

How logical are your decisions?

Hoang Hue Chi

DBA Program 2019-2020, Rennes School of Business, Rennes, France Faculty of English for Special Purposes, Foreign Trade University, Hanoi, Vietnam

Abstract— We make decisions everyday, some are just everyday while some are strategic. Amidst the Covid-19 spread, an example is a stay-home decision, some have their own versions of the name Covid-19 in their native language expressing a relaxing attitude while many have a more experienced view, and they even stay home before any official restrictions. What is worth noticing is that was at first, then the government weigh in, a vast majority decide to stay home. So whose decisions are more logical? It is politically correct to say that everyone has their own logics. And it is true to say that our decisions are influenced. Considering decision-making as an information processing process at the end of which is a decision made, factors constituting completeness of information integratedly moderate and mediate the relation between multi-institutional logics, categorization and decision making variables. This research, using mixed methods, empirically studies the moderated mediation effect of different moderators and mediators on decision making at individual level. Results confirm significant correlations. How do categorization and institutional logics influence decision-making quality in business activities?

Keywords— *Communication errors, Cognitive biases, Decision making, Institutional logics, Logics.*

I. INTRODUCTION

This piece of writing is one among studies to complete a doctoral thesis on business and management in amalgamation of human-machine intelligence. Taking decision-making as an example, it is among those absorb intelligence the most, and DSS, decision support system, which is an adaptive computerbased system, has been in use for a long time (Goslar and coauthors, 1986). More importantly, in recent years, given the availability of big data and development of AI (Artificial Intelligence) technologies, DSS (Decision support system) does not set itself aside from such enhancement. However, it is still a formidable challenge when decision-makers are asked if they make perfect decisions. This research renders some reasons why decisions are potentially imperfect, e.g. errors, constituting factors, role of technological change and development, social relations at work and such knowledge endorses an optimum configuration. In particular, it affirms the influence of categorization and institutional logics on decision-making quality and the existence and influential role of various mediators, variables causing indirect effect between these main categories, and moderators, variables whose interaction with one of the main categories change the causal effect, both constituting completeness of information such as frequency, effect, channel, load, timing, verification and learning channels. Consistency in decision-making is significantly mediated and moderated. After this introduction, the theorization section brief summarizes the conceptualized relationships between main concepts detailed in one of writer's previous conceptual paper, Hoang, H.C. (2019)

Influence of Multiple Institutional Logics and Social Categorization in decision making in business, Proceedings of Researchfora International Conference, ISBN 9789389090383. A theoretical framework and hypotheses are included. Hypothesizing is followed by a methodology section presenting how data was collected and analysed. The later sections are those for results, discussion and conclusions.

II. THEORIZATION AND HYPOTHESES

Main concepts in this research are diversity, institutional logics, social categorization, decision making. Diversity is a collective amount of differences among members with in a social unit (David, A.H. and Hock-Peng S., 2006). Institutional logics is defined as 'the socially constructed, historical patterns of material practices, assumptions, values, beliefs, and rules by which individuals produce and reproduce their material subsistence, organize time and space, and provide meaning to their social reality' (Thornton & Ocasio, 1999)¹. Regarding social categorization, according to Knapp and Dalziel (2007) and Hogg (2001), categorization function as a cognitive tool in order to simplify environment as well as accelerate in information processing. Social categorization is considered a cognitive categorization which involves human individuals. Cognitive biases are in place as social categories become salient. Knapp and Dalziel (ibid), refer to various authors' researches to summarize such biases as exaggerated similarities within social groups, exaggerated differences between social groups, and more favorable evaluation of groups of membership. And the concept of decision making is defined as the process of choosing from among several alternatives (Moorhead & Griffin, 2001). In this research, from information processing process perspective, decision-

¹ Institutional logics share common characteristics of what we usually call logics. In common sense it is understood as reasonable thinking. Schneckenberg (2019), with reference to other authors, referred to a definition from the perspective of cognitive and psychological theory that logic is a systematic form of reasoning conducted in accordance with commonly accepted principles of validity. Mutch (2018) referred to the concept of logic as a set of interconnected relations conditioning activity. In the same publication, this author makes reference to Prahalad and Bettis's study in organizational strategy in 1986, in which the term dominant logic describes sets of assumptions governing organizational action, based on which organizational actors are provided with a sense of direction and appropriateness. Rozaidy and Siti-Nabiha (2018) mentioned other authors, e.g. Powell's and DiMaggio's emphasis on beliefs system, networks, and social norms, Scott's definition of institutional logics as set of social prescriptions signifying a field's shared agreement on goals to be achieved and how to, and Friedland and Alford who recognize institutional logics as important principles based on which forms and practices have direction, attention has focus, meaning is attached to activities, and goals or values to be pursued are identified.

ISSN (Online): 2455-9024

making is viewed as an information processing process at the end of which is a decision made, an ultimate choice which is unlikely to change. Decisions are context-dependent, which stem from the fact that those who involve in the decisionmaking process form a diverse environment of (1) inconsistencies because of various preferences, multiplicity of well-defined preferences and different ideas from various identities, (2) coalitions and bargaining as a result of potential conflict, (3) power and exchange.

