
International Research Journal of Advanced Engineering and Science 
 ISSN (Online): 2455-9024 

 

 

244 

 
Patrick McDowell, and Kuo-pao Yang, “Memory Based Learning Augmented with Simulated Annealing for a Two Joint Arm,” 

International Research Journal of Advanced Engineering and Science, Volume 5, Issue 4, pp. 244-247, 2020. 

Memory Based Learning Augmented with Simulated 

Annealing for a Two Joint Arm  
 

Patrick McDowell
1
, Kuo-pao Yang

2 

1,2
Department of Computer Science, Southeastern Louisiana University, Hammond, LA, USA 

 

 
Abstract— This paper discusses a simple, biologically plausible, 

methodology for approaching control problems, mostly focused on 

joint control and coordination. The method relies on a modified 

simulated annealing routine, coupled with a nearest neighbor-based 

memory system. The algorithms were tested in a python-based 

simulation and are presented in pseudo-code, along with the 

motivation for the work and the criteria that drove the solution. 

 

Keywords— Annealing, coordination, learning, state-space 

exploration. 

I. INTRODUCTION  

This paper describes a simple algorithm whose purpose is to 

enable a two jointed arm to learn to reach positions of interest.  

At the lowest level, the algorithm employs a simulated 

annealing-based search in order to find the correct joint angles 

for the end effector of the arm to reach specified positions.  

Built into the system is a state memory so that the arm can 

reduce exploration time when trying to reach new positions.  

The annealing system and state memory work in concert so 

that the arm can quickly move to known locations, and figure 

out how to reach new locations, based on their proximity to 

known locations. 

II. BACKGROUND AND MOTIVATION  

Robotic limbs are common in both mobile robots and in 

assembly robots in manufacturing plants. To find the position 

of the end effector of the arm, forward kinematics is used [1]. 

To determine the joint angles needed to put the end effector in 

some desired position, inverse kinematics is used [2]. For 

limbs with 2 or 3 degrees of freedom, there are 

algebraic/trigonometric solutions that are fairly straight 

forward. Fig. 1 provides a diagram showing the various angles 

and limb lengths required for a 2 degree of freedom solution. 

Note that there are two possible solutions to the problem, as 

shown in the figure. 

The following section briefly details the algebra of a 2-

degree of freedom (DOF) solution. The location of P1 will be 

assumed to be (0,0), and the lengths of the segments, and the 

angles between the segments are known. Using these values, 

the locations of the ends of the segments, P2 and P3 can be 

calculated using forward kinematics as is shown below. 

 
P2x =  L1cos θ1 

P2y =  L1sin θ1 

 

P3x = L1cos θ1 + L1cos (θ1 + θ2) 

P3y = L1sin θ1 + L1sin (θ1 + θ2) 

 

The following definitions and equations describe the 

locations of the relevant parts of the 2 DOF arm in an inverse 

kinematics situation.  This situation is very important because 

it tells what θ1 and θ2 need to be for a desired end effector’s 

position (P3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. This figure shows that for the arm to reach point P3 there are two 

different solutions. 

 

Two important formulas that will be used to algebraically 

solve these equations will be the Law of Sines and Law of 

Cosines.  They are stated below: 

 

Law of Sins: 
    a       =     b      =      c            [see Fig. 2]       

sin(A)      sin(B)          sin(C) 

 

D = tan-1(   P3y - P1y  ) 

                  P3x - P1x 

        ____________________ 

c = √ (P3x - P1x)
2 + (P3y - P1y)

2
   

 

Law of Cosines: 
 

a2 = b2 + c2 - 2bc cosA 

 

rearranging we get: 
 

A = cos-1 ( b2 + c2 - a2  ) 

                        2bc 

    a       =     c__             

sin(A)       sin(C) 

 

C = sin-1(  sin(A)c  ) 

   a 

 



International Research Journal of Advanced Engineering and Science 
 ISSN (Online): 2455-9024 

 

 

245 

 
Patrick McDowell, and Kuo-pao Yang, “Memory Based Learning Augmented with Simulated Annealing for a Two Joint Arm,” 

International Research Journal of Advanced Engineering and Science, Volume 5, Issue 4, pp. 244-247, 2020. 

