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Abstract— Indosat stock price data has a trend that fluctuates from 

time to time, therefore the GARCH model can predict and answer these 

fluctuating stocks. This study discusses the prediction of Indosat stock 

prices, the data used are 2399 data divided into 2 parts, namely 1919 

training data and 480 testing data. The purpose of this study is to 

model Indosat stock using the ARIMA-GARCH model. The ARIMA 

(0,1,9) and GARCH (1,2) models are the best models for predicting 

Indosat shares with an RMSE value of 0.1697524. 

 

Keywords— Indosat Stocks, ARIMA, GARCH, Predictions. 

I. BACKGROUND 

According to Darmadji and Fakhruddin (2012) stock prices are 

prices that occur on the stock exchange at a certain time. Stock 

prices can change up or down in minutes or even seconds so 

fast. This is possible because it depends on the demand and 

supply between the stock buyers and the stock sellers.” Stock 

prices are volatile. Fluctuating stock prices are determined by 

the company's ability to gain profits. If the profits obtained for 

the company are relatively high, it will affect the share price to 

be paid high as well. 

Time series data can be modeled using time series models 

(ARIMA and ARCH/GARCH), Black-Scholes model, MIMIC 

model (Multiple Indicators and Multiple Causes), Markov 

Switching model, and Time-Varying Coefficient model. In this 

paper, the model used is the ARCH/GARCH time series model. 

Time series data on stock price movements have a variance that 

is not constant at any time. Such time series data conditions are 

called conditional heteroscedasticity, the assumptions for 

general time series models such as Autoregressive (AR), 

Moving Average (MA), Autoregressive Moving Average 

(ARMA), and Autoregressive Integrated Moving Average 

(ARIMA) are not met. One of the time series models that can 

overcome heteroscedasticity is the Autoregressive conditional 

heteroscedasticity (ARCH) model introduced by Engle (1982). 

This model can describe all the characteristics of financial 

market variables. However, in financial problems with a higher 

level of volatility, this model requires a large order to obtain the 

right model. To avoid this, Bollerslev (1986) developed the 

ARCH model into Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH). According to Ariefianto (2012), 

the GARCH model has the characteristics of a symmetrical 

volatility response to shocks. In other words, if the nominal is 

the same, then the volatility response to shocks is the same, both 

positive (good news) and negative (bad news) shocks. On 

diagnostic examination, residual variance is assumed to be 

constant. The data used is the closing value of Indosat shares 

from March 6, 2012, to January 18, 2021, totaling 2399 data, 

which will be divided into two parts, namely 80% training data 

to 1919 data and 20% testing data to 480 data. The data is 

classified as high volatility because it has a high conditional 

variance, one method to calculate the high volatility data model 

is Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH). 

II. THEORETICAL FOUNDATION  

2.1. ARIMA 

The ARIMA model is often used in analyzing non-

stationary time series data, the general model without seasonal 

patterns is as follows: 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑍𝑡 = 𝜃0 + 𝜃𝑞(𝐵)𝑎𝑡  (1) 

2.2. GARCH 

The Generalized Autoregressive Heteroscedasticity 

(GARCH) model is a development of the ARCH model. This 

model is able to avoid orders that are too high in the ARCH(m) 

model. In this model, the conditional variance is not only 

influenced by previous errors but also by the conditional 

variance itself (Ariefianto, 2012). The conditional variance in 

the GARCH model consists of two components, namely the 

squared error component in the previous time and the 

conditional variance component in the previous time. Thus, the 

general form of the GARCH(p,q) model is. According to Tsay, 

(2010) the GARCH model is used to overcome orders that are 

too large in the ARCH model. The general form of the GARCH 

model (p,q) : 

𝜎𝑡
2 = 𝛼0 + 𝑎1𝑒𝑡−1

2 + 𝑎1𝑒𝑡−2
2 +⋯+ 𝑎𝑝𝑒𝑡−𝑝

2 + 𝛽1𝜎𝑡−1
2

+⋯+ 𝛽𝑞𝜎𝑡−𝑞
2  

writable: 

𝜎𝑡
2 = 𝛼0 +∑ 𝛼𝑖𝑒𝑡−𝑖

2
𝑝

𝑖=1
+∑ 𝛽𝑗𝜎𝑡−𝑖

2
𝑞

𝑗=1
 

(2) 

2.3. GARCH effect test 

In testing the presence or absence of the GARCH effect, the 

Lagrange Multiplier (LM test) was carried out. 