To study decisions and decision making, various theories have been used, including choice theories, system theory and information processing theory. Systems theory (Kast & Rosenzweig, 1972) views organizations as social structures embracing in themselves social psychology, power relations and principles of control. Authors also mention a cooperative system, by Chester Barnard in 1938, of physical, biological, personal and social aspects systematically exist as two or more individuals cooperate for a certain end(s). In the same publication, a publication of Katz Daniel and Robert L. Kahn in 1966 was referred to. These authors claimed that social structures are contrived systems made of men and imperfect. Social systems are the compositions of individuals of a wide range of attitudes, perceptions, beliefs, motivations, regular behavioral patterns and expectations. With regards to information processing theory, as defined by Kiss and S.Barr (2015) information processing (IP) is a process in which individuals and organizations make sense of their environment(s) in order to operate effectively within them. Daft and Weick (1984) identify three basic phases, which includes noticing, interpretation, and action. Superiority in information processing capabilities is associated with complexity of belief structures (Dollinger, 1984 and Levy, 2005). Shared meanings, frame construction, socialization processes, roles, contingencies such as power, type of organization, age heterogeneity of team members, and tenure heterogeneity must be taken into deliberation (Daft & Weick, 1984). Corner, Kinicki and Keats (1994) recognize that there are multiple possibilities of bias in choices influencing information gathering and alternative generation can be bettered. In respect of choice theories, while rational choice theory has its limitations such as inadequate attention to society context, loose cognitive and psychological assumptions, e.g. it assumes complete information or great degree of calculation capabilities, no innovative and creative capabilities, and the lack of moral dimension, Burns and Roszkowska (2016) acknowledge the dominance of Rational Choice Theory (RCT) in the conceptualization of human action in social sciences. In decision-making in particular, decision-makers by considering weighted alternatives and their accompanying consequences to choose an optimal choice among available alternatives. Bill Wooldridge and Birton Cowden (2020) when discussing bounded rationality referred to authors, including Cyert and March, stating that decisionmakers face informational and cognitive limitations, therefore they make acceptable instead of optimal decisions. The adapted and modified RCT, including prospect theory (Kahneman & Tversky, 1979) and norm theory (Kahneman & Miller, 1986), embraces the psychological, social, and material aspects of human choice behavior (ibid.). They take into consideration cognitive limitations of the decision-makers and recognize all those constituting components of institutional logics (Thornton & Ocasio, 1999, 2008 and Pache & Santos, 2013). Furthermore, according to neuroscientists by applying of theories in categorization in research, significant improvements in understanding of decision making can be achieved (Seger & Peterson, 2013).

Propositions

As the decision makers make choices and formulate their actions on the basis of available information, decision making is an information processing process. In addition, because it is context-dependent, in each of the processing phases, institutional logics and categorization exist and have their impact along the process (See Appendix A). Based on the theoretical framework above, it is necessary to take into account the complex, dynamic cultural, institutional and technological context in accompany with psychological and cognitive factors as characteristics of human actors, e.g. Chester Barnard's differentiation between logical processes and non-logical processes, Herbert Simon's model of bounded rationality and Kahneman's and Tversky's concept of heuristics and biases, it is possible to establish the causality between institutional logics as well as categorization and decision making. A cognitive framework doesn't assume either complete information or full knowledge of choice situation, but incomplete information accompanied by cost of acquiring information. According to Seger and Peterson (2013), the higher the level of complexity of a decision is, the more information must be integrated for a course of action. Considering sources of information, social categorization is an important domain, in which the interaction between preexisting knowledge and category learning is a potential source of stereotypes and biases. These researchers also state that categorization theories haven't placed adequate emphasis on factors, e.g. perceptual information processing, value and selection of response. Communication errors, in this thesis proposal, refer to cognitive errors occurring in the person(s)person(s) exchange, which affect decision-making as an information processing process. When individuals interact with each other, in decision-making in particular, their human choice behaviors expose the process to cognitive errors in forms of biases, stereotypes, unsolved conflict caused by the spontaneous presence of social categorization and institutional logics. These limitations affects outcomes of the process measured in several dimensions, including efficiency (Stumpf, Zand & Freedman, 1979). Accordingly, it can be proposed that institutional logics and social categorization have an impact on decision making (See Appendix A). This causal relation is further supported by findings in a focus group study conducted in 2019 (See Appendix B). Author posit Proposition 1: In the context of diversity, institutional logics influence decision making. Proposition 2: In the context of diversity, social categorization influences decision making.

Decisions, from information processing perspective, have inherent multiple biases as a result from how the information processing functions. In answering the research question, In

the context of diversity, how do categorization and institutional logics take effect on decisions?, given the possible causal relations between institutional logics as well as categorization and decision-making and their possible effect on decision making as an information processing process, it is possible to hypothesize as follow

Do or do not?

Hypothesis: Humans' social properties, institutional logics embedded in actors participating in the decision-making process as well as the social categorization among themselves, influence decision-making in business activities.

How?

(1) Moderation: Under the condition of existence of cognitive errors (W), social properties of actors (x) lead to decision-making qualities (y).

(2) Mediation: Social properties (x) predict occurrence of cognitive errors (M), which in turn predicts decision-making qualities (y).

