
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

78

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

DevSecOps Support on Continuous Integration

Deployment of TRAC Applications for Mobile iOS

and Android with Continuous Integration Method

Bagus Permadi
1
*

1
Master of Information Systems Management Department, Business Information System,Gunadarma University, Indonesia

*e-mail: bagus.permadi5 @ gmail.com, ssiregar @ staff.gunadarma.ac.id

Abstract— In the business world, the application of information and

communication technology is currently needed as a tool so that the

organization can be more advanced and develop. This can be helped

by the presence of an IT vendor. Since its establishment in 1986, Trac

has developed a car rental application named Trac Service Auto and

was developed directly by the IT Vendor PT. Agit As fellow members

of the Astra Group. From several problems related to processes that

are often delayed due to problems with External and Internal System

Integration, manual deployment and security issues that have not

been implemented, this encourages the author to analyze and utilize

the DevSecOps system which allows a shorter and safer development

cycle. In this paper the authors use the Continuous Integration

method in the need for continuous deployment code and integration

to server apps as well as explore how to focus on code security

incident management and limited access issues for the developer

team by emphasizing collaboration with server or system access

rights owners (Internal team) so that can contribute to sticking to the

software security standards that are applied.

Keywords— Continuous Deployment Azure Pipeline, Continuous

Deployment, DevSecOps, Continuous Integration.

I. INTRODUCTION

The term DevSecOps was first used in 2012 by Neil

MacDonald to integrate security into DevOps practices

without affecting the speed and agility of the software

development process [1]. DevSecOps is a metrology file

where security is integrated into the entire application

development lifecycle and not just a concept or theory [2].

Many experts and organizations have adopted DevOps and

DevSecOps in the Software Development Life Cycle (SDLC).

The DevOps digital marketing market may grow from $3.4

billion in 2018 to $10.3 billion in 2023 and DevSecOps will

grow from $1.5 billion to $5.9 billion in 2023 [3].

DevSecOps practice is based on the 4 principles of

Culture, Automation, Measurement and Sharing (CAMS) for

the successful implementation of security into the

development life cycle [3]. Devsecops Culture focuses on

collaboration between development, security and operational

teams to share responsibility, Devsecops Automation focuses

on automating Security control systems and development

processes that do not reduce the speed and effectiveness of

development flow, Devsecops Measurement focuses on

optimizing the use of monitoring and metrics to measure

vulnerability and threats, and Devsecops Sharing is a part that

supports knowledge sharing among all related teams with the

aim of integrating security throughout the development

process.

DevSecOps refers to the integration of security practices

into the DevOps software delivery model. The foundation is a

culture in which development and operations are enabled

through processes and tools to share in the shared

responsibility to deliver secure software. Before focusing on

the understanding and implementation of DevSecOps, we

must first understand the origins of DevOps.

DevOps is not a new development paradigm, but in recent

years in DevOps the boundaries between developers and

operations teams are being lowered, sometimes to the point

where the slogan "You build it - you run it" becomes a reality.

even on most DevOps systems operating in the Cloud, this is

also coupled with continuous deployment, where new versions

of system software can be deployed multiple times a day. This

working mode really takes system reliability and agility to a

new level, although doubts remain about how to ensure the

security of new versions of software without changing the

security test standards (Security). The answer to these doubts

lies in implementing incident management.

In connection with Devops and Devsecops, this study uses

Continuous Deployment (CD) for software development

practices that enable organizations to deploy software to

customers continuously, automatically, and reliably [4]. A

number of innovative organizations such as Facebook,

Microsoft, and IBM are adopting CDs to frequently deliver

value to their customers. CD brings several benefits to

organizations [5]. These benefits include reducing developer

effort, improving software quality, and reducing costs [6].

Continuous Deployment Pipeline (CDP) is a core concept for

successfully implementing CD practices [7].

CDP automatically transfers code changes from the

repository to the production environment. In addition, CDP

allows team members to keep an eye on every aspect (e.g.,

build, deploy, test, etc.) of the system, and get quick feedback

on the implemented software. CDP also promotes

collaboration between different groups of developers who

work together to fix bugs and problems and deliver software

by increasing the visibility of changes [8]. CDP is a collection

of stages (e.g., build, package, and test) supported by tools

(GitHub, Azure Devops, AWS, etc.) and technologies to

enable continuous and automated deployment of changes into

production. The number and nature of the stages involved in

CDP vary from organization to organization [9]. Likewise, the

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

79

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

tools and technologies incorporated for CDP implementation

also vary from project to project and organization to

organization.