Total Angle = D + A 

 

Or  

 

Total Angle = D - A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. This figure shows a triangle labeled with the angles and side lengths 
needed for the 2DOF inverse kinematic solution.  Side b and c represent the 

robot arm segment lengths. 

 

The closed form solutions described above are well 

proven, however, part of the goal of this work is to find a 

simple learning solution to the problem.  As part of this goal, 

the criteria for the solution should embody some or most of 

the following criteria: 

 The solution should be simple, robust, and effective. 

 The general framework of the solution should be 

extendable to other problems. 

 The nature of the solution should be something that is 

biologically plausible.  That is, are the steps taken to solve 

the problem something that an animal like a cat would do? 

The criteria above outline a desire to find a biologically 

plausible approach to solving joint control, joint coordination, 

and body movement, problems.  It is readily apparent that all 

of these problems have been studied from many different 

angles, including direct solutions using forward and reverse 

kinematics, neural networks [3], neural oscillators, etc. They 

have also been approached using various learning systems, 

paired with genetic algorithms [4], simulators and the like. 

Each of these approaches has merit. What differentiates the 

approach described here can be summed up by the following: 

“When an animal is learning to position its limbs, balance, 

and walk, is it using its memory, senses of touch, etc., or is its 

brain whirring away solving what is the equivalent to sets of 

equations and the like?” 

In all fairness, it is likely that the answer is yes to both 

sides of the question, or that the questions above are really just 

one question, posed two different ways.  That being said, this 

work concentrates on the first side of the question. 

III. APPROACH 

The approach to the problem was separated into two 

components, exploration and memory driven action.  The 

exploration is based on simulated annealing. 

Simulated Annealing [5] is a problem solving technique 

which has its roots in metallurgy. When a blacksmith is 

fabricating an implement he works the metal, letting it cool 

slowly while he fashions it to the desired shape.  The process 

of slow cooling allows the molecules to locate themselves in 

the lowest energy configuration, while the working of the 

metal helps jostle the high energy molecules into the low 

energy positions, ultimately producing a strong, non-brittle 

product. 

Simulated annealing attempts to model this process. 

Initially the solution is a random one and the system starting 

temperature is set to a high value. Once an energy value for 

the random solution is calculated, the system is perturbed 

(Analogous to the blacksmith working the metal).  An energy 

value for the perturbed system is calculated.  Acceptance of 

the new solution is controlled by a function that is system 

temperature dependent. If the system temperature is high, less 

optimal (higher energy) solutions have a chance of being 

accepted in the hope that it will lead to an overall lower 

system energy in the future. If the energy value of the 

perturbed system is lower than that of the previous solution it 

will most likely be accepted and the perturbation process will 

repeat. If a solution is not accepted, the system is returned to 

its previous state, and the perturbation process is repeated. 

While this process continues, the system temperature is slowly 

lowered, making the probability of a higher energy solution 

less and less likely.  When the system temperature reaches the 

end temperature, the annealing process is complete. 

A. Using Simulated Annealing to Find Joint Angles 

When the simulated 2 jointed leg is trying to reach a 

position it has not reached before, the annealing/exploration 

process begins.  At its most basic level, it is described by the 

pseudo code below: 

 
if (annealing) { 

 d0 = getDist(foot, target); 

 myJoint = selectRandomly(hip, knee); 

 perturbDirection = getRandomDirection(); 

 moveJoint(myJoint, perturbDirection); 

 d1 = getDist(foot, target); 

 if (d1 < d0) { 

  keepNewPosition(); 

  if (d1 is within tolerance to target) { 

   annealing = False; 

  } 

 } 

 else { 

  restoreOld(); 

 } 

} 

 

This basic system will find the joint angles that the leg 

needs to move its “foot” to the target position.  Note: in this 

version of annealing, only better solutions are accepted; i.e. 

the probability of accepting a worse solution is zero.  In this 

implementation, the system is written in python, and displayed 

using the basic vector drawing of the pygame library. Mouse 

positions selected by mouse clicks provide the target positions. 



