscosity, zero 

shear rate and zero shear stress, that is, the shear rate is directly 

proportional to the shear stress). This affects the form of 𝑇⃗⃗. 

Recall that the gravity is a single body force and this implies 

that 𝜌𝑏⃗⃗ = 𝜌𝑔⃗ + 𝜌𝑏𝑜𝑡ℎ𝑒𝑟𝑠⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . 

For the case of Newtonian fluid, 𝑇⃗⃗ = −𝑝𝐼 + 𝑡 where p is the 

pressure and 𝑡 is the matrix of stress terms. That is, 

𝑡 =  [

τ𝑥𝑥 τ𝑥𝑦 𝜏𝑥𝑧
τ𝑥𝑦 τ𝑦𝑦 τ𝑦𝑧
τ𝑥𝑧 τ𝑦𝑧 τ𝑧𝑧

]                      (3.13) 

Therefore, we finally obtain our Navier-Stokes equations in 3D 

as in equations 3.14 and 3.15. 

▽⋅ 𝑣⃗ = 0                                                         (3.14) 
𝜕

𝜕𝑡
𝜌𝑣⃗ +▽⋅ (𝜌𝑣⃗𝑣⃗) = − ▽ 𝑝 + 𝜌𝑔⃗ +▽⋅ 𝑡.         (3.15) 

Expansion of Navier-Stokes Equations 

To be able to find the numerical solutions to the Navier-

Stokes equations obtained, there is need to expand them first. 

Note that; 

▽⋅ 𝑣⃗ =
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
.                           (3.16) 

∇𝑝 =

(

 
 

𝜕𝑝

𝜕𝑥
𝜕𝑝

𝜕𝑦

𝜕𝑝

𝜕𝑧)

 
 

                                (3.17) 

Performing some algebraic operations in equations (3.14) 

and (3.16), we obtain the following expanded Navier-Stokes 

equations: 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                        (3.18) 

{
  
 

  
 

𝜕(𝜌𝑢)

𝜕𝑡
+ 
𝜕(𝜌𝑢2)

𝜕𝑥
+ 
𝜕(𝜌𝑢𝑣)

𝜕𝑦
+ 
𝜕(𝜌𝑢𝑤)

𝜕𝑧
=  
𝜕𝜏𝑥𝑥
𝜕𝑥

− 
𝜕𝑝

𝜕𝑥
+ 
𝜕𝜏𝑥𝑦
𝜕𝑦

+ 
𝜕𝜏𝑥𝑧
𝜕𝑧

𝜕(𝜌𝑣)

𝜕𝑡
+ 
𝜕(𝜌𝑢𝑣)

𝜕𝑥
+ 
𝜕(𝜌𝑣2)

𝜕𝑦
+ 
𝜕(𝜌𝑣𝑤)

𝜕𝑧
=  
𝜕𝜏𝑥𝑦
𝜕𝑥

+ 
𝜕𝜏𝑦𝑦
𝜕𝑦

− 
𝜕𝑝

𝜕𝑦
+ 
𝜕𝜏𝑦𝑧
𝜕𝑧

𝜕(𝜌𝑤)

𝜕𝑡
+
𝜕(𝜌𝑢𝑤)

𝜕𝑥
+
𝜕(𝜌𝑣𝑤)

𝜕𝑦
+
𝜕(𝜌𝑤2)

𝜕𝑧
= −𝜌𝑔 +

𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕(𝜏𝑧𝑧 − 𝑝)

𝜕𝑧

 

(3.19) 

Integration of the Navier-Stokes Equations 

To obtain the partial differential equations of the shallow 

water systems, we integrate the expanded Navier-Stokes 

equations, subject to the following boundary conditions: 

 
Figure 1 (h<<l) is the pictorial display of the shallow water system, from 

which we state the boundary conditions. 

 

Note that: 

1 𝜑 = 𝜑(𝑡, 𝑥, 𝑦)is the elevation (in metres) of the free 

surface relative to the geoid. 

2 𝑎 = 𝑎(𝑥, 𝑦)is the bathymetry (in metres), measured 

positive downward from the geoid. 

3 ℎ = ℎ(𝑡, 𝑥, 𝑦)is the total depth (in metres) of the 

column. Note thatℎ = 𝜑 + 𝑎.  

Boundary Conditions 

• At the bottom (z = -a) there is no slip, that is (u = v= 

0) and no normal flow: 

              𝑢
𝜕𝑎

𝜕𝑥
+ 𝑣

𝜕𝑎

𝜕𝑦
+ 𝑤 = 0.            (3.20)     

and the bottom shear stress is; 

𝜏𝑏𝑥 = 𝜏𝑥𝑥
𝜕𝑎

𝜕𝑥
+ 𝜏𝑥𝑦

𝜕𝑎

𝜕𝑦
+ 𝜏𝑥𝑧 .                (3.21) 

𝜏𝑏𝑦 = 𝜏𝑥𝑦
𝜕𝑏

𝜕𝑥
+ 𝜏𝑥𝑦

𝜕𝑏

𝜕𝑦
+ 𝜏𝑦𝑧..              (3.22) 

where 𝜏𝑏𝑥 and 𝜏𝑏𝑦 are the specified bottom frictions. 