2.4. Estimation of Model Parameters 

Estimated parameters in the equation of the mean and 

conditional variance, by estimating the parameters  𝑎0, 𝑎𝑖and  

𝛽𝑗, with the regression model : 

𝑦𝑡 = 𝛾0 + 𝛾1𝑥𝑖 + 𝑒𝑡 𝑡 = 1,… , 𝑇 (3) 

𝑋𝑡 = 𝑍𝑡√ℎ𝑡 (4) 

ℎ𝑡 = 𝑎0 + 𝑎𝑖𝑋𝑡−1
2 + 𝛽𝑗ℎ𝑡−1 (5) 
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With parameter simplification 

�̃� (𝛾0, 𝛾1, 𝛼0, 𝛼𝑖 , 𝛽𝑗)
′
= (𝛾 ′̃, 𝛿′)   (6) 

Vector of parameters �̃�  

𝛿 = [

𝛼0
𝛼𝑖
𝛽𝑗
] dan �̃� = [

𝛾0
𝛾1
] 

2.5. Best Model Selection 

The best model chosen is to look at the smallest AIC (Wei, 

1990). 

𝐴𝐼𝐶 = log(�̂�2) +
2𝑙

𝑇
 (7) 

2.6. Stationary Test 

Ekananda (2015), one method to test for stationary is the 

unit root test. Unit root test is a term that indicates the 

eigenvalue of a data is one. To obtain an overview of the unit 

root test, it will be shown in the following AR(1) process: 

𝑍𝑡  =  𝜔𝑍𝑡−1 + 휀𝑡 (8) 

The following is a stationary test hypothesis using the unit 

root test (Dickey Fuller Test): Hypothesis: 

𝐻0: 𝜔 = 1 (data has unit root/data is non-stationary) 

𝐻1: 𝜔 < 1  (data has no unit root/data is stationary) 

Test statistics: 

𝐷𝐹 =
�̂�

𝑆𝐸(𝜔  )
   (9) 

with 

𝑆𝐸 =   √
𝑠𝑑
2 

𝑛
   (10) 

and  

𝑆𝑑
2  =

1

𝑛
∑ (𝑧𝑡 − 𝑧̅𝑛
𝑖=1 )2   (11) 

2.7. Selection of the Best Model and Diagnostic Model 

The selection of the best model is done by looking at the 

average residual (white noise), then it can be seen that the model 

obtained is feasible according to the influence of ARCH, to see 

the best model, it is seen from the smallest AIC value. For 

model diagnostics, look at the ACF and PACF and see the best 

ARIMA model. The best ARIMA model is taken and then 

predicted using the GARCH model. 

III. RESULTS AND DISCUSSION  

3.1. Data analysis 

The data used in the calculation is data on the closing price 

of Indosat shares from 2012 to 2021. 

 

Fig. 1. Plot of Indosat Closing Stock Price Data 6 March 2012 – 18 January 

2021 

 

From the data plot, it can be seen that the closing price of 

Indosat shares fluctuates from time to time. Summary of 

Indosat stock statistics can be seen in the table below : 

 
TABLE 1. Summary of Indosat Closing Stock Data Statistics 

Statistics Value 

Mean 4.626 

Median 4.350 

Maximum 8.150 

Minimum 1.200 

Standard Deviation 1.564 

 

Based on table 1, it can be seen that the statistical summary 

value of the Indosat stock data is the mean 4.626, the median is 

4.350 and the standard deviation is 1.564. 

3.2. Data stationarity test 

The stationarity test of the data used is the Augmented 

Dickey Fuller Test to determine the average stationarity. 

 
TABLE 2. Augmented Dickey Fuller test on the first differencing for train 

data stock prices 

Lag ADF test 𝒑. 𝒗𝒂𝒍𝒖𝒆 

12 -11.345 0.01 

 

Based on table 2 above, the data is stationary in the first 

differencing and the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 is 0.01, because the 𝑝 −
𝑣𝑎𝑙𝑢𝑒 < 𝑎 = 0.05, then the data is stationary on the average. 

3.3. Model Identification 

The identification of the temporary model is done by 

looking at the ACF and PACF plots of data that have been 

differencing once. 

 

 

  
Fig. 2. Plots of ACF and PACF after differencing 
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Based on Figure 2 above, it can be seen that the ACF and 

PACF plots both have a cut off at lag-9, so the ARIMA models 

formed are ARIMA (),1,9), ARIMA (9,1,0) and ARIMA (9,1 

,9). 

3.4. Parameter Estimation and Selection of the Best Model 

In the ACF and PACF plots above there is a cut off at lag-9 

after the first differencing, the ARIMA models formed are 

ARIMA (0,1,9), ARIMA (9,1,0) and ARIMA (9,1,9). To select 

the best model, an assessment is carried out based on the lowest 

AIC value. 
 

