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Abstract— Research and development of runway pavement have 

been investigated in several airports globally. The damage pavement 

prediction is vital for preventing accidents during landing and take-

off flights. This study carried out the prediction of the performance of 

rigid runway pavement correlated with damage index. Non-linear 

autoregressive with exogenous input neural network (NARXNN) was 

implemented to construct model prediction using the Levenberg-

Marquardt algorithm. The NARXNN model has been constructed 

based on input variables that affect the structural performance of 

rigid runway pavement, such as air traffic, temperature, thickness, 

humidity, service life, maximum deflection on rigid runway pavement 

centre and edge. The results indicate that the performance of runway 

pavement reduces in a linear (non-linear) way. The external 

parameter significant to the prediction model is air traffic and 

temperature. The performance of rigid runway pavement is 

categorized into three levels good, poor, and critical. It is feasible to 

guide airport agencies to accomplish appropriate decisions on rigid 

runway pavement maintenance and reconstruction. It concluded that 

NARXNN is a powerful and effective method in predicting the 

performance of rigid runway pavement. 
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I. INTRODUCTION  

An airport is a facility where aircraft take off and land. The 

simplest airports have at least one runway, but large airports 

are usually provided with various other facilities for flight 

service operators and users. The function of the airport is like 

a terminal that serves aircraft passengers as a place to stop, 

depart, or just an aircraft stopover [1]. According to Annex 14 

of ICAO (International Civil Aviation Organization), an 

airport is a particular area on land or water (including 

buildings, installations and equipment) intended either in 

whole or in part for the arrival, departure and movement of 

aircraft. The main factor that needs to be maintained at the 

airport in safety and in-flight the safety of airport runway 

operations is essential [2] 

The safety of runway operations must be ensured for safety 

and to understand well the mechanisms of damage to runway 

pavements, periodic check and maintenance or emergency 

repairs are accomplished by authorized officers at the airport 

[3]. In addition, periodic assessment of rigid runway pavement 

performance is also a significant factor of runway operation. 

In Indonesia, airport authorities have made great efforts to 

assess rigid runway pavement performance and inspect 

runway pavement damage at each airport. During the 

assessment, performance prediction is an essential aspect for 

operator runways—the achievement rate is based on the built 

model. A good predictive model has affected the evaluation 

results of rigid runway pavements and has a significant effect 

on the process of design, construction, maintenance, and 

rehabilitation [4]. 

Presently, empirical-mechanistic models are widely 

applied simultaneously with the improvement of computer 

technology. A pavement management system (PMS) is a 

simple predictive model to execute statistical regression 

analysis with a theoretical basis and simple assumptions [5]. 

Furthermore, the results from original data and laboratory 

experiments are used together to build predictive models of 

runway pavement performance, such as the Markov model and 

expert decision models [6]. Thus far, empirical-mechanistic 

models have been advanced for PMS, such as the popular 

artificial Neural Network (ANN) [7]– [10]. 

ANN is usually applied with the method as the human 

brain by mapping input to output to simulate the working 

process to get the results, which has been widely used in 

modelling and estimation of classification, grouping, 

functions, and identification of systems [11]. The results 

obtained by the ANN method do not depend on the causal 

relationship between input and output. ANNs with modified 

architectures have been applied to predict pile settlement, 

subgrade strength, voids, pavement serviceability and modulus 

of resistance for rigid/flexible pavements [12], [13]. The ANN 

model was constructed to determine the modulus of flexible 

non-linear pavement layers on the runway pavement at the 

National Airport Pavement Test Facility (NAPTF) using the 

heavyweight deflectometer (HWD) test [14]. In addition, 

significant effort has been established with the study to 

identify possible correlations between severe runway 

pavement damage and roughness, difficulty and surface 

profile [8], [15]. Furthermore, the approach using Nonlinear 

Autoregressive with Exogenous Input Neural Network 

(NARXNN) as implemented in previous researchers has much 

better accuracy than conventional ANN networks when 

predicting time series data [16]. Therefore, NARXNN is more 

suitable for dynamic modelling [17]. 

Therefore, a new method is needed to make a prediction 

model of rigid runway pavement damage with better accuracy 
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and show the correlation between external and target 

parameters so that it can be one way to prevent accidents 

caused by damaged runways. 