III. METHODOLOGY

A. Operationalization: Concepts, constructs and measures

Concepts such as diversity, institutional logics, social categorization, decision making are defined as the previous section of main concepts section of theoretical framework. Constructs and measures are decision made, decision change, decision time as dependent variables, institutional logics as independent variables, mediator(s) is completeness of (as representation of cognitive information errors information-oriented biases) and moderator(s) is completeness of information (as representation of cognitive errors, such as social categorization). Control variables are experience, gender, year of birth. In particular, to answer the research question - In the context of diversity, how do categorization and institutional logics take effect on decisions? Model specifications are as follow

Dependent variables: (1) Decision (Yes, No, or Undecided, Norminal - categorical), (2) Decision change (Yes or No, Binary), (3) Change in length of decision time (More, Less or Unchanged, Nominal - categorical)

Independent variables: (1) Specific institutional logics (Scales, Ordered - categorical), (2) Social categorization variables (used as criteria for grouping), e.g. Learning channels (Visual, Auditory, Haptic, Nomial - categorical)

Integrated moderation and mediation effects: Completeness of information (Interaction terms), (1) Frequency of use by information types, i.e forms, format (Scales, Ordered - categorical), (2) Effect of use by information types, i.e forms, format, by information characteristics - Positive(Scales, Ordered - categorical), Effect of use by information types, i.e forms, format, by information characteristics - Negative(Scales, Ordered - categorical), (3) Timing of availability (Scales, Ordered - categorical), (4) Load of information (High, Low at time of availability and Scales, Ordered - categorical), (5) Information channels by information characteristics - Positive(Scales, Ordered -Information categorical), channels by information

characteristics - Negative(Scales, Ordered - categorical), (6) Verification (Yes or No, dichotomous), (7) Learning channels variables (Scales, Ordered - categorical) and (8) Preferred learning styles variables (Yes or No, Binary and Scales, Ordered – categorical).

Control variables: Experience (Years, count), Year of birth (Year, countinous)

Dummy variables: Gender (Female, Male, Binary)

B. Data Collection

Sampling methods: Cluster sampling

The population are students at Foreign Trade University, Hanoi Campus. Institutional logics and social categorization are established through education and other social interactions. Main subjects, as a state university in Vietnam and specialized in trade as in this its name, covering all these logics from politics to micro transactions. This population is accessible through professional contacts, and has a good possibility to collect longitudinal data, from freshmen till alumni. It is possible to benchmark on the dimension of the academic business education against the on-service business characteristics. Sample size, for 5% margin of error on a population of around 15000 individuals, calculated following formula by Saunders, Lewis and Thornhill (2016) is approximately at least 400 respondents.

Sampling frame is class lists in ETCs system, clusters are naturally formed as students registered for classes, cluster grouping by classes per year of education, e.g Year 1 - Year 4. Clusters are numbered, unique number each, as in ETCs system. Sample clusters are selected by random sampling. The sampling frame is scattered in academic timetable for each year, into numbered classrooms with class name lists, in each classroom there is potential cluster sample identified by a unique number - class, year, subject - assigned by the training department. One classroom equals a class on the list. A few clusters are selected by randomly drawing from room numbers. N.B: Year 1 are on 1st floor, a certain time in a certain day in the week, and the same applied for other years. Questionnaires are then delivered to each member of the selected class in the selected classroom.

Surveys are conducted following best practices published by BECA, USA. The questionnaire is designed having taken into consideration issues in design discussed by Lietz (2010), to collect data for variables specified, e.g. learning channels and styles to understand how people learn, i.e. how they acquire knowledge and capabilities and develop motivations matters so as to identify differences which influence their information processing process. After a pilot and a focus group conducted respectively in November 2018 and September 2019, the adjusted questionnaire (See Appendix C) is structured in 4 sections, one for demographic data (open questions), one for the presence of institutional logics (Likert Scales, with defined concepts), and one for learning channels (questionnaire produced by Lynn O'Brien in 1985) and styles, adjusted from Kolb's (Closed Yes/No question for preferences and for behavioral patterns are Likert scale frequency questions (Chang & Krosnick, 2003; Atsushi & Osamu, 2010;

Brown, 2010; Lietz, 2010), one for decision (Yes or No, supported by Likert Scales for institutional logics leading to the decision) and one for mediation effects (Likert scales²). Cronbach's alpha are from 0.74 to 0.91 and factor analysis shows above average relevance of the variables.

C. Data Analysis

SEM structural equation models (SEM and GSEM) on data collected confirm what is hypothesized, an integrated moderation and mediation model, which is supported by a focus group study assignment. Many in (G)SEM models for integrated moderation and mediation effects have correlations p-values and model fit of at least .05. Power of results are not interpreted only on p-values, but also in balance between statistical significance and practical meaning. In particular, in GSEMs logits are used, ordered logit for mediators (Likert scales, load, channel, effect, timing of information are on 5 scales - 1 Not at all, 2 A little, 3 Moderately, 4 Significant, 5 Turn-around and frequency is on 5 scales of 1 Rarely, 2 Occasionally, 3 Sometimes, 4 Usually and 5 Always), multinomial logit for decisions (1 Undecided, 2 Yes and 3 No) and change in decision time (1 Lengthen, 2 Shorten and 3 Equal), binomial logit for decision change (0 Unchanged and 1 Changed) and verification mediator (1 Yes and 2 No). Gaussian is used for individual decision time as a continuous variable. Items related to institutional logics range from 1 Not at all, 2 A little, 3 Moderately, 4 Highly and 5 Extremely. Learning channels as moderator has 4 categories of 1 Visualer, 2 Auditoree, 3 Hapticer and 4 Balanced.