The company that is the subject of this research discussion

is Trac, a company that is one of the Corporate Operation

business units of PT Serasi Autoraya Tbk and is part of PT

Astra International Tbk Group as the logistics business unit of

the Astra Group. engaged in four-wheeled vehicle rental, since

1986 has developed the Trac Service Auto application in the

form of development in the form of a mobile application on

iOS and Android, the application has been implemented in

most Trac branches spread across Indonesia. The company

that is the vendor of Trac's system development is AGIT, Agit

is a Digital Service Provider, providing one-stop Solutions for

Digital Services. Just like TRAC, AGIT is part of PT Astra

International Tbk Group. PT Astra International Tbk Group is

a conglomerate company in Indonesia which currently has 235

subsidiaries and affiliated companies with 7 business fields. In

relation to the implementation phase of the TRAC application

and as part of the information system development life cycle,

it is necessary to integrate source code management (SCM)

into internal server, Code security testing and the deloyment

process which is monitored until the process is completed in

the post-development build. The results of this process will

then be used as a reference for the development of the Trac

Application in other branches and for the evaluation of the

Trac Internal Team itself.

II. LITERATUR REVIEW

A. DevSecOps

Embedding security in the CI/CD pipeline, automated

monitoring and setup in both Development and Production

Environments is very useful in finding bugs and

vulnerabilities especially in teams with no experience or

without the security knowledge or expertise to manually find

and assess vulnerabilities. Myrbakken and Colomo-Palacios

explain the meaning of DevSecOps, the benefits and

challenges of adopting the practice and how it has evolved

since it was first introduced [10]. DevSecOps is meant to

change the mindset of everyone in ensuring the security of

automated development processes. secure DevOps workflows

and how organizations can embed continuous security testing.

in it Continuous delivery pipeline[11]. Perhaps one of the

most relevant jobs in terms of integrating security in a DevOps

environment. Khan discusses security controls, tools,

automated checks/testing and best practices to ensure software

is tested at every stage of development[11]. While there are

several studies and publications on DevOps and DevSecOps,

none of them address or focus on security-savvy development

teams. focus on optimizing deployment of flow deployments

effectively by adapting DevSecOps, benefits and challenges

they may face.

B. Continuous Integration

Continuous Integration is a software development process

where developers integrate code into a shared repository

several times a day, allowing the software development team

to detect problems early [12]. Continuous integration

recommends that build automation and test automation be part

of the development pipeline. It also recommends the use of a

revision control system. The DevSecOps journal presents how

to implement continuous dynamic security testing in a CI/CD

pipeline and investigates the pitfalls of such testing.

The related journal theory explains that not much literature

focuses on the dynamics of Static Application Security

Testing (SAST) security testing and describes how to integrate

appropriate tools to scan for vulnerabilities in workflows [13].

Static Application Security Testing (SAST) is used to secure

software by reviewing software source code to identify the

source of vulnerabilities. Although the static process of

analyzing source code has been around for as long as

computers have existed, the technique spread to security in the

late 90s and the first public discussion of SQL injection in

1998 when Web applications integrated new technologies such

as JavaScript and Flash[14]. DevSecOps practice is based on

four principles (CAMS) for the successful implementation of

security into the development life cycle[13].

Culture: The DevSecOps culture promotes shared

responsibility for security and promotes collaboration between

development, security, and operations teams. Every

department has to integrate security in their work and that

means security people have to be involved from the early

stages of the project [13]. DevSecOps is about inclusion and

working together as a team [15] and tends to dispel the

traditional practice of having separate silos.

Automation: DevSecOps focuses on 100% automation of

security controls and processes in a way that won't

compromise speed and agility [16]. Software testing activities

are carried out automatically by using test equipment

(software) to do whatever human testers do manually. And it's

not just about testing and deployment, it includes release

management, configuration management, monitoring [13].

