
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

178

Boris Kontsevoi and Sergey Kizyan, “Predictive Software Engineering: Transform Custom Software Development into Effective Business

Solutions,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 4, pp. 178-180, 2021.

Predictive Software Engineering: Transform Custom

Software Development into Effective Business

Solutions

Boris Kontsevoi1, Sergey Kizyan2

1, 2Intetics Inc., Naples, FL, USA

Email address: 1boris@intetics.com, 2s.kizyan@intetics.com

Abstract— The paper examines the principles of the Predictive

Software Engineering (PSE) framework. The authors examine how

PSE enables custom software development companies to offer

transparent services and products while staying within the intended

budget and a guaranteed budget. The paper will cover all 7

principles of PSE: (1) Meaningful Customer Care, (2) Transparent

End-to-End Control, (3) Proven Productivity, (4) Efficient

Distributed Teams, (5) Disciplined Agile Delivery Process, (6)

Measurable Quality Management and Technical Debt Reduction, and

(7) Sound Human Development.

Keywords— Agile: Disciplined Agile Delivery: Distributed Team:

Predictive Software Engineering: Measurable Quality Management

and Technical Debt Reduction System (MQM&TDR).

I. INTRODUCTION

Predictive Software Engineering (PSE) mitigates the "random"

and debatable components of software development,

transforming it into a precise and predictable engineering

exercise. Through its 7 principles, PSE enables software

development teams to standardize their engineering, making

their processes controllable and transparent.

In this article, we will examine the core principles of PSE,

each of which was formed in accordance with 25+ years of

development experience.

II. MEANINGFUL CUSTOMER CARE

Whether your business is B2B, B2C, or another type, it's

focused on the customer. Your success is measured by how

many customers you have, their satisfaction, and their brand

loyalty.

Until your customers recognize the quality of your

products or services and follow through with purchases, the

company is failing. Therefore, to understand whether you're

moving in the right direction, customer satisfaction and

feedback should be the primary KPIs you measure.

If your company isn't moving in the right direction, your

next question should be: how do you transform unhappy

customers into happy ones? There are 8 strategies for doing

so:

1. Implement a seamless onboarding process for all

customers.

2. Introduce a customer portal.

3. Set up a clear governance model.

4. Draw up a clear escalation path.

5. Conduct early problem discovery.

6. Carry out deep customer complaint analysis.

7. Managing customer satisfaction.

8. Set realistic expectations.

III. TRANSPARENT END-TO-END CONTROL

In the business world, transparency indicates trust,

openness, and cooperation. Only a small percentage of

organizations are transparent, and achieving this status

requires plenty of effort. But the rewards are well worth it;

clients recognize that working with you is less risky and more

reliable.

To ensure transparency outside the organization:

1. Conduct governance meetings.

2. Implement Agile methodologies.

3. Conduct status reporting with every project.

4. Use tools to track teamwork.

5. Use project portals that enable customers to track their

projects at all times.

6. Conduct process audits.

7. Use proactive project monitoring rather than reactive.

8. Implement onsite visits when the project begins, when

there's a big delivery, and when there are any

communication issues.

To ensure transparency inside the organization:

1. Periodically hold C-level meetings.

2. Sync meetings with the department director.

3. Hold regular checks with project managers.

4. Involve the talent management team in teamwork.

5. Hold team-building and company events.

IV. PROVEN PRODUCTIVITY

Proving the productivity of your software engineers can be

a difficult task, but it's relevant to all organizations. There are

two tools for measuring productivity and velocity during

development: Measurable Quality Management and Technical

Debt Reduction System (MQM&TDR, which will be

addressed in Section VII) and the Software Development

Efficiency KPI.

The latter contains 10 sub-KPIs: (1) static code analysis for

the project, (2) static code analysis for the developers' code,

(3) planned vs. actual work, (4) bugs per line of code, (5)

opened bugs per feature, (6) templates missed, (7) algorithms

missed, (8) standard libraries use missed, (9) missed

exception/error handling, (10) security problems.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

179

Boris Kontsevoi and Sergey Kizyan, “Predictive Software Engineering: Transform Custom Software Development into Effective Business

Solutions,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 4, pp. 178-180, 2021.