• At the free surface, (𝑧 = 𝜑), there is no relative 

normal flow: 
𝜕𝜑

𝜕𝑡
+ 𝑢

𝜕𝜑

𝜕𝑥
+ 𝑣

𝜕𝜑

𝜕𝑦
− 𝑤 = 0.           (3.23) 

p = 0, and surface shear stress is: 

𝜏𝑠𝑥 = −𝜏𝑥𝑥
𝜕𝜑

𝜕𝑥
− 𝜏𝑥𝑦

𝜕𝜑

𝜕𝑦
+ 𝜏𝑥𝑧 .                  (3.24) 

𝜏𝑠𝑦 = −𝜏𝑥𝑦
𝜕𝜑

𝜕𝑥
− 𝜏𝑦𝑦

𝜕𝜑

𝜕𝑦
+ 𝜏𝑦𝑧 .                   (3.24) 

Z-Momentum Equation 

Before we can integrate over the depth, we need to examine 

the momentum equation for vertical velocity. By a scaling 

argument, all the terms except the pressure derivative and the 

gravity term are small [14]. Therefore, the z-momentum 

equation reduces to equation (3.25). 
𝜕𝑝

𝜕𝑧
= 𝜌𝑔.                                        (3.25) 

Integrating (3.25) over the depth we obtain 

𝑝 = 𝜌𝑔ℎ.                                         (3.26) 
Which is the hydrostatic pressure distribution. 

Therefore, 
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𝜕𝑝

𝜕𝑥
= 𝜌𝑔

𝜕ℎ

𝜕𝑥
.                                         (3.27) 

And 
𝜕𝑝

𝜕𝑦
= 𝜌𝑔

𝜕ℎ

𝜕𝑦
.                                             (3.28) 

The First Equation of Shallow Water Systems 

We integrate Navier-Stokes equation (3.18) over the depth 

of water to obtain the first equation of shallow water systems. 

That is: 

∫ 𝛻 ⋅ 𝑣⃗𝑑𝑧 = ∫ (
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
) 𝑑𝑧 = 0                    (3.29)

𝜑

−𝑎

𝜑

−𝑎

 

This simplifies to equation (3.30): 
𝜕ℎ

𝜕𝑡
+
𝜕

𝜕𝑥
(ℎ𝑢̅) +

𝜕

𝜕𝑦
(ℎ𝑣̅) = 0,                                   (3.30) 

where 

𝑢̅ =
1

ℎ
∫ 𝑢𝑑𝑧                                                                (3.31)

𝜑

−𝑎

 

𝑣̅ =
1

ℎ
∫ 𝑣𝑑𝑧                                                             (3.32)

𝜑

−𝑎

 

Which is the first equation of shallow water systems, the depth-

averaged continuity equation. 

The Second Equation of Shallow Water Systems (x-momentum 

equation) 

To obtain the second equation of shallow water systems, we 

integrate the left hand side of the x-momentum equation (the 

first equation in the system of Navier-Stokes equations 

3.19) over the depth. That is, we find the value of 

∫(
𝜕

𝜕𝑡
(𝜌𝑢) +

𝜕

𝜕𝑥
(𝜌𝑢2) +

𝜕

𝜕𝑦
(𝜌𝑢𝑣) +

𝜕

𝜕𝑧
(𝜌𝑢𝑤))

𝜑

−𝑎

𝑑𝑧(3.33) 

To perform this integration, we need to recall the Leibnitz 

integral rule which states that: 

∫
𝜕𝑓

𝜕𝑧
𝑑𝑥 =

𝜕

𝜕𝑧
∫ 𝑓(𝑥, 𝑧)𝑑𝑥 +
𝑏

𝑎
𝑓(𝑎, 𝑧)

𝜕𝑎

𝜕𝑧
− 𝑓(𝑏, 𝑧)

𝜕𝑏

𝜕𝑧
(3.34)

𝑏

𝑎
  

The integral (3.33) simplifies to equation (3.35): 

𝜌
𝜕

𝜕𝑡
(ℎ𝑢̅) + 𝜌

𝜕

𝜕𝑥
(ℎ𝑢̅2) + 𝜌

𝜕

𝜕𝑦
(ℎ𝑢̅𝑣̅)

+ {𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑒𝑟𝑚𝑠}(3.35) 
The differential advection terms account for the fact that the 

average of the product of two functions is not the product of the 

averages. 

Now, we integrate the right-hand side of the x-momentum 

equation, the first equation of (3.19), over the depth of the 

water. 

∫ (
𝜕𝜏𝑥𝑥
𝜕𝑥

−
𝜕𝑝

𝜕𝑥
+
𝜕𝜏𝑥𝑦

𝜕𝑦
+
𝜕𝜏𝑥𝑧
𝜕𝑧

 ) 𝑑𝑧.     (3.36)

𝜑

−𝑎

 

We apply the Leibnitz integral rule to the first, third and the 

fourth terms of the right-hand side of equation (3.36). 

Therefore, equation (3.36) becomes (3.37): 

−1

2
𝜌𝑔

𝜕ℎ2

𝜕𝑥
+ 𝜏𝑠𝑥 − 𝜏𝑏𝑥 +

𝜕

𝜕𝑥
(ℎ𝜏𝑥̅𝑥) +

𝜕

𝜕𝑦
(ℎ𝜏𝑥̅𝑦). (3.37) 

Where; 

𝜏𝑥̅𝑥 =
1

ℎ
∫ 𝜏𝑥𝑥𝑑𝑧                                       (3.38)

𝜑

−𝑎

 

and 

𝜏𝑥̅𝑦 =
1

ℎ
∫ 𝜏𝑥𝑦𝑑𝑧                               (3.39)

𝜑

−𝑎

 

Therefore, the first equation in (3.19) becomes (3.40): 