However, test automation cannot eliminate or completely

replace manual testing because it is not possible to automate

all test cases. Manual checking is essential in some cases

because certain errors or problems such as authentication and

authorization are impossible to detect by automated testing

tools [16]. Measurement: DevSecOps encourages team use of

monitoring and metrics to measure vulnerabilities and threats,

which is important for keeping performance records and

improving software quality [16]. Everything relevant has to be

measured and teams cannot improve their product if

measurement is abandoned. Sharing: DevSecOps supports

knowledge sharing between all teams with the aim of

integrating security into every process. This is education and

cross-training for each member of the development,

operations, and security team [17] on their security duties.

Process security can only be improved when teams are

constantly sharing the challenges they face and how they can

help each other [17].

C. DevSecOps System Building tool

a. Sonarqube

he most common Open Source application code analysis

tools adopted both in academia [18], [19] and in industry [20].

SonarQube is provided as a service from sonarcloud.io or can

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

80

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

be downloaded and run on a private server. SonarQube

calculates metrics such as line number of code and code

complexity, and verifies code compliance with a specific set

of "coding rules" defined for the most common development

languages. In case the analyzed source code violates the

coding rules or if the metric falls outside a predefined

threshold, SonarQube generates an "issue". SonarQube covers

Reliability, Maintenance and Security Rules. Sonarqube's

security scan process which consists of GET and SEND

analysis. Scanning results are schematically presented in

Figure 1.

Fig. 1. Security Scan Sonarqube Process

b. Azure Devops

Microsoft Azure DevOps is a software as a service SaaS

(Software as a service) platform that offers users an end-to-

end DevOps tool chain for developing and deploying software.

Azure DevOps is not a single program but consists of the

following services: Azure Board: It includes agile planning,

work item tracking, and visualization, as well as reporting

tools. Azure Pipelines: It is a cloud-agnostic language,

platform, and CI/CD platform with support for containers or

Kubernetes. Azure Repos: It offers a private Git repository

hosted in the cloud, with pull requests, advanced file

management, and other benefits. Azure Artifacts: Artifacts in

question provide developers with integrated package

management, including support for Maven, npm, Python, and

NuGet package feeds from public or private sources. Azure

Test Plans: This service provides a unified, all-in-one planned,

and exploratory testing solution [21]

c. Gradle

Gradle is a flexible and powerful build tool. Gradle is a

common Android library building tool that allows developers

to build software with any tool, because Gradle only creates a

small amount of Logic Code about what the user/developer is

trying to create or how to build it. The most notable limitation

is that dependency management currently only supports

Maven and Ivy compatible repositories and file systems. This

doesn't mean developers have to do a lot of work to create

build code. Gradle makes it easy to create common projects -

for example Java libraries - by adding layers of conventions

and built-in functionality via plugins. Users and developers

can even create or publish custom plugins to encapsulate your

own conventions and build functionality. 2. Core models are

based on tasks Gradle models its builds as Directed Acyclic

Graphs (DAGs) of tasks (work units). That is, the build

essentially configures a set of tasks and splices them together -

based on their dependencies - to create those DAGs. After the

task graph is created, Gradle determines which tasks need to

be run in which order and then proceeds to execute them[22].

d. Xcode

Xcode is Apple's IDE, created for producing software on

Macs for use on iOS, iPadOS, macOS, tvOS, and watchOS.

Free to download and use, the IDE is primarily used by

developers to create iPhone and iPad applications, as well as

programs for Mac [23].

e. Git

Git was created in 2005 by Linus Torvalds with the aim of

sustaining the development of the Linux kernel [24]. Since

then, it has been used to maintain thousands of projects.

Various online Git repositories exist, including GitHub,

GitLab, and BitBucket. The advantage of Git is that

everything is stored locally, in the .git directory. This makes

adding functionality simple as one only needs to access the

files in the .git directory

f. App Center

Visual Studio App Center is an integrated mobile

development lifecycle solution for iOS, Android, Windows,

and macOS applications. It brings together several services

commonly used by mobile developers, including building,

testing, distributing, monitoring, diagnostics, etc., into one

single integrated cloud solution [25].

g. Android

Android According to Arifianto (2011), Android is a

mobile device on an operating system for Linux-based cellular

phones. According to Hermawan (2011), Android is a Mobile

OS (Operating System) that is growing in the midst of other

OSes that are developing today. Android is an operating

system designed by the Google company based on the Linux

kernel and also various software such as Open Source and

others. Mobile phones that use Android can be used for

devices with touch screens such as smartphones and tablet

computers [13].

h. iOS

iOS, is an operating system developed and distributed by

Apple Inc. [24] which was launched in 2007 for the iPhone

and iPod Touch, and has been developed to support other

Apple devices such as the iPad and Apple TV. Apple does not

license iOS to be installed on non-Apple hardware or in other

words only specifically for Apple's own products.