International Research Journal of Advanced Engineering and Science 
 ISSN (Online): 2455-9024 

 

 

246 

 
Patrick McDowell, and Kuo-pao Yang, “Memory Based Learning Augmented with Simulated Annealing for a Two Joint Arm,” 

International Research Journal of Advanced Engineering and Science, Volume 5, Issue 4, pp. 244-247, 2020. 

The arm/leg will reliably find all positions that are within 

reach. A timeout has been added to shut the process off if the 

target supplied is out of reach. 

While the target is reliably reached, the movement to the 

target is not smooth, unless the algorithm is altered somewhat. 

The modification that is needed, is that once a “good move” is 

found, that is, once a move is found that brings the end 

effector closer to the target, that action is continued until either 

it is not good anymore, or the target is reached. By doing this, 

the movement is made to be much smoother. This change is 

reflected in the pseudo code below: 

 
if (annealing) { 

 d0 = getDist(foot, target); 

 if (goodMove) { 

  myJoint = goodJointToMove; 

  perturbDirection = goodDirection; 

 } 

 else { 

  myJoint = selectRandomly(hip, knee); 

  perturbDirection = getRandomDirection(); 

 } 

 moveJoint(myJoint, perturbDirection); 

 

 d1 = getDist(foot, target); 

 if (d1 < d0) { 

  keepNewPosition(); 

 

  if (d1 is within tolerance to target) { 

   annealing = False; 

  } 

  else { 

   goodMove = True; 

   goodJointToMove = myJoint; 

   goodDirection = perturbDirection; 

  } 

 } 

 else { 

  restoreOld(); 

  goodMove = False; 

 } 

} 

B. Using Memory to Return to Old Positions and Find New 

Ones Quicker 

Each time a targeted position is found, its location and the 

joint positions needed to reach that location are kept in a 

memory. If the target needs to be returned to, its joint 

positions can be retrieved, and the arm can be transitioned 

from its current position to the retrieved target by moving the 

hip and knee joints to the retrieved values. This simple system 

allows for very quick movements between known target 

positions.   

To make finding new positions quicker, a nearest neighbor 

lookup is used. The previously unseen target location is 

compared against all known positions. If there is a known 

position closer to the new target than the current position of 

the end effector, the arm is moved towards the known 

position. If at any point, along the way, the new target position 

is closer than the old position, the system switches to the 

annealing system to complete the process. To sum up the 

process, known positions are used to find new positions more 

quickly.   

As can be expected, the longer the process of moving to 

positions goes on, in general, the more quickly each new 

position can be found. This is especially true if the memory 

contains an evenly dispersed set of target positions. The 

pseudo code below outlines the process: 

 
# First we need to see if there is a stored position that is closer 

# than the current position of the end effector. 

tx, ty = getTargetLocation(); 

closeOne = getNearstNeighbor(tx, ty, mySpots) 

if (closeOne is closer than myArm.endEffector) { 

 traverse2Nearest = True; 

 nearX, nearY = closeOne.getPosition(); 

 nearHipAngle,nearKneeAngle = closeOne.getAngles(); 

} 

else { 

 annealing = True; 

} 

 

In the part of the code that controls the movement of the 

joints this pseudo code transitions the leg/arm towards the 

saved position, until either it gets there, or it gets closer to the 

target position than the saved position. Either way, when these 

conditions are detected the annealing system is then enabled to 

complete the process. 