𝜌
𝜕

𝜕𝑡
(ℎ𝑢̅) + 𝜌

𝜕

𝜕𝑥
(ℎ𝑢̅2) + 𝜌

𝜕

𝜕𝑦
(ℎ𝑢̅𝑣̅)

=
−1

2
𝜌𝑔
𝜕ℎ2

𝜕𝑥
+ 𝜏𝑠𝑥 − 𝜏𝑏𝑥 +

𝜕

𝜕𝑥
(ℎ𝜏𝑥̅𝑥)

+
𝜕

𝜕𝑦
(ℎ𝜏𝑥̅𝑦).                                           (3.40) 

This simplifies to 
𝜕

𝜕𝑡
(ℎ𝑢̅) + 

𝜕

𝜕𝑥
(ℎ𝑢̅2) +  

𝜕

𝜕𝑦
(ℎ𝑢̅𝑣̅)

=  −
1

2
𝑔
𝜕ℎ2

𝜕𝑥

+
1

𝜌
[𝜏𝑠𝑥 − 𝜏𝑏𝑥 +

𝜕

𝜕𝑥
(ℎ𝜏𝑥̅𝑥)

+
𝜕

𝜕𝑦
(ℎ𝜏𝑥̅𝑦)] .                                       (3.41) 

The Third Equation of Shallow Water Systems 

(y-momentum equation) 

To obtain the third equation of the shallow water systems, 

we integrate the second equation of the system of equations in 

(3.19) (the y-momentum equation). Integrating the left hand 

side of this y-momentum equation over the depth we obtain 

equation (3.42) 

𝜌
𝜕

𝜕𝑡
(ℎ𝑣̅) + 𝜌

𝜕

𝜕𝑥
(ℎ𝑢̅𝑣̅) + 𝜌

𝜕

𝜕𝑦
(ℎ𝑣̅2)

+ {𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛𝑇𝑒𝑟𝑚𝑠}(3.42) 
Similarly, integrating the right hand side of the y-

momentum equations of (3.19), we obtain (3.43) 

−1

2
𝜌𝑔

𝜕ℎ2

𝜕𝑦
+ 𝜏𝑠𝑦 − 𝜏𝑏𝑦 +

𝜕

𝜕𝑥
(ℎ𝜏𝑥̅𝑦) +

𝜕

𝜕𝑦
(ℎ𝜏𝑦̅𝑦). (3.43) 

Combining equation (3.85) and equation (3.86), we obtain 

the third equation of the shallow water systems as equation 

(3.44) 
𝜕

𝜕𝑡
(ℎ𝑣̅) + 

𝜕

𝜕𝑥
(ℎ𝑢̅𝑣̅) +  

𝜕

𝜕𝑦
(ℎ𝑣̅2)

= −
1

2
𝑔
𝜕ℎ2

𝜕𝑦

+
1

𝜌
[𝜏𝑠𝑦 − 𝜏𝑏𝑦 +

𝜕

𝜕𝑥
(ℎ𝜏𝑥̅𝑦)

+
𝜕

𝜕𝑦
(ℎ𝜏𝑦̅𝑦)]                                 (3.44) 

Therefore, our shallow water equations in conservative are: 
𝜕ℎ

𝜕𝑡
+
𝜕

𝜕𝑥
(ℎ𝑢̅) +

𝜕

𝜕𝑦
(ℎ𝑣̅) = 0,                        (3.45) 
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𝜕

𝜕𝑡
(ℎ𝑢̅) + 

𝜕

𝜕𝑥
(ℎ𝑢̅2) + 

𝜕

𝜕𝑦
(ℎ𝑢̅𝑣̅)

=  −
1

2
𝑔
𝜕ℎ2

𝜕𝑥

+
1

𝜌
[𝜏𝑠𝑥 − 𝜏𝑏𝑥 +

𝜕

𝜕𝑥
(ℎ𝜏𝑥̅𝑥)

+
𝜕

𝜕𝑦
(ℎ𝜏𝑥̅𝑦)].                     (3.46) 

𝜕

𝜕𝑡
(ℎ𝑣̅) + 

𝜕

𝜕𝑥
(ℎ𝑢̅𝑣̅) +  

𝜕

𝜕𝑦
(ℎ𝑣̅2)

= −
1

2
𝑔
𝜕ℎ2

𝜕𝑦

+
1

𝜌
[𝜏𝑠𝑦 − 𝜏𝑏𝑦 +

𝜕

𝜕𝑥
(ℎ𝜏𝑥̅𝑦)

+
𝜕

𝜕𝑦
(ℎ𝜏𝑦̅𝑦)]           (3.47) 

It is worthy to note that, the shallow water equations for the 

in-compressible flow are not easy to solve. Therefore, to be able 

to numerically solve these shallow water equations, we assume 

that our flow is inviscid one (which is still okay considering that 

we are dealing with shallow water equations). This is the flow 

of inviscid fluid, meaning that the viscosity is zero. This means 

that all the terms with shear stress are equivalent to zero. 

With this assumption, the three equations simplify to the 

equations showed below (3.48) 

{
 
 

 
 

𝜕ℎ

𝜕𝑡
+ 

𝜕

𝜕𝑥
(ℎ𝑢̅) + 

𝜕

𝜕𝑦
(ℎ𝑣̅) = 0.