D. Security Testing

Local Security Testing To prevent security experts on the

software project team from wasting their time finding types of

software vulnerabilities that are not sophisticated, we

recommend that these types of vulnerabilities be detected and

fixed before being added to any branch of the main project

repository. To achieve this, the security experts on the project

team must create a Security testng test case for the type of

vulnerability relevant to the project and distribute it to all

developers. Every developer, then, has to run these test cases

against their code before they commit them to the main

repository. If a vulnerability is detected in their code, Security

Testing will inform them with easy-to-understand information

about the type of vulnerability, its location, and how it can be

triggered (Lescisin, Mahmoud and Ciorac, 2019).

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

81

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

E. Deployment

In programming, this process is called deployment.

Deployment is an activity that aims to deploy applications that

have been done by people who are experts in the field of

programmers. The method of distribution is also very diverse,

depending on the type of application. If you choose a Web

application, then you will be hosted on a server. Meanwhile, if

the application is mobile, there will be two deployments. The

first is deployment for the application to the Playstore or

Appstore, and the second is the deployment of the API

(backend) to the server. To deploy you have to be extra patient

because there will be a lot of unwanted things happening. An

example of a constraint that is often experienced is a system

that suddenly goes down, that's why it takes a long time to

deploy a program (Wilde, et al., 2016).

III. RESEARCH METHOD

A. Research Flow

The research flow describes the sequence of the research

process in detail and the relationship between a process

(instructions) and other processes, as shown in Figure 2. This

research begins with analyzing the ongoing TRAC application

development process. This process is a collaboration between

TRAC's internal team and the Agit team. This ongoing process

analysis aims to determine which processes will be optimized

and implemented in the DevSecOps system, the second stage

is the Technology Selection stage that will be implemented in

the DevSecOps process by selecting tools that suit the needs

of Continuous Integration and Continuous Deployment as well

as selecting tools for scanning code security compliant with

DevSecOps standards.

Fig. 2. Research Flow

After the technology is selected according to the needs,

then the third stage is carried out, the stage when it is carried

out by testing the selected technological process. Testing is

carried out from the beginning of the flow to the end of the

flow in the local environment by applying the Continuous

Integration method. After the entire cycle or full cycle of the

process has been carried out in the local environment, proceed

to the fourth stage. The fourth stage is the implementation of

code security scanning according to standard i in a full full

cycle which has been successful. If the full DevSecOps cycle

is confirmed to be running well in the local environment, the

next stage is the Review stage with the Agit Team and testing

the application on the Server Staging Environment to compare

the performance of the new system. At this final stage,

analysis and conclusions are also made with the Agit team:

whether the flow that has been implemented in the Staging

Environment is in accordance with the needs of the user (Agit

Developer). The research flow is schematically presented in

Figure 2.

B. Collaboration and Analysis

The Collaboration phase with the Dev team from the PT.

Agit Vendor is needed to analyze several processes that can be

optimized with the DevSecOps System from existing manual

processes that have been carried out by the vendor team with

clients such as:

 Push Code process for Fixing or Enhance system with

manual clone Source Code directly from Server

 The Build Code process is carried out directly on the

Client Server and is carried out by the System

Administrator from the Internal Client team

 The Code security scanning process is still being carried

out individually from the dev team by making Unit tests on

a personal locale without the Quality Code Static

Application Security Testing (SAST) standard.

 The process of Publishing and Sharing Beta Versions of

iOS (.ipa) and Android (.apk) which is still manual Using

Flash Drive media

 The process of the Report Monitoring Log and Result from

the Build which is still manual is attached via email

C. Research and Explore Improvement

Research and Explore carried out to find several main

components of the DevSecOps system that can be

implemented for the Continuous Integration method on

existing flow deployments are aimed at reducing developer

work, such as:

 Perform manual Testing Code and change it to automatic

 Doing manual build code becomes automatic

 Publishing (.ipa) and (.apk) manually becomes automatic

D. Continuous Integration Implementation

The Github Source Code Management used by the vendor

team has a feature to create branches based on the

environment they are working on which is enabled for

Continuous Integration needs to several tools such as Azure

DevOps. The trigger will be connected according to the action

on a particular branch that is pushed or on a pull request. This

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

82

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

process is the last point of the developer and the next process

will be carried out entirely by the Devesecops system with the

continuous integration method. Figure 3 shows the Trigger

Branch Azure Devops Pipeline.