While most of the variables are categorical, therefore the best modeling is GSEM, generalized SEMs, which fits not just linear but generalized linear models and categorical variables, SEM is also applicable for this data sets as all variables have standard deviations between 0-3, individual decision time which is a continuous variable with a standard deviation of 4.7 is transformed using ln(), log transformation, to achieve the criterion of normal distribution. With SEM, it is possible to have moderated mediation with a categorical moderator by a multiple group analysis using the group option. However, interactions are not explicit in the model. They are implicit in the multiple group analysis. Analysis is conducted on both GSEM and SEM, results in cases are comparable, and some correlations while are significant in SEM are not so in GSEM. Assumption in Standard linear SEMs is all variables in the model are distributed normally, generalized SEMs exclude observed variables and categorical latent variables from this assumption. Standard linear SEMs are a subset of generalized SEMs, the joint normality can be relaxed. The default estimation method is maximum likelihood, to obtain the variance-covariance matrix of the estimates (VCE), including standard errors, robust and clustered techniques are used alternatively for comparable results. The former requires errors are to be independently distributed while it does not require the errors to be normal nor identically distributed -

robust to heteroskedasticity of the errors. The latter is a generalization relaxing the assumption of independently distributed errors, instead requires independence between the 14 clusters. Results are mostly nearly identical although there are a few cases where improved accuracy of standard errors thanks to such relaxation change coefficients and significance of the paths. Pairwise correlation coefficients between the variables are reported with their significance levels. Dummy variable, gender (0 Female, 1 Male), and control variables, year of birth (7 categories) and year of experience (8 categories) are also added in the saturated models.

IV.RESULTS

Result tables are in Appendix D. In general, results affirm correlations at significance level of p<0.1, p<0.05 and p<0.001. In Model 80 and Model 81, even though the p-values are 0.000s, pairwise correlations (e.g. Community – Decision change, 0.9186) are not meaningful, as a result hypothesis is not confirmed by these models. Not to mention moderated mediation significant when studying differences in strength of effect between learning channels categories of Visual, Auditory, Haptic and Balanced (See Appendix D: Table 29), hundreds of p-values are significant at 0.001, having taken into account the importance of pairwise correlations between variables in the models, Models summarized in Appendix D have a level of confidence intervals in pairwise correlations at least around 90%. Correlation results confirm influence of institutional logics on decision making at individual level both in mediated relations, GSEM models (See Appendix D: Tables 1-12), via different mediators, e.g. frequency of use by information types, effect of use by information characteristics - positive or negative, timing of availability, load of information at time of availability, information channels by information characteristics - positive or negative, and verification, either enhancing or reducing completeness of information in communication. SEM models (See Appendix D: Tables 13-28) further represent significant moderated mediation between institutional logics variables and decision making variables with learning channels as a moderator. Individuals categorize themselves as either learning mostly through visual, auditory or haptic channels or some have a balance between these three. This categorization moderates both paths of the indirect effect, and each category in the moderator correlates with the independent variables and dependent variables without uniformity, i.e. coefficients and p-values across categories are not alike (See Appendix D: Table 29). Control variables - year of birth, experience and dummy variable - gender are not significant in all saturated models.

For examples, mediation effects in Models 1-12, show that how high individuals' respect for and care about family values may affect the likelihood that they change their decision. However this is not simply a direct effect, instead it is an indirect effect depending on not only whether the information is positive or negative and through which channels it is communicated, what forms it is, how frequent such forms are used, their usual effect, at what time the information is made available but also the load. In particular, results affirm

² ScienceDirect provides a comprehensive overview of Likert Scales, referring to various researches using different constructs on scales of this type. https://www.sciencedirect.com/topics/psychology/likert-scale.

ISSN (Online): 2455-9024

mediation effect of mainstream media regardless of information characteristics, i.e. whether it is positive or negative information. While other channels don't have a meaningful role, commercial media and close social contacts as well as family function as mediators when the information is positive. The frequency at which individuals use information in images also mediates that path to decision change, NB p-value is more significant with robust vce than clustered vce. When the information is positive, the usual effect of images on these individuals can cause indirect effect. On the condition that the load is big, whether the information is communicated before discussion or while discussion mediates how the independent variable affects decision change.