𝜕

𝜕𝑡
(ℎ𝑢̅) + 

𝜕

𝜕𝑥
(ℎ𝑢̅2) +  

𝜕

𝜕𝑦
(ℎ𝑢̅𝑣̅) =  −

1

2
𝑔
𝜕ℎ2

𝜕𝑥

𝜕

𝜕𝑡
(ℎ𝑣̅) +  

𝜕

𝜕𝑥
(ℎ𝑢̅𝑣̅) + 

𝜕

𝜕𝑦
(ℎ𝑣̅2) = −

1

2
𝑔
𝜕ℎ2

𝜕𝑦

          (3.48) 

Numerical Schemes for Partial Differential Equations 

Numerical methods were first put into use as an effective 

tool for solving partial differential equations (PDEs) by John 

von Neumann in the mid-1940s [15]. They have become 

indispensable tools for the quantitative solution of differential 

equations that express the behavior of any system in the 

universe. Numerical methods are applicable to the solution of 

differential equations that represent mathematical models of 

underlying real system [16]. There are many numerical methods 

that have been developed and widely used to study different 

problems and when one is choosing a particular numerical 

method to solve a given problem, he or she may consider 

several factors which include; the ease in applying the method 

to the problem being solved, the efficiency of the method when 

compared to other numerical methods and the robustness of the 

numerical methods [17]. Some of these numerical methods 

include finite difference method, method of lines, finite element 

method, gradient discretization method, finite volume method, 

spectral method, mesh-free methods, domain decomposition 

methods and multigrid methods. In this work we are going to 

consider the finite difference method as it is the easiest 

numerical method to implement for numerical simulation. 

We are going to derive the numerical solutions for the one-

dimensional Shallow Water Equations (x-direction). Therefore, 

equations (3.48) become  

{

𝜕ℎ

𝜕𝑡
+ 

𝜕

𝜕𝑥
(ℎ𝑢̅) = 0,

𝜕

𝜕𝑡
(ℎ𝑢̅) +  

𝜕

𝜕𝑥
(ℎ𝑢̅2) =  −

1

2
𝑔
𝜕ℎ2

𝜕𝑥
,
                 (3.49) 

where, 

1 ℎ = ℎ(𝑥, 𝑡). 
2 𝑢 = 𝑢(𝑥, 𝑡). 

We now employ Finite Difference Method to solve these 

two partial differential equations. 

Finite Difference Method 

The finite difference method is the most direct approach that 

is used to discretize partial differential equations. One considers 

a point in space where he or she takes the continuum 

representation of the equations and replaces it with a set of 

discrete equations, called finite-difference equations. The finite 

difference method is defined on a regular grid and for this 

reason, it can be used for very efficient solution methods. 

In other words, the finite-difference method belongs to the 

so-called grid-point methods. 

In the grid-point methods a computational domain is 

covered by a space-time grid and each function is represented 

by its values at grid points. The space-time distribution of the 

grid points may be, in principle, arbitrary, but it significantly 

affects the accuracy of the approximation. Usually, no 

assumption is made about the values in-between the grid points. 

A derivative of a function is approximated by the so-called 

finite-difference formula which uses values of the function at a 

specified set of the grid points [18]. 

We prefer the finite difference method because it easy to 

increase the “element order” to get higher-order accuracy since 

it is defined dimension per dimension. Also, its efficient 

implementations are much easier than for finite-element and 

finite-volume methods. To find the numerical solutions for our 

differential equations, we are going to follow the procedure 

displayed in [19]. 

Development of the Difference Equations 

 

Figure 2: Diagrammatic demonstration of finite difference method 

 

To be able to derive the finite difference equations for 

equations in 4.1, we assume that we know the values of h(x, t) 

and u(x, t) at time 𝑡𝑗−1 (at the point j-1), and find the value at 

time 𝑡𝑗 (at the point j) [19]. 
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Figure 2 gives an illustration of finite difference, where for 

simplicity we have denoted (𝑋𝑖−1, 𝑡𝑗), (𝑋𝑖 , 𝑡𝑗), (𝑋𝑖+1, 𝑡𝑗), 

(𝑋𝑖 , 𝑡𝑗+1), and (𝑋𝑖 , 𝑡𝑗−1) by  (𝑖 − 1, 𝑗), (𝑖, 𝑗), (𝑖 + 1, 𝑗), 

(𝑖, 𝑗 + 1), and (𝑖, 𝑗 − 1) respectively. We start with forward 

difference for time as follows; 

(
𝜕

𝜕𝑡
ℎ(𝑥, 𝑡))

𝑖,𝑗−1
= 
ℎ(𝑥𝑖 , 𝑡𝑗) − ℎ(𝑥𝑖 − 𝑡𝑗−1)

𝜆
.       (4.1) 

For simplicity, we denote the values with subscripts with the 

subscript terms. That is, 

(
𝜕

𝜕𝑡
ℎ(𝑥, 𝑡))

𝑖,𝑗−1
=
ℎ𝑖,𝑗 − ℎ𝑖,𝑗−1

𝜆
,          (4.2) 

where 𝜆 = (𝑗 − (𝑗 − 1)). 

(
∂

∂t
(h(x, t)u̅(x, t)))

i,j−1

= hi,j−1
u̅i,j − u̅i,j−1

λ

+ u̅i,j−1
hi,j − hi,j−1

λ
          (4.3) 

In the next step we find the central difference for the space. 

We proceed as shown below: 

(
∂

∂x
(h(x, t)u̅(x, t)))

i,j−1

= hi,j−1
u̅i,j − u̅i,j−1

2α

+ u̅i,j−1
hi,j − hi,j−1

2α
  ,     (4.4) 

where 2α = (i+1) − (i−1). 