Fig. 3. Trigger Branch Azure Devops Pipeline

E. Conducting Code Security Tests and Beta Version

Implementation

In Azure DevOps, the github webhook that is set in the

Azure Devops pipeline will automatically trigger the build

according to the trigger config created in the azure pipeline

with actions or commit code activities to branches such as

'master' or 'dev' on github. And after the Azure pipeline build

is started, the sonar scan or security testing process in the code

section using the sonarqube plugin that has been added in the

Continuos Deployment step will scan the code in several steps

according to the metrics and options that have been designed

in the scan quality code parameter. will be used. Figure 4

shows the Sonarqube Analysis Flowchart.

Fig. 4. Flowchart Analisis Sonarqube

 Azure Pipeline Gradle Once Code Passed Test Results it

will continue for Build Gradle if deployment is for

Android Mobile

 Azure Pipeline Xcode After Code Passed Test Results it

will continue to Build Xcode if the deployment is for iOS

Mobile

 AppCenter After Build Completed, Files (.ipa) and (.apk)

will be published to AppCenter tools. Figure 5 shows

sample files (.ipa) and (.apk) that have been successfully

published to the App Center from the Automatic Build

results.

Fig. 5. list of build success publish (ipa) asnd (.apk)

F. Conducting Performance Review and Test

In the Review and Validation Test Phase, the Agit

Developer Team will review or review the Continuous

Deployment cycle. The review is carried out from the

beginning of the scenario until the entire cycle is completed

assisted by the Internal DevOps team. This is to ensure that all

processes carried out are in accordance with Automation

Deployment Optimization as a substitute for every step that

was previously done manually. In addition, time optimization

analysis of the DevSecOps implementation was also carried

out for each step. Figure 6 shows the process validation

sequence for each Automation step.

G. Making Conclucions and Analyzing the results of

performance

In the final stage of this research, conclusions and

recommendations are drawn regarding the success of the

DevSecOps System process on the Continuous Deployment of

Mobile Apps iOS and Android Trac from the user side or Dev

who is a direct user of this system. Standards required for a

successful implementation of DevSevOps From a Code

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

83

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

Security point of view and system effectiveness in helping to increase the productivity of TRAC Application Deployment.

Fig. 6. Validation Process for every Autoamtion Step

IV. RESEARCH RESULTS AND DISCUSSION

A. Result of Analysis and Collaboration

The Trac Service Auto application is an application that

focuses on car rental for Corporate, Daily and BUS rental

needs. In this Trac, what is the Trac Fleet Management

Solution product for vehicle tracking and has been

implemented in most Trac branches spread throughout

Indonesia. This application has been implemented in the Beta

version for Mobile Apps and iOS Apps in the form of

enhancement (Rewrite). And in this Trac application, several

development processes in this Beta version application will be

investigated, namely the Integration process and Security

Checking Code. The Trac Application Development process

flow before and after DevSecOps implementation can be seen

in figure 7.

B. Result of Explore and Improvement

The implementation process according to research begins

with code installation on Azure Devops and the use of the

Azure Pipeline Feature for the build process and creates a

continuous integration scenario at each step according to the

needs of the automation process, and the installation of the

sonarqube plugin in the middle of the build process. At the

end of the app center installation is done as an additional step

for publication (.apk) and (.ipa) for each release. The design

scenario is presented in Figure 8.

Fig. 7. Before and After Implementation of DevSecOps

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

84

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

 Fig. 8. Scenario Design of Devsecops Fig. 9. Azure Devops Github Service Connection

C. Implementation of Continuous Integration

The Continuous Integration method implemented at the

Source Code Management stage such as the use of webhook

from Azure DevOps To change the Cloning code process

which is still done manually from Server Apps and also

change the scenario for the editing process or feature

enhancement from the code side from manual to automation

using Continuous Integration is explained in Figure 9 for

automated deployments based on trigger actions from github.