Some guidelines for proving productivity for these KPIs

include:

- 2+ developers should review the same code.

- The entire code review process should be documented.

- The team manager or leader should review and approve the

KPI results.

- Use tools that prohibit cheating while also simplifying the

review process.

- Try to review less than 500 lines of code at once.

V. EFFICIENT DISTRIBUTED TEAMS

Physical locations no longer limit organizations;

distributed teams make it possible to build a geographically

diverse workforce. Some benefits of using the distributed team

model include time effectiveness, cost savings, and talent pool

diversification:

- Time Effectiveness: When you have distributed teams,

your employees are located across the world —

therefore, they can work in multiple time zones. By

strategically placing your development centers, you

can make sure that at least one team is available at all

times. This is really helpful for organizations that need

24/7 support.

- Cost Savings: By hiring team members from other

countries, organizations can cut costs on salaries,

rentals, and operating fees.

- Talent Pool Diversification: Through the distributed

team model, companies can access a practically

unlimited talent pool of highly skilled developers.

But as physical distance increases, communication

problems and inefficiency may arise. To ensure your

distributed teams are as efficient as possible, follow these

guidelines:

1. Design tasks in a way that facilitates cooperation,

considering time constraints, industry regulations,

workloads, etc.

2. Clearly define all members' roles and duties.

3. Use well-defined, appropriate communication tactics,

such as closed-loop communication.

4. Loosely couple tasks, so team members' workloads are

not too dependent upon each other.

5. Team members should mutually monitor performance

while still carrying out their own tasks [1].

There are also social aspects to consider: because your team

members are located in various areas of the world, social

norms and communication styles might vary drastically. To

mitigate this, you should foremost ensure that the team has

appropriate, effective leadership that can motivate members,

facilitate cohesion, and offer coaching as needed.

Furthermore, it is important to promote common ground

between the team members and, when possible, train the teams

in a common environment.

VI. DISCIPLINED AGILE DELIVERY PROCESS

Nowadays, nearly every software development team

follows Agile methodologies — but there are thousands of

adaptations. We've found that Disciplined Agile Delivery

(DAD) is one of the most advantageous versions for service

organizations.

DAD's lifecycle is different from typical Agile methods; it

has three main phases: inception, construction, and transition

[2].

A. Inception

- Identify the project's vision

- Obtain stakeholder agreement with the project's vision

- Identify the project plan, initial technical strategy, and

initial requirements.

- Create the initial team.

B. Construction

- Address the stakeholders' changing needs.

- Produce a possibly usable solution.

- Move closer to the deployable release.

- Maintain or improve the existing quality levels.

- Address the biggest risks.

C. Transition

- Ensure the solution is ready for production.

- Ensure stakeholders are ready to receive it.

- Deploy the solution to production.

VII. MEASURABLE QUALITY MANAGEMENT AND

TECHNICAL DEBT REDUCTION

The Measurable Quality Management and Technical Debt

Reduction System (MQM&TDR) is used to measure a

project's technical debts, assess the quality level of software,

and determine the product's business efficiency.

MQM&TDR isn't just for techies; it is relevant to

everybody working with a product. Testers and developers get

an unbiased assessment of their output, managers get feedback

on the overall capacity, and users get a well-performing,

reliable final product.

It's also useful to investors, as they can use the results to

better define the product's fair market value and assess

investment risks.

MQM&TDR evaluates the following components of

software:

- Source code quality

- Usability

- Security

- Performance

- Business logic

- Solution architecture

- Data quality

- Open-source software & other 3rd-party code

With this knowledge, MQM&TDR brings product owners,

development teams, and investors these benefits:

1. Technical debts can be paid before getting out of

hand.

2. Redevelopment and support costs are greatly cut.

3. Progress evaluation is adjusted.

4. The product's business efficiency is predicted.

5. Comprehensive quality analysis is conducted.

6. The product's key features are analyzed in detail.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

180

Boris Kontsevoi and Sergey Kizyan, “Predictive Software Engineering: Transform Custom Software Development into Effective Business

Solutions,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 4, pp. 178-180, 2021.