Other examples are Models 29-36. In these Models, the level at which a person obeys state laws affects the likelihood of decision change, however the path is mediated by channel of communication, frequency of use and usual effect. Specifically, similar to the mediation in Models 1-12, mainstream media regardless of information characteristics can cause indirect effect. While commercial media mediates to decision change when the information is positive, social network takes this role when the information is negative. How often individuals use information in forms of sound or images with sounds or augmented form can also function as mediators while other forms do not. When the information is positive, the usual effect of images mediates the path between the independent variable and decision change. Clustered technique increases significance levels in Models 30, 31, 33, 34, 36, in contrast robust technique leads to higher significance in Model 35

Regarding integrated effect, Models 75-79 present moderated mediation patterns by which how high individuals respect for and care about family values can indirectly decides if they will change their decision or not through the mediation of timing, load and verification. Both paths of such mediation is moderated by learning channels, and in most cases clustered vce increases significance level. Under the moderation of learning channels, high load of information before or while discussion can mediate to decision change, or regardless if the load, just availability before discussion can function in the same way. In Models 108 - 113, how well individuals obey state laws indirectly affects decision change under the moderation of learning channels which moderates both paths of the mediations caused by channel of communication. The indirect effects exist when the information is positive and diffused through commercial media, negative information is transmitted in mainstream media or social network. For a better understanding of the effect of each category in the moderator, some examples are in Table 29.

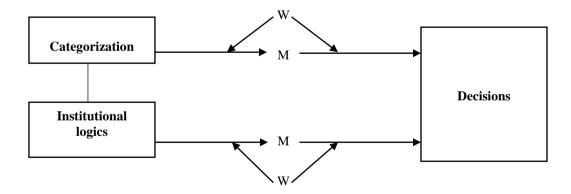
V. DISCUSSION AND CONCLUSION

Results affirm integrated moderation and mediation effects between institutional logics items and decision related variables, however it is not necessarily true in other research contexts provided that components in the concept of institutional logics, e.g. socially constructed, historical patterns of material practices, assumptions, values, beliefs, and rules are highly culture-specific or nationally specific. Results from the data analysis, therefore, can only be generalized to the population sampled. Concerning the dependent variables, even though decision made, decision time, decision change and change in decision time can be associated with decisions regardless of decision typology, in this research the situation described is an investment decision, whether to invest or not to invest in a clean technology which might leads to innovations, market expansion, market dominance and increased profitability, so basically the decision being studied can be classified as a strategic decision rather than a generic one. As a result, this limits the generalization of findings to this certain category of decision. In terms of reliability, the consistency of the findings, i.e. replications are conditional on symmetry in population characteristics. Validity of findings is enhanced through the mixed methods applied, from conceptualizing the causal relationship based on existing literature, conducting pilot study, using focus group so as to hypothesize to quantitative analysis to confirm correlations with the awareness that correlations do not necessarily mean causality.

For the research question of how categorization and institutional logics influence decision-making quality in business activities, this mixed methods study using (G)SEM models, despite its minimum sample size and population of only business students, contributes valuable understanding of the relation between variables in an integrated moderation and mediation effect. The indirect and interaction effects between the three main categories - institutional logics, completeness of information and decision-making quality give a reason why decisions are potentially biased and imperfect. Level Completeness of information, which is decisive in decision making, varies as information, either negative or positive, is available at different time, with various load, in alternative forms, through a variety of information channels, used at various frequency, of different effect on users, who have different verification habit. Such variation mediates the paths between institutional logics components and decision variables. Learning channels, alternatively visual, auditory or haptic or a balance between them, also alter completeness of information, but function as a moderator affecting both paths in an integrated model instead of being a mediator. In this way it shows how to enhance decision-making, e.g. adjust quality dimensions. Are logics of DSS and AI flawless? Or the flaw is that institutional logics are not embedded in such logics? How logical is our logic?

ISSN (Online): 2455-9024

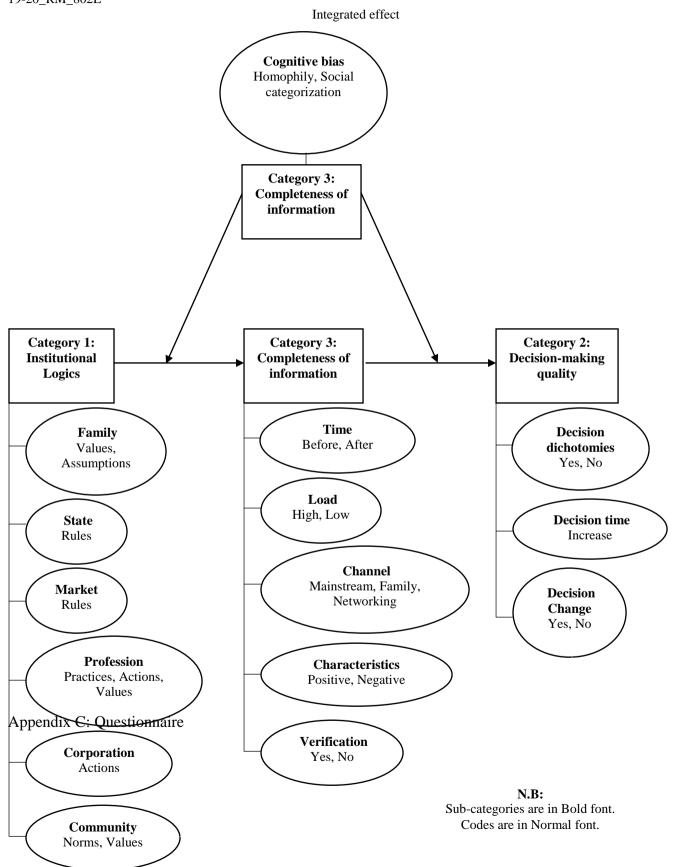
APPENDIX


Appendix A: Conceptualization

Hoang, H.C., 2019, Influence of Multiple Institutional Logics and Social Categorization in decision making in business, ISBN 9789389090383