D. Conduct Code Security Tests and Beta Version

Implementation

Conducting Security Testing Code Security CU testing is

performed in conjunction with the Continuous Deployment

process using the Sonarqube plugin from Azure DevOps on

the full lifecycle of the DevSecOps system. The flowchart of

the iOS Automation build process to publish files (.ipa) and

the Android build process to publish files (.apk) is presented in

Figure 10 and Beta Version Implementation

Fig. 10. Flowchart Build Azure Devops iOS and Android

1. Sonarqube Testing Security Code

Security testing using Sonarqube in the DevSecOps Build

process flow with Azure DevOps focused on scanning security

code according to the programming language that can be

defined in the sonarqube azure pipeline properties. The full

code of the azure pipeline for Sonar Properties is presented in

Figure 11.

2. iOS and Android DevSecOps Deployment full cycle

Changed All Manual Build Processes that are still

Performed on the apps server and on local developers also

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

85

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

added the Security Testing process to a full reorganize process

in Azure DevOps Pipeline by sorting processes according to

dependencies from Android for builds (.apk) and adjusting

iOS dependencies for builds (. ipa). Full logs of the azure

pipeline for Android Build Properties and iOS Properties are

presented in Figure 12 and Figure 13.

Fig. 11. Sonar Properties Azure Pipeline

Fig. 12. Azure DevOps Build iOS

Fig. 13. Azure DevOps Build Android

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

86

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

E. Conductiong Review and Performance Test

To obtain information on the performance of System

Devsecops that has been implemented on Android and iOS

deployments, performance tests are carried out by comparing

the implemented System DevSecOps with the manual process

usually carried out by the developer team by looking at the

overall process and the total time required for publication.

(.apk) and (.ipa) and analyze several steps in the optimization

of the devsecops system to make the developer's work easier.

1. Review implementasi DevSecOps

From the results of the implementation of the Devsecops

System to build APKs, there are several steps that are

optimized to facilitate developer performance and can be

handled directly by the devsecops system, as follows. Some

detailed deployment steps that are automated with the

Devsecops system for android and iOS builds are presented in

Figure 14.

F. Making Conclusions and Analysis of Performance Results

The process of implementing the Continuous Integration

method using Service Connection from Github and Azure

DevOps which is described in Figure 15.
Is a process to support increasing Deployment Frequency

with scenarios when developers make changes to coding or

feature enhancements for development needs will trigger

automatic deployments and carry out all processes

automatically without much effort to be done manually,

reducing failures on new releases because there is no Human

Touch and Human Error in the deployment process, and also

shorten the total time of deployment. A detailed comparison of

the total time required for manual deployment and automation

can be seen in Figure 16 and Figure 17.

Fig. 14. Automation Transition from Manual Process

Fig. 15. Total Time of Manual Build Process

Fig. 16. Total Time of Manual Build Full Process

Fig. 17. Total Time of Automation Build Full Process

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

87

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

The use of Artifact in Azure DevOps described in Figure

4.38 is a process that supports increasing recovery time or

Rollback to the most stable release state for problematic

deployment scenarios so that it can be immediately returned to

normal conditions if business traffic is high. Figure 18 also

shows a list of Artifacts with code numbers such as '22rb7b4'

and '64badfc' as identification for rollback scenarios when

selecting the most stable and successful artifact release.

Feature Secure File Support and Addition of Automation

Security Testing presented in Figure 19 is a process to support

standard Security Deployment by using the DevSecOps

system to increase Code security in terms of Secret

Transparency or key (Password) that need to be protected

from Hackers or teams other than developers who have access

to azure devops and improve code quality that supports

application security standards on the source code side.

Fig. 18. Artifact Azure DevOps

Fig. 19. Security Testing Sonarqube dan SecureFile

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

88

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

V. CONCLUSIONS

Based on the testing and analysis results that have been

carried out, the conclusions of this study are as follows.

a) The factors that influence the successful implementation of

the DevSecOps System on the Trac application, including

the Total Build Time variable with a value of 10 minutes 9

seconds for APK builds and 32 minutes 9 seconds for iOS

builds have the advantage of increasing the deployment

frequency of the Agit team which requires a total manual

build time for APK is 9 minutes 27 seconds and 25

minutes 1 second for IPA but does not include the Security

testing process which on average takes about 7 minutes if

done manually and must be done by the Internal team and

there needs to be more effort from the dev team to request

via Email to the Internal team to run the test.

b) The success rate of DevSecOps system implementation

The Trac application is influenced by several factors in the

Continuous Integration method and the application of

Continuous Deployment, namely the full Automation

Deployment process to help reduce more effort from the

user at each step. which provides several benefits such as:

1. Reducing User Interference or the number of accesses

that take part in the deployment process which causes

frequent failure of the deployment process due to

Human Errors and reduces the level of system security

by changing all manual deployment processes to

automatic.