II. METHODOLOGY  

The estimation of pavement service lifetime according to 

deviations from the original and target data as the rigid 

pavement damage index (Δ) [18]. The load cycles number is 

an essential factor to build a rigid runway pavement failure by 

calculating a crack in the surface as shown by expression of  

 [18], as shown in Equation (1). 

   (1) (1) 

Where the initial crack's length is represented as , the rigid 

runway pavement thickness is shown as , the material 

fracture parameters as shown by  and , then the change in 

the stress intensity factor at the crack tip was . 

The rigid runway pavement service life due to departures 

was predicted based on target data by constructing the rigid 

runway pavement damage index (Δ). Further, the model has 

been  

The  was built to evaluate the predicted change in the 

pavement service life due to departures from the target profile, 

which have been confirmed in the design stage and targeted 

model, as shown in Equation (2) 

 (2) 

where the rigid runway pavement service life is based on the 

predicted values as shown by , and the rigid runway 

pavement service life is based on targeted values represented 

by  (1). Therefore, FAA advises to analyze the rigid 

runway pavement performance based on the dynamic 

displacement of rigid runway pavement by HWD test [19] and 

recommends an empirical method of calculating  without 

calculating , as shown in Equation (3). 

 (3) 

where DC and edge by DE present the maximum deflection of 

the rigid runway pavement on the centre . Equation 

(3) was shown the simplified and powerful method to analyze 

the rigid runway pavement damage index. Furthermore, it is 

simplified, as shown by Equation (4). 

  (4) 

where 

 (5) 

The NARXNN was a suitable method for calculating a 

new and simplified rigid runway pavement damage index ( ) 

as shown in Equation (5) based on the predicted value of the 

life-cycle performance of rigid runway pavement. The 

evaluation of rigid runway pavement performance was widely 

approved as a positive value. Further, the rigid runway 

pavement was in good status when the  = 0 and the danger 

status when  = 1 as represented by Equation (3). Equation 

(4), rigid runway pavement damage index perchance is 

harmful in several conditions. Further, Equation (5) was 

represented physical meanings compared to Equation (4). 

 

Fig. 1. Soekarno-Hatta Airport locations for rigid runway pavement 
performance prediction by HWD test. 

 

Data HWD measurements are needed to achieve this 

objective. Thus, the HWD data in 2019 of Soekarno-Hatta 

International airports were chosen as a steady data source 

represented by Figure 1. The red line shows the location of the 

HWD test for rigid runway pavement performance prediction. 

The data of  and  and comparable analysis results of 

rigid runway pavement performance at each test location were 

first selected from the database. The deflections data and 

calculated  as input were implemented into the NARXNN 

model. 

Examples of input variables are shown in Table I. 
 

TABLE I. Examples of inputs and output variables. 

inputs output 

Deflection       

 

(  

DE 

(  
 

(  

 

(%) 

 

(cm) 

 

(month
s) 

  

358.4 338.4 29.4 59 30 12 447,490 0.47 

 

A NARX is an essential non-linear class of discrete-time 

non-linear systems that can be mathematically represented in 

Equation (6) [20]. 

 (6) 

Where  and  denote, 

respectively,  was represented as the time step of the input 

and output, the input and output memory shown as  ≥ 1 and 

 ≥ 1, and finally, the non-linear function as shown by 𝐹[. ]. 

NARXNN was a recurrent dynamic network with feedback 

connections with tapped delay time around the layer. The 

multi-layered perceptron, a feedforward and a recurrent 

network have been combined. The input, output, and hidden 

layers were used to construct the model. Further, the input 

layer consists of the current and previous inputs and outputs. 

Test location 
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Fig. 2. The model prediction of pavement damage index using NARXNN 

architecture. 

 

The output from the input layer was fed to the hidden layer 

and processed by neurons in a non-linear mapping of an affine 

weighted combination—furthermore, the output layer 

represented an affine combination of the values from the 

hidden layer.  

The NARXNN exogenous inputs ( ) were deflection of 

pavement centre ( ), deflection of pavement edge ( ), 

temperature ( ), humidity ( ), thickness ( ), service life 

( ), and air traffic ( ) have been applied using Levenberg 

Marquardt Neural Network (LMANN) Algorithm [21]. The 

pavement damage index ( ) was implemented as the output 

(𝑦). The 2-months before was applied as a memory of the 

inputs and output. The NARXNN consisted of 15 neurons in 

the hidden layer. The NARXNN model of rigid runway 

pavement performance for one-step-ahead prediction has been 

diagrammatically shown in Figure 2. 