Decision making under categorization and institutional logics

Div	versity	← →	Information process				
Categorization	Institutional logics		Information process				
Subjective data scanning	Institutionally compatible	Completeness of Information	Noticing (Scanning data signaling surrounding environment)				
Categorized meaning	Logics-based knowledge structure		Interpretation (Sense-making, cognitive theories)				
Categorization- biased	Logic-neutralized		Action (on beliefs of surroundings)				
Sı	ibsequent characteristic Inconsisten	cs of decision mal	ē .				
Coalitions and Bargaining: Strong vs. Weak Power: Sole source vs. Diverse power sources via Empowerment							
100	Models of exchange: (


Integrated moderation and mediation effects in group diversity M: Mediator W: Moderator

Appendix B: Findings from focus group

Hoang, H.C., 2019, Influence of communication errors caused by the presence of multiple institutional logics and social categorization in decision-making in business activities – A focus group report, Rennes School of Business, DBA Program 2019, 19-20_RM_802E

Hoang Hue Chi, "How logical are your decisions?" International Research Journal of Advanced Engineering and Science, Volume 5, Issue 2, pp. 61-89, 2020.

ISSN (Online):	2455-9024

Questionnai	re				PID:				
2018		Gender	:		Hair	color:			
Name:		Marital	status :		Eye	color:			
Year of bir	th:	Height	:		Favo	rite hai	r colo	or:	
Nationality	/:	Weight	:		Favo	rite eye	colo	r :	
Favorite co	olor:	Profess	ion :		Expe	rience:		yea	r
	Do you respect and care for family va Are you a community pe								
	Do you 1	espect and ca	are for family val	ues?	1	2	3	4	5
		Are you	a community per	son?	1	2	3	4	5
			Are you religi	ous?	1	2	3	4	5
		Ar	e you laws-obedi	ent?	1	2	3	4	5
		Are y	ou a material per	son?	1	2	3	4	5
		1	Are you professio	nal?	1	2	3	4	5
		Are c	ustomers your Ki	ngs?	1	2	3	4	5
Scales:	1: Not at all	2: A little	3: Moderately	4: 5	Signifi	cantly	5:	Extre	nely

Community person: one who relates to people living in the same area, social group, sharing the same interests

Material person: one who relates physical objects or money rather than emotions or the spiritual world © Cambridge University Press 2013

Professional: having the qualities that you connect with trained and skilled people, such as effectiveness, skill, organization, and seriousness of manner © Cambridge University Press 2013

LEARNING CHANNEL PREFERENCE

Read each sentence carefully and consider whether it applies to you. On the line, write: 3 often applies 2 sometimes applies 1 never or almost never applies

Preferred Channel: VISUAL

- 1. I enjoy doodling and even my notes have lots of pictures, arrows, etc. in them.
- 2. I remember something better if I write it down.
 - 3. When trying to remember a telephone number, or something new like that, it helps me to get a picture of it in my head.
 - When taking a test, I can "see" the textbook page and the correct answer on it.
 Unless I write down directions, I am likely to get lost or arrive late.
- 6. It helps me to LOOK at a person speaking. It keeps me focused.
- 7. I can clearly picture things in my head.
- 8. It's hard for me to understand what a person is saying when there is background noise.
 - It's difficult for me to understand a joke when I hear it.
 - 10. It's easier for me to get work done in a quiet place.

Visual Total

Preferred Channel: AUDITORY

- 1. When reading, I listen to the words in my head or read aloud.
- To memorize something it helps me to say it over and over to myself.
- 3. I need to discuss things to understand them.
- I don't need to take notes in class.
- 5. I remember what people have said better than what they were wearing.
- I like to record things and listen to the tapes.
 I'd rather hear a lecture on something rather than have to read it in a textbook.
- 8. I can easily follow a speaker even though my head is down on the desk or I'm staring out the window.
 - I talk to myself when I'm problem solving or writing.
 - 10. I prefer to have someone tell me how to do something rather than have to read the directions myself.

Auditory Total

Preferred Channel: HAPTIC

- 1. I don't like to read or listen to directions; I'd rather just start doing.
- 2. I learn best when I am shown how to do something and then have the opportunity to do it.
 - I can study better when music is playing.
- 4. I solve problems more often with a trial-and-error, than a step-by-step approach.
- My desk and/or locker looks disorganized.
- I need frequent breaks while studying.
 - 7. I take notes but never go back and read them.
 - I do not become easily lost, even in strange surroundings.
 - 9. I think better when I have the freedom to move around; studying at a desk is not for me.
- 10. When I can't think of a specific word, I'll use my hands a lot and call something a "what-cha-ma-call-it" or a "thing-a-ma-jig."

Haptic Total ____

@1985 Lynn O'Brien, Specific Diagnostics, Inc., Rockville, Maryland

LEARNING STYLES

What do you prefer?

Please circle Yes or No

How often do you usually do it?