TABLE 3. AIC value of ARIMA 

Model AIC Value 

ARIMA (0,1,9) -3065.7527 

ARIMA (9,1,0) -2930.9463 

ARIMA (9,1,9) -3051.6845 

 

Based on table 3 above, the lowest AIC value is found in the 

ARIMA model (0,1.9) with an AIC value of -3065.7527, then 

the ARIMA model parameter estimation (0.1,9) will be 

estimated. 

 
TABLE 4. Estimation of ARIMA model parameters (0,1,9) 

Parameter Coefficient 𝒛 − 𝒗𝒂𝒍𝒖𝒆 
Parameter 

significant 

MA1 -0.9849 -42.7434 Significant 

MA2 -0.0208 -0.6501 Significant 

MA3 -0.0080 -0.2503 Significant 

MA4 -0.0119 -0.3719 Significant 

MA5 0.0293 0.8870 Not Significant 

MA6 0.0176 0.5595 Significant 

MA7 0.0122 0.3812 Significant 

MA8 -0.0279 -0.8843 Significant 

MA9 -0.0054 -0.2402 Significant 

 
      𝑦𝑡 = ϕ1(𝑦𝑡−1 − 𝑦𝑡−2) + ⋯+ ϕ9(𝑦𝑡−9) 
𝑦𝑡 = 𝜇 + (1 − 0.9849)𝑦𝑡−1 + (−0.9849 + 0.0208)𝑦𝑡−2 + 
(−0.0208 + 0.0080)𝑦𝑡−3 + (− 0.0080 + 0.0119)𝑦𝑡−4 + 

(−0.0119 − 0.0293)𝑦𝑡−5 + (0.0293 − 0.0176)𝑦𝑡−6 + 

(0.0176 − 0.0122)𝑦𝑡−7 + (0.0122 + 0.0279)𝑦𝑡−8 + 
(−0.0279 + 0.0054)𝑦𝑡−9 + (−0.0054)𝑦𝑡−10 

𝑦𝑡 = 𝜇 + 0.0151𝑦1 − 0.9641𝑦𝑡−2 − 0.0128𝑦𝑡−3
+ 0.0039𝑦𝑡−4 − 

0.0412𝑦𝑡−5 + 0.0116𝑦𝑡−6 + 0.0054𝑦𝑡−7 + 0.0401𝑦𝑡−8 − 

0.0225𝑦𝑡−9 − 0.0054𝑦𝑡−10 

3.5. Model Diagnostics 

For the diagnostic model, ARIMA (0,1,9) is used. In 

predicting stock prices, it must meet the stationary assumption, 

namely normality using the Shapiro-Wilk test and 

autocorrelation using the Box-Pierce test. 
 

TABLE 5. Residual Normality Test Output 

𝑺𝒉𝒂𝒑𝒊𝒓𝒐 −𝑾𝒊𝒍𝒌 𝒕𝒆𝒔𝒕 𝒑 − 𝒗𝒂𝒍𝒖𝒆 
W 0.9340 2.2 𝑥10−16 

 

Based on table 5 above, the p-value is 2.2𝑥10−16 because 

the p-value 2.2𝑥10−16 > 𝑎 = 0.05, it is concluded that the 

residual follows a normal distribution. Next will be tested auto 

correlation. 

3.6. GARCH effect test 

ARCH/GARCH effect test, the test carried out is the 

ARCH-LM test. 
 

TABLE 6. ARCH-LM . Test Output 

ARCH-LM Test 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

Chi-Square 116.51 2.2 𝑥10−16 

 

Based on table 6 above, the Chi-Square test statistic 

obtained a p-value of 2.2 x10^(-16) which means that the p-

value is smaller than the significant level value, it can be 

concluded that there is an ARCH effect on the ARIMA model 

(0.1 ,9). 

3.7. Identify the ARCH/GARCH model 

a. ACF and PACF Plots 

The identification of the temporary model is done by 

looking at the ACF and PACF plots of data that have been 

differencing once. 

 

 

  

Fig. 3. Plots of ACF and PACF squared residual ARIMA (0,1,9) 
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Based on Figure 3 above, it can be seen that the ACF plot 

has cut offs at lag 1, lag-2 and lag-3 while the PACF plot has 

cut offs at lag-1 and lag-3, so the model that can be formed is 

GARCH (0,1), GARCH (1,0), GARCH (1,1), GARCH (2,1), 

GARCH (1,2), GARCH (3,1), GARCH (1,3), GARCH (2,3) 

and GARCH (3,2). To select the best model, an assessment is 

carried out based on the lowest AIC value. 