Lastly, we have: 

(
∂

∂x
(h(x, t)u̅2(x, t)))

i,j−1

= hi,j−1u̅i,j−1
u̅i+1,j − u̅i−1,j

α

+ u̅i,j−1
2

hi+1,j − hi−1,j

2α
,                   (4.5) 

and 

(
1

2
g
∂

∂x
h2(x, t))

i,j−1
= ghi,j−1

hi+1,j−hi−1,j

2α
.                    (4.6) 

Therefore, the system of equations (3.49) becomes: 
ℎ𝑖,𝑗−ℎ𝑖,𝑗−1

𝜆
+ ℎ𝑖,𝑗−1

𝑢𝑖,𝑗−𝑢𝑖,𝑗−1

2𝛼
+ 𝑢̅𝑖,𝑗−1

ℎ𝑖,𝑗−ℎ𝑖,𝑗−1

2𝛼
= 0,        (4.7)  

and 

ℎ𝑖,𝑗−1
𝑢𝑖,𝑗−𝑢𝑖,𝑗−1

𝜆
+ 𝑢̅𝑖,𝑗−1

ℎ𝑖,𝑗−ℎ𝑖,𝑗−1

𝜆
 +ℎ𝑖,𝑗−1𝑢̅𝑖,𝑗−1

𝑢𝑖+1,𝑗−𝑢𝑖−1,𝑗

𝛼
+

𝑢̅𝑖,𝑗−1
2 ℎ𝑖+1,𝑗−ℎ𝑖−1,𝑗

2𝛼
+ 𝑔ℎ𝑖,𝑗−1

ℎ𝑖+1,𝑗−ℎ𝑖−1,𝑗

2𝛼
= 0,                  (4.8) 

respectively. 

We now perform some algebraic operations on these two 

equations to simplify them. Multiplying equation (4.7) by 𝑢̅𝑖,𝑗−1 

and subtracting the results from equation (4.8) we obtain 
ℎ𝑖,𝑗 − ℎ𝑖,𝑗−1

𝜆
+ ℎ𝑖,𝑗−1

𝑢̅𝑖+1,𝑗 − 𝑢̅𝑖−1,𝑗

2𝛼
+ 𝑢̅𝑖,𝑗−1

ℎ𝑖+1,𝑗 − ℎ𝑖−1,𝑗

2𝛼
= 0,                                              (4.9) 

and 

ℎ𝑖,𝑗−1
𝑢̅𝑖,𝑗 − 𝑢̅𝑖,𝑗−1

𝜆
+ 𝑢̅𝑖,𝑗−1ℎ𝑖,𝑗−1

𝑢̅𝑖+1,𝑗 − 𝑢̅𝑖−1,𝑗

2𝛼

+ 𝑔ℎ𝑖,𝑗−1
ℎ𝑖+1,𝑗 − ℎ𝑖−1,𝑗

2𝛼
= 0.            (4.10) 

Multiplying through the two equations by 2αλ, we obtain 

2𝛼ℎ𝑖,𝑗 − 2𝛼ℎ𝑖,𝑗−1 + 𝜆ℎ𝑖,𝑗−1𝑢̅𝑖+1,𝑗 − 𝜆ℎ𝑖,𝑗−1𝑢̅𝑖−1,𝑗
+ 𝜆𝑢̅𝑖,𝑗−1ℎ𝑖+1,𝑗 − 𝜆𝑢̅𝑖,𝑗−1ℎ𝑖−1,𝑗 = 0,   (4.11) 

and 

2𝛼ℎ𝑖,𝑗−1𝑢̅𝑖,𝑗 − 2𝛼ℎ𝑖,𝑗−1𝑢̅𝑖,𝑗−1 + 𝜆𝑢̅𝑖,𝑗−1ℎ𝑖,𝑗−1𝑢̅𝑖+1,𝑗
− 𝜆𝑢̅𝑖,𝑗−1ℎ𝑖,𝑗−1𝑢̅𝑖−1,𝑗 + 𝜆𝑔ℎ𝑖,𝑗−1ℎ𝑖+1,𝑗
− 𝜆𝑔ℎ𝑖,𝑗−1ℎ𝑖−1,𝑗 = 0.                    (4.12) 

Identification of the known and the unknown terms 

To be able to solve our linear equations, it is important to 

know which terms are known and which terms we are searching 

for (the unknown terms). After that we need to express our 

system of linear equations in the form 𝐴𝑋⃗ = 𝑏⃗⃗. From our 

system, the known terms are 𝑢̅𝑖,𝑗−1 and ℎ𝑖,𝑗−1 at𝑗 − 1, whereas 

the unknown terms are 𝑢̅𝑖,𝑗 and ℎ𝑖,𝑗 at j. Keeping the unknowns 

to the left and the known terms to the right-hand side we obtain 

the equations below: 

2𝛼ℎ𝑖,𝑗 + 𝜆ℎ𝑖,𝑗−1𝑢̅𝑖+1,𝑗 − 𝜆ℎ𝑖,𝑗−1𝑢̅𝑖−1,𝑗 + 𝜆𝑢̅𝑖,𝑗−1ℎ𝑖+1,𝑗
− 𝜆𝑢̅𝑖,𝑗−1ℎ𝑖−1,𝑗 = 2𝛼ℎ𝑖,𝑗−1,          (4.13) 

and 

2𝛼ℎ𝑖,𝑗−1𝑢̅𝑖,𝑗 + 𝜆𝑢̅𝑖,𝑗−1ℎ𝑖,𝑗−1𝑢̅𝑖+1,𝑗 − 𝜆𝑢̅𝑖,𝑗−1ℎ𝑖,𝑗−1𝑢̅𝑖−1,𝑗
+ 𝜆𝑔ℎ𝑖,𝑗−1ℎ𝑖+1,𝑗 − 𝜆𝑔ℎ𝑖,𝑗−1ℎ𝑖−1,𝑗
= 2𝛼ℎ𝑖,𝑗−1𝑢̅𝑖,𝑗−1 .                                  (4.14) 