Please circle 0 (Never), 1 (Rarely), 2 (Occasionally), 3 (Sometimes), 4 (Often), 5 (Always)

Concrete experience	Yes	No	0	1	2	3	4	5
Compare it with reality	Yes	No	0	1	2	3	4	5
Identify differences (Problems)	Yes	No	0	1	2	3	4	5
Reflective observation	Yes	No	0	1	2	3	4	5
Select a problem	Yes	No	0	1	2	3	4	5
Consider alternative solution	Yes	No	0	1	2	3	4	5
Abstract conceptualization	Yes	No	0	1	2	3	4	5
Evaluate consequence of solution	Yes	No	0	1	2	3	4	5
Select a solution	Yes	No	0	1	2	3	4	5
Active experimentation	Yes	No	0	1	2	3	4	5
Execute the solution	Yes	No	0	1	2	3	4	5
Choose a model or goal	Yes	No	0	1	2	3	4	5

ISSN (Online): 2455-9024

Decision: Invest (Yes) or Not to invest (No)

Situation: A car manufacturing company has to decide whether to invest or not to invest in a green technology. If the investment is successful, this company can maintain and/or enlarge their market to earn better profit. If it is not, the company can still benefit from innovations along the investment process or there won't be any innovations at all.

Please fill each blank with the importance of reasons for Yes or No decision.

1: Not at all 2: A little 3: Moderately 4: Significantly 5: Extremely Please complete **both columns**. Then, circle **Invest** or **Not to invest**

Invest

Not to invest

____Customers are kings, so I want to provide the best products to them.

Me and everyone around share our living environment, so I want to help protect the environment.

____My family has a tradition of protecting the environment, so I think investing in clean technology is the right thing to do.

_____Different religions teach people to do good deeds, live with conscience. Environmental protection is a good and conscientious job.

____The market shows a high demand for eco-friendly cars.

____Investing in clean technology is a common trend for sustainable development.

____This investment is not against the law.

Delivering products with good indicators helps buyers comply with relevant laws.

If I need more capital than available, I can call for capital from the state, banks, investors and friends.

Investing in clean technology brings certain improvements in thinking, production processes and management.

This investment can be a good example to encourage other companies in the same industry to move towards sustainable development.

Market shows that investing in this technology will increase the competitiveness of products.

My family already has a business in this industry, I took their advice and decided to invest.

I have consulted various sources of information. Investing in this technology is definitely profitable.

___Other reason(s): ____

Customers want good products, but they must be affordable.

Environmental protection can be done in many ways. Investing in clean technology is not the only way.

My family is not concerned about environmental protection so I do not see the importance of clean technology.

Different religions teach people to do good deeds, live with conscience. Instead of investing in clean technology, I can do volunteer work.

The market shows that eco-friendly cars have a small market share.

Investing in clean technology is a common trend for sustainable but costly to develop.

This investment is not necessarily legal.

There are illegal devices that can bring indicators to a level that is consistent with the relevant laws.

If I need more capital than available, I cannot call for capital from the state, banks, investors and friends.

Investing in clean technology brings certain improvements in thinking, production and management processes, but I do not need these improvements.

Other companies in the same industry may also invest in the same technology and thus it is unlikely that the investment will increase the competitiveness of the product.

Without this company, there will be another company to lead the trend, promote sustainable development.

My family has no business in this industry, I have no sources of reference without motivation for competition, market or personal goals.

I have consulted various sources of information. There is still a risk of business ethics.

WHAT MAKES YOU CHANGE YOUR DECISION?

1. What are the forms of information you use to make decisions?

Please indicate frequency of use?

Select 1 (Rarely), 2 (Occasionally), 3 (Sometimes), 4 (Usually), 5 (Always)

Images	1	2	3	4	5
Sounds	1	2	3	4	5
Texts (without images)	1	2	3	4	5
Images and Sounds	1	2	3	4	5
Texts (with images)	1	2	3	4	5
All these augmented source	1	2	3	4	5

2. How do these formats affect your decisions?

Select 1 (Not at all), 2 (A little), 3 (Moderately), 4 (Significantly), 5 (Turn-around)

Positive information

Images	1	2	3	4	5
Sounds	1	2	3	4	5
Texts (without images)	1	2	3	4	5
Images and Sounds	1	2	3	4	5
Texts (with images)	1	2	3	4	5
All these augmented source	1	2	3	4	5
Negative information					
Images	1	2	3	4	5
Sounds	1	2	3	4	5
Texts (without images)	1	2	3	4	5
Images and Sounds	1	2	3	4	5
Texts (with images)	1	2	3	4	5
All these augmented source	1	2	3	4	5
3. How important is timing of availability of such informati	ion?				