7. A compliance check is carried out.

8. Improvement recommendations are given.

MQM&TDR is recommended for every software

development project, and it has received resounding support

from clients.

VIII. SOUND HUMAN DEVELOPMENT

Humans aren't resources, regardless of how the HR

department is named — they are agents that make decisions,

further their skills, and set goals.

By contributing to human development, you aren't just

improving the skills of your workforce; you are also

facilitating a sense of fulfillment and bolstering loyalty [3].

A. Benefits

One area to consider is employee benefits; you can include

training and certification and English courses in addition to

standard benefits (medical insurance, sports compensation,

food in the office, etc.)

B. Mentor Program

An internship/mentorship program is incredibly helpful.

The interns are learning from real projects rather than getting

theoretical knowledge. What's more, they aren't just learning

about programming and testing; they're also getting

communication and processes knowledge. And quite often,

after the internship concludes, they remain on the team, so

your people are training a future partner.

C. Performance Review and Career Growth

Create an individual development plan for every

employee. Sit with the employee and the talent management

team, listen to their goals and career decisions, and create a

career path plan. Another strategy is to conduct proprietary

performance reviews. Every 6 or 12 months, have the

employee conduct self-measurement, and then present your

own scores. Review the scores together and decide on the next

cycle's steps for improved productivity.

D. Skills Improvement

Always be ready to help your team members take courses,

attend training, and get certifications. You can help people

grow with these three main strategies: (1) bring in external

advice from experts whenever necessary, (2) set up plenty of

internal and web training, and (3) implement Centers of

Excellence.

IX. RISKS THAT PSE COVERS

When a software development team adopts Predictive

Software Engineering and implements the principles listed

above, they will effectively mitigate many risks, including:

- Executives failing to support the project (Transparent

Control and Meaningful Care)

- Ill-defined scope (Transparent Control)

- Inaccurate estimates (Disciplined Agile)

- Resource shortfalls (Distributed Teams)

- Inadequate training (Sound Human Development)

- Ambiguous decisions (Meaningful Care)

- Delays in required infrastructure (Transparent

Control)

ACKNOWLEDGMENT

Predictive Software Engineering (PSE) is a framework that

addresses bottlenecks of custom software product

development. It reconstructs the reliable approach to

delivering software development services.

PSE overcomes the “art” component of programming. It

makes software engineering exactly what it was meant to be:

an engineering exercise that is precise and predictable.

The PSE framework consists of seven specific concepts.

Together they ensure transparency, as well as render the

process controllable and predictable in its essence. PSE is a

proprietary framework developed by Intetics as result of 26+

years in custom development practices.

The work on creation of Predictive Software Engineering

is just started and far away from completion! We invite other

companies to join us in this work as Predictive Software

Engineering is not about Intetics, it is about the industry and

programming technology. Of course, a lot of companies are

working on improvement of their processes. It would be great

to join the forces and cooperate as this really is not about

competition but about the profession.

The research was performed under the leadership of Boris

Kontsevoi, President & CEO, and Sergei Kizyan, Delivery

Director, Sandbox based on global engineering practices.

REFERENCES

[1] A Larsson, P Törlind, L Karlsson, A Mabogunje, L Leifer, T Larsson, B-

O Elfström, “Distributed team innovation – a framework for distributed
product development,” in ICED 03, Stockholm, pp. 1-10, 1997.

[2] S. W. Ambler, M. Lines. “Introduction to Disciplined Agile Delivery,”

Crosstalk Journal, vol. 40, pages 7-11, 2013.
[3] United Nations Development Programme, “Human Development Report

2016,” UNDP, New York, USA, Rep. ISBN: 978-92-1-126413-5, 2016.

[4] B. Kontsevoi, S. Terekhov "TETRA™ Techniques to Assess and
Manage the Software Technical Debt", Advances in Science, Technology

and Engineering Systems Journal, vol. 6, no. 5, pp. 303-309, 2021. DOI:

http://dx.doi.org/10.25046/aj060534.
[5] B. Kontsevoi, “Predictive software engineering,” Global Engineering

Community, unpublished.