The NARXNN model for rigid runway pavement 

performance prediction as represented by equation (7) 

 (7) 

where [.] denotes a non-linear function. 

III. RESULTS AND DISCUSSION 

The MATLAB software built the NARXNN model using 

LMANN training algorithms. The training data set was 

selected from 70% of the data in 2019 fed into the model. 

Thus, the validation and test data set to have 30% of the data. 

The data set of the NARXNN model was implemented to 

establish the network's performance, and the weights and 

biases of the network will update, while the data set of the 

validation process was implemented to supervise the error 

during the training process. Furthermore, the test data set error 

was implemented to assess the training process and the 

certainty of the prediction model. The early stopping 

technique used in this study involves simultaneous training, 

validation, and testing. The lowest root means square error 

(RMSE) indicated the training process stops when it is 

reached. The overfitting was increased the RMSE value for 

the validation set after the minimum value reached. 

The NARXNN inputs parameters (DC, DE, T, H, TH, S, A) 

and an output parameter ( ) weighted values were calculated 

based on Equation (7). Further, the 15 neurons in the hidden 

layer and 2-months input memory using the LMANN 

algorithms were implemented for the model in Equation (7) 

and produced the NARX NN model structure as shown by 

equation (8). 

 (8) 

where F[.] is a non-linear function.  
 

TABLE II. Performance of rigid runway pavement by NARXNN. 

 
 

Performance 
Suggestions for 

maintenance 

Condition 1 0< <0.2 Excellent 
Routing inspection 

and repair 

Condition 2 0.2< <0.5 Good Preventive repair 

Condition 3 0.5< <0.8 Poor Major repair 

Condition 4 0.8< <1 Dangerous 
Rehabilitation or 

reconstruction 

 

The most significant parameter is the air traffic one month 

before with a weight coefficient of 2.128. The second 

significant parameter is the temperature one month before, as 

indicated by the weight coefficient of 1.974. The rigid runway 

pavement performance of the present time becomes the third 

significant, informed by the weight coefficient of 1.547. 

Temperature and air traffic is significant parameter that affects 

the rigid runway pavement damage index [22].  

The architecture of NARXNN was constructed, the data 

set of training and test was the beginning of the learning 

process. The Soekarno-Hatta International Airport HWD test 

data were implemented to analyze the NARXNN prediction 

results. Tangential hyperbolic fit was applied to produce the 

accuracy of the model prediction. A higher Pearson correlation 

coefficient (r) determined a higher prediction accuracy. Figure 

3 shows the predicted and the original value of  equally 

distributed among the regression curve, and r is 0.91. It 

demonstrates that the prediction accuracy is good, and the 

suggested NARXNN is highly effective in estimating . 



International Research Journal of Advanced Engineering and Science 
 ISSN (Online): 2455-9024 

 

 

59 

 
Virma Septiani, Viktor Suryan, Direstu Amalia, Catra Indra Cahyadi, and Yudhistira Agung Mahendra, “Prediction Model of Rigid Runway 

Pavement Performance Using Nonlinear Autoregressive with Exogenous Input Neural Network,” International Research Journal of 

Advanced Engineering and Science, Volume 7, Issue 3, pp. 56-60, 2022. 

 
Fig. 3. The correlation coefficient of rigid runway pavement performance 

prediction. 
 

NARXNN model shows a novelty prediction model of 

rigid runway pavement performance. The rigid runway 

pavement performance consists of 4-regions, starting from 

excellent to dangerous conditions, as shown in Table II. They 

consider Soekarno-Hatta International Airport, mainly the 

rigid runway pavement performance curve in Figure 4. As 

shown in Figure 4, the RMSE of the predicted value is 0.035. 

 

 

Fig. 4. The prediction of rigid runway pavement performance of September 

2019 (original data: blue solid; the prediction: red line). 

IV. CONCLUSIONS 

NARXNN model prediction using Levenberg-Marquardt is 

successful in predicting rigid runway pavement performance. 

The building model indicates that air traffic and temperature 

one month before have the most significant contribution to 

rigid runway pavement performance. The one month predicted 

rigid runway pavement performance agrees with the original 

valuer of 0.91 and RMSE of 0.035. Therefore, the rigid 

runway pavement performance using NARXNN model 

prediction will have an exciting future. According to other 

factors associated with pavement damage, the characterization 

of rigid runway pavement performance is still unknown. 
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