 
# If there is a position that is closer, we use it to get to the new  

# position. 

if (traverse2Nearest) { 

# Get current distance of foot from target. 

      dist2TargetMyFoot = dist(myLeg.fx, myLeg.fy, tx, ty) 

             

# Get current distance of foot from target. 

dist2TargetNearSpot = dist(nearX, nearY, tx, ty) 

 

if (dist2TargetMyFoot > dist2TargetNearSpot) {             

        if (myLeg.hipAng < nearHip) { 

         myLeg.moveHip(1) 

  } 

        else if (myLeg.hipAng > nearHip) { 

         myLeg.moveHip(-1) 

  } 

        else if (myLeg.hipAng == nearHip) { 

   doNothing(); 

  } 

                        

        if (myLeg.kneeAng < nearKnee) { 

         myLeg.moveKnee(1) 

  } 

        else if (myLeg.kneeAng > nearKnee) { 

         myLeg.moveKnee(-1); 

  } 

        else if (myLeg.kneeAng == nearKnee) { 

         doNothing(); 

  } 

 

            if ((myLeg.hipAng == nearHip) and 

       (myLeg.kneeAng == nearKnee)) { 

         traverse2Nearest = False;           

              # Anneal until the leg gets close to the target. 



International Research Journal of Advanced Engineering and Science 
 ISSN (Online): 2455-9024 

 

 

247 

 
Patrick McDowell, and Kuo-pao Yang, “Memory Based Learning Augmented with Simulated Annealing for a Two Joint Arm,” 

International Research Journal of Advanced Engineering and Science, Volume 5, Issue 4, pp. 244-247, 2020. 

              annealing = True; 

             } 

 }              

      else { 

        traverse2Nearest = False 

            # Got real close to target on the way to the nearest spot. 

            # Anneal until the leg gets close to the target. 

            annealing = True; 

      } 

} 

IV. SUMMARY AND CONCLUSIONS 

This paper discusses a simple memory/annealing based 

methodology of finding the correct joint angles for a two 

jointed arm to reach target positions. The annealing like 

exploration is not a true annealing system in that it only 

accepts perturbations that bring the system closer to a solution, 

versus a true annealing system that would accept some adverse 

solutions using a temperature based probability system.  The 

systems effectiveness is enhanced by repeating helpful 

perturbations until they are found to not be helpful. 

The annealing exploration finds solutions that are then 

stored in a memory that is used to increase the overall 

efficiency of the system.  When a new target position for the 

arm to reach is supplied, a nearest neighbor recall of the 

previously found positions is used get a jump on the 

exploration. By doing this, the system uses known positions to 

reduce the exploration time needed to reach unknown 

positions. 

Control of the jointed arm is a testbed for this 

exploration/learning methodology. It is a first step on the way 

to finding a simple, biologically plausible, method of control 

that is aimed at joint control, balance, and body coordination 

problems that occur in simulations and robotics.   

REFERENCES 

[1] V. Gupta, R. Chittawadigi, and S. Saha, “RoboAnalyzer: Robot 

Visualization Software for Robot Technicians,” Proceedings of the 

Advances in Robotics (AIR '17), Article No. 26, 2017. 

[2]  K. Erleben, S. Andrews, “Inverse Kinematics Problems with Exact 

Hessian Matrices,” Proceedings of the Tenth International Conference 

on Motion in Games (MIG '17), Article No. 14, 2017. 
[3] Simon Haykin, “Neural Networks: A Comprehensive Foundation, 

Macmillan,” pp. 18-26, 1994. 

[4] (2013) Genetic Algorithm. In: Dubitzky W., Wolkenhauer O., Cho KH., 
Yokota H. (eds) Encyclopedia of Systems Biology. Springer, New York, 

NY. https://doi.org/10.1007/978-1-4419-9863-7_100560 

[5] van Laarhoven P.J.M., Aarts E.H.L. (1987) Simulated annealing. In: 
Simulated Annealing: Theory and Applications. Mathematics and Its 

Applications, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-

94-015-7744-1_2 

 