2. Facilitate the work of the Agit team in terms of time

effectiveness because all processes that are usually

done manually and require an approval process from

the security team with a total amount of time can be

completed quickly and easily.

c) Recommended Use of Azure DevOps Artifact Feature for

DevSecOps System Implementation.

1. With Artifact Publication in every deployment process

the Recovery Scenario becomes easier and faster.

2. Recovery or Rollback security is more secure because

Developers no longer need to do backups or make

mistakes because they forget to backup.

Security Testing Automation process using Sonarqube and

the use of Secure File Azure Devops Feature for securing key

and password files to support code security standardization for

the deployment process in accordance with the

implementation of System DevSecOps.

REFERENCES

[1] R. Kumar and R. Goyal, “Modeling continuous security: A conceptual

model for automated DevSecOps using open-source software over cloud
(ADOC),” Comput. Secur., vol. 97, p. 101967, 2020, doi:

10.1016/j.cose.2020.101967.
[2] J. Caraballo-vega, “Pipelines Use Case : Docker Container Scanning

BUILD CLEANUP Use Case : Black Box Enumeration of System,” no.

August, 2019.
[3] T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen, “Continuous

Security Testing: A Case Study on Integrating Dynamic Security Testing

Tools in CI/CD Pipelines,” pp. 145–154, 2020, doi:

10.1109/edoc49727.2020.00026.

[4] Claps, G. G., Svensson, R. B. and Aurum, A. (2015) 'On the journey to
continuous deployment: Technical and social challenges along the way',

Information and Software Technology, 57, pp. 21-31.

[5] Anderson, K. H., et al. (2014) 'Continuous deployment system for
software development.', U.S. Patent No. 8,677,315

[6] Chen, L. (2015) 'Continuous delivery: Huge benefits, but challenges

too', IEEE Software, 32(2), pp. 50-54.
[7] Humble, J. and Farley, D. (2010) Continuous delivery: reliable software

releases through build, test, and deployment automation. Pearson

Education.
[8] Fowler, M. (2013) 'Deployment pipeline. Available at

http://martinfowler.com/bliki/DeploymentPipeline.htm l [Last Accessed:

24th Oct, 2016]'.
[9] Adams, B. and McIntosh, S. (2016) 'Modern Release Engineering in a

Nutshell -- Why Researchers Should Care', IEEE 23rd International

Conference on Software Analysis, Evolution, and Reengineering

(SANER), pp. 78-90.

[10] H. Myrbakken and R. Colomo-Palacios, “DevSecOps: A multivocal

literature review,” Commun. Comput. Inf. Sci., vol. 770, no. September,
pp. 17–29, 2017, doi: 10.1007/978-3-319-67383-7_2.

[11] M. O. Khan, “Fast Delivery, Continuously Build, Testing and

Deployment with DevOps Pipeline Techniques on Cloud,” Indian J. Sci.
Technol., vol. 13, no. 5, pp. 552–575, 2020, doi:

10.17485/ijst/2020/v13i05/148983

[12] ThoughtWorks. Continuous Integration. Available online:
https://www.thoughtworks.com/continuousintegration (accessed on 20

September 2019)

[13] T. Rangnau, R. v. Buijtenen, F. Fransen, and F. Turkmen, “Continuous
Security Testing: A Case Study on Integrating Dynamic Security Testing

Tools in CI/CD Pipelines,” pp. 145–154, 2020, doi:

10.1109/edoc49727.2020.00026.
[14] Static application security testing. Available online:

https://en.wikipedia.org/wiki/Static_application_security_testing
(accessed on 4 April 2021).