Derivation of the System 

To come up with the system, we choose as an example, 

N = 4 (number of discretizations). We thus find the initial 

solution for the discretized linear equations as follows: 

For 𝑖 = 1: 

2𝛼ℎ1,𝑗 + 𝜆ℎ1,𝑗−1𝑢̅2,𝑗 − 𝜆ℎ1,𝑗−1𝑢̅0,𝑗 + 𝜆𝑢̅1,𝑗−1ℎ2,𝑗
− 𝜆𝑢̅1,𝑗−1ℎ0,𝑗 = 2𝛼ℎ1,𝑗−1    (4.15) 

and 

2𝛼ℎ1,𝑗−1𝑢̅1,𝑗 + 𝜆𝑢̅1,𝑗−1ℎ1,𝑗−1𝑢̅2,𝑗 − 𝜆𝑢̅1,𝑗−1ℎ1,𝑗−1𝑢̅0,𝑗
+ 𝜆𝑔ℎ1,𝑗−1ℎ2,𝑗 − 𝜆𝑔ℎ1,𝑗−1ℎ0,𝑗
= 2𝛼ℎ1,𝑗−1𝑢̅1,𝑗−1                 (4.16) 

For 𝑖 = 2: 

2𝛼ℎ2,𝑗 + 𝜆ℎ2,𝑗−1𝑢̅3,𝑗 − 𝜆ℎ2,𝑗−1𝑢̅1,𝑗 + 𝜆𝑢̅2,𝑗−1ℎ3,𝑗
− 𝜆𝑢̅2,𝑗−1ℎ1,𝑗 = 2𝛼ℎ2,𝑗−1    (4.17) 

and 

2𝛼ℎ2,𝑗−1𝑢̅2,𝑗 + 𝜆𝑢̅2,𝑗−1ℎ2,𝑗−1𝑢̅3,𝑗 − 𝜆𝑢̅2,𝑗−1ℎ𝑖,𝑗−1𝑢̅1,𝑗
+ 𝜆𝑔ℎ2,𝑗−1ℎ3,𝑗 − 𝜆𝑔ℎ2,𝑗−1ℎ1,𝑗
= 2𝛼ℎ2,𝑗−1𝑢̅2,𝑗−1                       (4.18) 

For 𝑖 = 3: 

2𝛼ℎ3,𝑗 + 𝜆ℎ3,𝑗−1𝑢̅4,𝑗 − 𝜆ℎ3,𝑗−1𝑢̅2,𝑗 + 𝜆𝑢̅3,𝑗−1ℎ4,𝑗
− 𝜆𝑢̅3,𝑗−1ℎ2,𝑗 = 2𝛼ℎ3,𝑗−1     (4.19) 

and 

2𝛼ℎ3,𝑗−1𝑢̅3,𝑗 + 𝜆𝑢̅3,𝑗−1ℎ3,𝑗−1𝑢̅4,𝑗 − 𝜆𝑢̅3,𝑗−1ℎ3,𝑗−1𝑢̅2,𝑗
+ 𝜆𝑔ℎ3,𝑗−1ℎ4,𝑗 − 𝜆𝑔ℎ3,𝑗−1ℎ2,𝑗
= 2𝛼ℎ3,𝑗−1𝑢̅3,𝑗−1        (4.20) 

Boundary conditions 

As boundary conditions, we set the following; 
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1 Velocity at the boundaries is zero, implying that the 

average velocity at the boundaries is also zero. That 

is 𝑢̅(𝑥𝑎 , 𝑡) = 𝑢̅(𝑥𝜑 , 𝑡) = 0. 

2 The height at the boundary is set to be one. That 

is, ℎ(𝑥𝑎 , 𝑡) = ℎ(𝑥𝜑 , 𝑡) = 1. 

Therefore, in general we have; 

{
𝑢0,𝑗 = 0

𝑢4,𝑗 = 0
                        (4.21) 

And  

{
ℎ0,𝑗 = 1

ℎ4,𝑗 = 1
                           (4.22) 

The unknowns are thus; 

𝑢̅1,𝑗, 𝑢̅2,𝑗 , 𝑢̅3,𝑗; ℎ1,𝑗 , ℎ2,𝑗 , ℎ3,𝑗. 

Applying the boundary conditions, our six equations now 

become: 

For 𝑖 = 1: 

2𝛼ℎ1,𝑗 + 𝜆ℎ1,𝑗−1𝑢̅2,𝑗 + 𝜆𝑢̅1,𝑗−1ℎ2,𝑗
= 2𝛼ℎ1,𝑗−1 + 𝜆𝑢̅1,𝑗−1      (4.23) 

and 

2𝛼ℎ1,𝑗−1𝑢̅1,𝑗 + 𝜆𝑢̅1,𝑗−1ℎ1,𝑗−1𝑢̅2,𝑗 + 𝜆𝑔ℎ1,𝑗−1ℎ2,𝑗
= 2𝛼ℎ1,𝑗−1𝑢̅1,𝑗−1 + 𝜆𝑔ℎ1,𝑗−1       (4.24) 

For 𝑖 = 2: 