3.8. Parameter Estimation and Selection of the Best Model 

In the ACF and PACF plots above there is a cut off at lag-9 

after the first differencing, the ARIMA model formed is 

GARCH (0,1), GARCH (1,0), GARCH (1,1), GARCH (2,1), 

GARCH (1,2), GARCH (3,1), GARCH (1,3), GARCH (2,3) 

and GARCH (3,2). To select the best model, an assessment is 

carried out based on the lowest AIC value. 
 

TABLE 7. AIC value of GARCH 

Model AIC value 

GARCH (0,1) -0.57101 

GARCH (1,0) -0.64791 

GARCH (1,1) -0.83135 

GARCH (1,2) -0.83448 

GARCH (2,1) -1.6241 

GARCH (1,3) -0.83411 

GARCH (3,1) -0.82968 

GARCH (3,2) -0.83281 

GARCH (2,3) -0.83334 

 

Based on table 7 above, the lowest AIC value is found in the 

GARCH model (1,2) with an AIC value of -0.83448, then the 

best model that can be selected is the GARCH model (1,2) with 

parameter estimates of : 

𝜎2 = 4.1922 + 0.1748𝑡−1
2 + 0.5077𝜎𝑡−1

2 + 0.3000𝜎𝑡−2
2  

3.9. ARC/GARCH model verification 

For the diagnostic model, GARCH (1,2) is used, stock price 

predictions must meet the stationary assumption, namely 

normality using the Shapiro-Wilk test and autocorrelation using 

the Box-Pierce test. 
 

TABLE 8. Residual Normality Test Output 

𝑺𝒉𝒂𝒑𝒊𝒓𝒐 −𝑾𝒊𝒍𝒌 𝒕𝒆𝒔𝒕 𝒑 − 𝒗𝒂𝒍𝒖𝒆 
W 0.9347 2.2 𝑥10−16 

 

Based on table 8 above, the p-value is 2.2x10^(-16) because 

the p-value (2.2x10^(-16))<a=0.05, it is concluded that the 

residual follows a normal distribution. Next will be tested auto 

correlation. 
 

TABLE 9. Autocorrelation Test Output 

Box-Pierce test. 𝒑 − 𝒗𝒂𝒍𝒖𝒆 

Chi-Squared 0.0004 0.983 

 

Based on table 9 above, the p-value obtained is 0.983 >
𝑎 = 0.05, it is concluded that the residuals are not 

autocorrelated, so that the autocorrelation assumption is 

fulfilled. 

3.10. Forecasting 

The best model obtained by GARCH (1,2) can be used to 

forecast Indosat stock for the next 10 days as shown in table 11. 

 

TABLE 10. Indosat stock predictions for the next 10 days 
No Forecast Lo 80 Hi 80 Lo 95 Hi 95 RMSE 

1 5.833584 5.613735 6.053432 5.497354 6.169813 

0.1697524 

2 5.788989 5.482261 6.095717 5.319889 6.258089 

3 5.847412 5.470061 6.224762 5.270304 6.424519 

4 5.843566 5.403958 6.283174 5.171244 6.515889 

5 5.807581 5.320514 6.294647 5.062677 6.552485 

6 5.817853 5.262776 6.372931 4.968936 6.666771 

7 5.815417 5.202202 6.428631 4.877586 6.753247 

8 5.818077 5.155259 6.480896 4.804384 6.831771 

9 5.822140 5.113186 6.531095 4.737888 6.906393 

10 5.822140 5.072533 6.571748 4.675715 6.968566 

 

Based on table 10 above, it is found that the forecasting 

values of Indosat's shares for the next 10 days are not much 

different from the original data with an RMSE prediction value 

of 0.1697524. 

IV. CONCLUSION 

Indosat stock forecasting using the ARIMA and GARCH 

methods, the smallest AIC value is ARIMA (0,1,9) with an 

average mean and GARCH (1,2) with model variances are: 

𝑦𝑡 = 𝜇 + 0.0151𝑦1 − 0.9641𝑦𝑡−2 − 0.0128𝑦𝑡−3
+ 0.0039𝑦𝑡−4 − 

0.0412𝑦𝑡−5 + 0.0116𝑦𝑡−6 + 0.0054𝑦𝑡−7
+ 0.0401𝑦𝑡−8 − 

0.0225𝑦𝑡−9 − 0.0054𝑦𝑡−10 

And the variance of the GARCH(1,2) model is 

𝜎2 = 4.1922 + 0.1748𝑡−1
2 + 0.5077𝜎𝑡−1

2

+ 0.3000𝜎𝑡−2
2  

With an RMSE value of 0.1697524, it can be concluded that 

the GARCH (1,2) model is good enough to predict Indosat's 

stock price. 
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