[15] R. B. Salesforce and K. Carter, “SOFTWARE ENGINEERING Francois

Raynaud on DevSecOps,” no. October, pp. 93–96, 2017.
[16] H. Yasar and K. Kontostathis, “Where to Integrate Security Practices on

DevOps Platform,” Int. J. Secur. Softw. Eng., vol. 7, no. 4, pp. 39–50,

2017, doi: 10.4018/ijsse.2016100103.
[17] M. Sánchez-Gordón and R. Colomo-Palacios, “Security as Culture: A

Systematic Literature Review of DevSecOps,” Proceedings - 2020

IEEE/ACM 42nd International Conference on Software Engineering
Workshops, ICSEW 2020, pp. 266–269, 2020.

[18] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. Analyzing forty

years of software maintenance models. In 39th International Conference
on Software Engineering Companion, ICSE-C ’17, pages 146–148,

Piscataway, NJ, USA, 2017. IEEE Press.

[19] Valentina Lenarduzzi, Alberto Sillitti, and Davide Taibi. A survey on
code analysis tools for software maintenance prediction. In 6th

International Conference in Software Engineering for Defence

Applications, pages 165–175. Springer International Publishing, 2020.

[20] Carmine Vassallo, Sebastiano Panichella, Fabio Palomba, Sebastian

Proksch, Harald C. Gall, and Andy Zaidman. How Developers Engage

with Static Analysis Tools in Different Contexts. In Empirical Software
Engineering, 2019.

[21] Azure Devops. Available online: https://www.simplilearn.com/azure-

devops-article (accessed on 4 April 2021).
[22] Five things you need to know about Gradle. Available online:

https://docs.gradle.org/current/userguide/what_is_gradle.html (accessed

on 4 April 2021).
[23] Xcode. Available online: https://appleinsider.com/inside/xcode

(accessed on 4 April 2021).

[24] Chacon, S.; Straub, B. A Short History of Git. Available online:
https://git-scm.com/book/en/v2/GettingStarted-A-Short-History-of-Git

(accessed on 4 April 2021).

[25] Build-Test-Distribute Mobile Apps using App Center. Available online:
https://www.azuredevopslabs.com/labs/vstsextend/appcenter (accessed

on 4 April 2021).

[26] Michael Lescisin, Qusay H. Mahmoud , and Anca Cioraca, Design and

Implementation of SFCI: A Tool forSecurity Focused Continuous

Integration 1 November 2019.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

89

Bagus Permadi, “DevSecOps Support on Continuous Integration Deployment of TRAC Applications for Mobile iOS and Android with

Continuous Integration Method,” International Research Journal of Advanced Engineering and Science, Volume 6, Issue 3, pp. 78-89, 2021.

[27] Faheem Ullah1, Adam Johannes Raft2, Mojtaba Shahin1, Mansooreh

Zahedi2 and Muhammad Ali Babar1,2 Security Support in Continuous
Deployment Pipeline March 2017.

[28] Martin Gilje Jaatun, Software Security Activities that Support Incident

Management in Secure DevOps, August 2018
[29] Norman Wilde, Brian Eddy, Khyati Patel, Nathan Cooper, Valeria

Gamboa, Bhavyansh Mishra, Keenal Shah Security For Devops

Deployment Processes: Defenses, Risks, Research Directions November
2016.

[30] Bakary Jammeh DevSecOps: Security Expertise a Key to Automated

Testing in CI/CD Pipeline. December 2020.
[31] Paul Swartout (2012), Continuous Delivery and DevOps: A Quickstart

Guide, Packt Publishing Birmingham – Mumbai.

[32] R. B. Salesforce and K. Carter, “Software Engineering Francois

Raynaud on DevSecOps,” no. October, pp. 93–96, 2017.
[33] H. Yasar and K. Kontostathis, “Where to Integrate Security Practices on

DevOps Platform,” Int. J. Secur. Softw. Eng., vol. 7, no. 4, pp. 39–50,

2017, doi: 10.4018/ijsse.2016100103.
[34] Suren Machiraju,Suraj Gaurav (2018), DevOps for Azure Applications,

Apress

[35] Tarun Arora, Utkarsh Shigihalli (2019), Azure DevOps Server 2019, ,
Packt Publishing Birmingham – Mumbai.

[36] A. Jl, P. Wr, and S. Dm, “The emerging soft tissue paradigm in

orthodontic diagnosis and treatment planning,” Clinical Orthodontics
and Research, vol. 2, no. 2. pp. 49–52, 1999.