2𝛼ℎ2,𝑗 + 𝜆ℎ2,𝑗−1𝑢̅3,𝑗 − 𝜆ℎ2,𝑗−1𝑢̅1,𝑗 + 𝜆𝑢̅2,𝑗−1ℎ3,𝑗
− 𝜆𝑢̅2,𝑗−1ℎ1,𝑗 = 2𝛼ℎ2,𝑗−1     (4.25) 

and 

2𝛼ℎ2,𝑗−1𝑢̅2,𝑗 + 𝜆𝑢̅2,𝑗−1ℎ2,𝑗−1𝑢̅3,𝑗 − 𝜆𝑢̅2,𝑗−1ℎ𝑖,𝑗−1𝑢̅1,𝑗
+ 𝜆𝑔ℎ2,𝑗−1ℎ3,𝑗 − 𝜆𝑔ℎ2,𝑗−1ℎ1,𝑗
= 2𝛼ℎ2,𝑗−1𝑢̅2,𝑗−1    (4.26) 

For 𝑖 = 3: 

2𝛼ℎ3,𝑗 + 𝜆ℎ3,𝑗−1𝑢̅4,𝑗 − 𝜆ℎ3,𝑗−1𝑢̅2,𝑗 − 𝜆𝑢̅3,𝑗−1ℎ2,𝑗
= 2𝛼ℎ3,𝑗−1 − 𝜆𝑢̅3,𝑗−1    (4.27) 

and 

2𝛼ℎ3,𝑗−1𝑢̅3,𝑗 − 𝜆𝑢̅3,𝑗−1ℎ3,𝑗−1𝑢̅2,𝑗 − 𝜆𝑔ℎ3,𝑗−1ℎ2,𝑗
= 2𝛼ℎ3,𝑗−1𝑢̅3,𝑗−1 − 𝜆𝑔ℎ3,𝑗−1    (4.28) 

Therefore, our system in matrix form becomes: 

[
 
 
 
 
 
 

0 𝜆ℎ1,𝑗−1 0 2𝛼 𝜆𝑢̅1,𝑗−1 0

2𝛼ℎ1,𝑗−1 𝜆𝑢̅1,𝑗−1ℎ1,𝑗−1 0 0 𝜆𝑔ℎ1,𝑗−1 0

−𝜆ℎ2,𝑗−1 0 𝜆ℎ2,𝑗−1 −𝜆𝑢̅2,𝑗−1 2𝛼 𝜆𝑢̅2,𝑗−1
−𝜆𝑢̅2,𝑗−1ℎ2,𝑗−1 2𝛼ℎ2,𝑗−1 𝜆𝑢̅2,𝑗−1ℎ2,𝑗−1 −𝜆𝑔ℎ2,𝑗−1 0 𝜆𝑔ℎ2,𝑗−1

0 −𝜆ℎ3,𝑗−1 0 0 −𝜆𝑢̅3,𝑗−1 2𝛼

0 −𝜆𝑢̅3,𝑗−1ℎ3,𝑗−1 2𝛼ℎ3,𝑗−1 0 −𝜆𝑔ℎ3,𝑗−1 0 ]
 
 
 
 
 
 

×

[
 
 
 
 
 
 
𝑢̅1,𝑗
𝑢̅2,𝑗
𝑢̅3,𝑗
ℎ1,𝑗
ℎ2,𝑗
ℎ3,𝑗]

 
 
 
 
 
 

=

[
 
 
 
 
 
 

2𝛼ℎ1,𝑗−1 + 𝜆𝑢̅1,𝑗−1
2𝛼ℎ1,𝑗−1𝑢̅1,𝑗−1 + 𝜆𝑔ℎ1,𝑗−1

2𝛼ℎ2,𝑗−1
2𝛼ℎ2,𝑗−1𝑢̅2,𝑗−1

2𝛼ℎ3,𝑗−1 − 𝜆𝑢̅3,𝑗−1
2𝛼ℎ3,𝑗−1𝑢̅3,𝑗−1 − 𝜆𝑔ℎ3,𝑗−1]

 
 
 
 
 
 

             (4.29) 

II. RESULTS AND DISCUSSIONS  

In this chapter, we are going to implement our system in 

Matlab software, discuss the simulations results, and draw 

conclusion of our study. We intend to solve for the unknown 

vector 𝑋⃗ in 𝐴𝑋⃗ = 𝑏⃗⃗ where 
𝐴 = 

[
 
 
 
 
 
 

0 𝜆ℎ1,𝑗−1 0 2𝛼 𝜆𝑢̅1,𝑗−1 0

2𝛼ℎ1,𝑗−1 𝜆𝑢̅1,𝑗−1ℎ1,𝑗−1 0 0 𝜆𝑔ℎ1,𝑗−1 0

−𝜆ℎ2,𝑗−1 0 𝜆ℎ2,𝑗−1 −𝜆𝑢̅2,𝑗−1 2𝛼 𝜆𝑢̅2,𝑗−1
−𝜆𝑢̅2,𝑗−1ℎ2,𝑗−1 2𝛼ℎ2,𝑗−1 𝜆𝑢̅2,𝑗−1ℎ2,𝑗−1 −𝜆𝑔ℎ2,𝑗−1 0 𝜆𝑔ℎ2,𝑗−1

0 −𝜆ℎ3,𝑗−1 0 0 −𝜆𝑢̅3,𝑗−1 2𝛼

0 −𝜆𝑢̅3,𝑗−1ℎ3,𝑗−1 2𝛼ℎ3,𝑗−1 0 −𝜆𝑔ℎ3,𝑗−1 0 ]
 
 
 
 
 
 

 

𝑋⃗ =   

[
 
 
 
 
 
 
𝑢̅1,𝑗
𝑢̅2,𝑗
𝑢̅3,𝑗
ℎ1,𝑗
ℎ2,𝑗
ℎ3,𝑗]

 
 
 
 
 
 

 

and 

𝑏⃗⃗ =        

[
 
 
 
 
 
 

2𝛼ℎ1,𝑗−1 + 𝜆𝑢̅1,𝑗−1
2𝛼ℎ1,𝑗−1𝑢̅1,𝑗−1 + 𝜆𝑔ℎ1,𝑗−1

2𝛼ℎ2,𝑗−1
2𝛼ℎ2,𝑗−1𝑢̅2,𝑗−1

2𝛼ℎ3,𝑗−1 − 𝜆𝑢̅3,𝑗−1
2𝛼ℎ3,𝑗−1𝑢̅3,𝑗−1 − 𝜆𝑔ℎ3,𝑗−1]

 
 
 
 
 
 

 

Numerical Results 

To obtain the results of the simulation, we have to state 

some boundary conditions which are very key for our 

implementation. 

Initial and Boundary Conditions: 

To implement our system, we are going to use the boundary 

conditions stated below: 

1 ℎ(𝑥, 0) = 1 +
2

5
𝑒−5𝑥

2. 

2 −5 < 𝑥 < 5. 
3 𝑔 = 1. 
4 ℎ(𝑥𝑎 , 𝑡) = ℎ(𝑥𝜑 , 𝑡) = 1. 

5 𝑢̅(𝑥𝑎, 𝑡) = 𝑢̅(𝑥𝜑 , 𝑡) = 0. 

6 𝑋 ∈ [−5,5]. 
 

For implementation in Matlab, we let the average velocity 

𝑢̅ = 𝑢 (treating u as a dummy variable). We do plots at different 

times to study the variation in height and velocity. We do plots 

of h, u and hu at t = 0, t = 1, t = 2, t = 3, t = 4, t = 8, t = 10, and 

t = 40. This will help us to study the behavior of waves (any 

disturbance in the water) as time increases. 

We obtain the following results: 

 

 
Figure 3: Graphs of h, u and h*u at time t=0 
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Figure 4: Graphs of h, u and h*u at time t=0.5 

 

 
Figure 4: Graphs of h, u and h*u at time t=1 

 

 
Figure 5: Graphs of h, u and h*u at time t=2 

 

 
Figure 6: Graphs of h, u and h*u at time t=3 

 

Figure 3 throughout Figure 10 give the diagrammatic 

simulations of the waves or disturbances happening in a water 

reservoir. The disturbance in the water causes the waves to 

occur. The waves migrate or move from the point of disturbance 

towards the boundaries of the water as can be observed from 

the waves’ simulations at t=0.4, t = 1 up to t =40. Upon reaching 

the boundaries, the waves retreat back towards the point of 

initial disturbance depending on the force of the wave and the 

strength of the walls of the water reservoir. 
 

 
Figure 7: Graphs of h, u and h*u at time t=4 

 

 
 

Figure 8: Graphs of h, u and h*u at time t=8 

 
Figure 9: Graphs of h, u and h*u at time t=10 

 

 
Figure 10: Graphs of h, u and h*u at time t=40 
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The profiles display the motion of waves at different times. It is 

also evident that the height of the water reservoir contributes 

much on what is observed at the surface of the water reservoir 

in case of a disturbance occurring below the surface of the 

reservoir. 

If a disturbance occurs deep at the bottom of the water 

reservoir, the height of the wave observed at the surface of the 

water would much depend on the strength of the force causing 

the disturbance. The stronger the force, the higher the wave 

observed at the surface of the water and thus the higher the 

effects of the wave. The profiles displayed by Figure 3 to Figure 

10 show the results due to a single disturbance occurring on the 

water reservoir. 
 

 
Figure 11. Profiles for double disturbance in the water body when time is t=0 

 

 
 

Figure 12. Profiles for double disturbance in the water body when time is t=1 

 
Figure 13. Profiles for double disturbance in the water body when time is t=4 

 

Figure 11 to Figure 15 give the profile display for water 

waves due to double disturbance occurring in the water 

reservoir. 

Again, the waves start off from the two different points of 

disturbance occurrence, moving outwards. The waves travel 

until they hit each other or hit the walls and bounce back. The 

process repeats itself depending on the strength of the waves 

until they die off. Thus, the waves occur as a result of 

disturbance occurring in the water reservoir. The movement of 

such waves is always outwards from the point of disturbance 

causing such wave. 
 

 
Figure 14. Profiles for double disturbance in the water body when time is t=10 

 

 
Figure 15. Profiles for double disturbance in the water body when time is t=40 

III. DISCUSSION AND CONCLUSION  

Finite difference method is an effective numerical method 

that produces reliable results. The shallow water waves always 

tend to move from the point of disturbance outwards. 

Depending on the strength of the forces triggering the waves, 

the waves may maintain a continuous motion to and from the 

center of the water body for a longer time. The waves eventually 

die off if the force triggering the waves dies off. Based on our 

results, when constructing water reservoirs, it is very important 

to create strong and high walls to prevent breaking of the 

reservoirs walls when hit by the waves, hence controlling the 

disasters that can occur if such breaking occur. The strength of 

the walls can be established by studying the strength of the 

waves that are likely to occur at any given time within the 

waters and also studying the possible highest amount of rains 

that are likely to occur in the area of construction of the water 

reservoir. 
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