Select 1 (Not at all), 2 (A little), 3 (Moderately), 4 (Significantly), 5 (Turn-around)

Before discussion	1	2	3	4	5
While discussion	1	2	3	4	5
Close to decision point	1	2	3	4	5
After decision made	1	2	3	4	5

4. How important is the load of such information? Select

1 (Not at all), 2 (A little), 3 (Moderately), 4 (Significantly), 5 (Turn-around)

A lot, before discussion	1	2	3	4	5
Little, before discussion	1	2	3	4	5
A lot, while discussion	1	2	3	4	5
Little, while discussion	1	2	3	4	5
A lot, close to decision point	1	2	3	4	5
Little, close to decision point	1	2	3	4	5
A lot, after decision made	1	2	3	4	5
Little, after decision made	1	2	3	4	5

5. How do channels of information affect your decisions? Select

1 (Not at all), 2 (A little), 3 (Moderately), 4 (Significantly), 5 (Turn-around)

	Mainstream (State-owned media)	1	2	3	4	5
	Commercial media	1	2	3	4	5
	Social network	1	2	3	4	5
	Close social contacts	1	2	3	4	5
	Family					
Negative in	nformation					
	Mainstream (State-owned media)	1	2	3	4	5
	Commercial media	1	2	3	4	5
	Social network	1	2	3	4	5
	Close social contacts	1	2	3	4	5
	Family					

6. Do you verify information depending its on formats?

Select Yes or No

Positive information

Format	Sel	lect
Images	Yes	No
Sounds	Yes	No
Texts (without images)	Yes	No
Images and Sounds	Yes	No
Texts (with images)	Yes	No
All these augmented source	Yes	No

7. According to you, how do these above factors in affect the length of time necessary for your decision making?

Equal

Shorter

Longer

Other:

Appendix D: Result tables

			GSEM				
		Table 1: Mediation et	ffect on decision chang	ge Model 1- Model 6			
	(1)	(2)	(3)	(4)	(5)	(6)	
	Channel_Main Posi	Channel_Com Posi	Channel_Cliq Posi	Channel_Main Neg	Freq Images	Freq Sounds	
Family	0.516**	0.537**	0.403*	0.463**	0.372*	0.322	robust
-	(0.188)	(0.182)	(0.184)	(0.151)	(0.181)	(0.185)	
	0.516**	0.537**	0.403*	0.463***	0.372	0.322	cluster
	(0.198)	(0.177)	(0.189)	(0.135)	(0.217)	(0.179)	
Decision change							
-	0.629***	1.115***	0.404**	0.434***	0.469***	0.374**	robust
	(0.117)	(0.207)	(0.139)	(0.0973)	(0.129)	(0.130)	
	0.629***	1.115***	0.404*	0.434***	0.469***	0.374**	cluster
	(0.0926)	(0.226)	(0.160)	(0.103)	(0.128)	(0.141)	
Ν	421	421	421	420	427	426	

Standard errors in parentheses * p<0.05 ** p<0.01 *** p<0.001"

Table 2: Mediation effect on decision change Model 7 - Model 12

	(7)	(8)	(9)	(10)	(11)	(12)	
	Efimages Posi	Aug Efneg	Timing Bef	Timing Whi	Load Lots Bef	Load Lots Whi	
Family	0.563***	0.340	0.351	0.314	0.568***	0.395*	robust
	(0.166)	(0.174)	(0.201)	(0.187)	(0.164)	(0.195)	
	0.563***	0.340	0.351*	0.314*	0.568***	0.395*	cluster
	(0.128)	(0.232)	(0.144)	(0.141)	(0.156)	(0.172)	
Decision change							
-	0.825***	0.648***	0.477***	0.923***	0.497***	0.617***	robust
	(0.140)	(0.102)	(0.109)	(0.166)	(0.113)	(0.149)	
	0.825***	0.648***	0.477***	0.923***	0.497***	0.617***	cluster
	(0.127)	(0.114)	(0.122)	(0.157)	(0.0956)	(0.183)	
Ν	425	423	424	424	416	413	

Standard errors in parentheses

	(13)	(14)	(15)	(16)	
	Freq Sounds	Efsounds Posi	Load LiAf	Vefi Twoimages	
Community	0.309**	0.203	0.312**	0.311	robust
-	(0.120)	(0.115)	(0.111)	(0.171)	
	0.309**	0.203*	0.312***	0.311	cluster
	(0.0975)	(0.0961)	(0.0941)	(0.174)	
1b.Undecided					
2.Yes					
3.No					
	-0.348	-0.425	-0.310	-0.920	robust
	(0.222)	(0.265)	(0.176)	(0.476)	
	-0.348	-0.425	-0.310*	-0.920*	cluster
	(0.188)	(0.273)	(0.139)	(0.418)	
Ν	426	424	415	419	

Table 4: Mediation effect	on decision time	Model 17 – Model 21
---------------------------	------------------	---------------------

	(17)	(18)	(19)	(20)	(21)	
	Timing Af	Load	Load LiAf	Vefi	Vefi	
	Tinning Ai	LiNear	LUau LIAI	Sounds	Twoimages	
Community	0.191	0.262*	0.312**	0.400**	0.311	robust
	(0.111)	(0.117)	(0.111)	(0.14)	(0.171)	
	0.191	0.262**	0.312***	0.400**	0.311	cluster
	(0.127)	(0.0916)	(0.0941)	(0.153)	(0.174)	
Decision time						
	0.0203*	0.0198	0.0272**	0.0457	-0.0648*	robust
	(0.00913)	(0.0112)	(0.00997)	(0.025)	(0.033)	
	0.0203**	0.0198	0.0272	0.0457*	-0.0648*	cluster
	(0.00769)	(0.0110)	(0.0141)	(0.0208)	(0.0259)	
Ν	424	412	415	417	419	

="* p<0.05 ** p<0.01 *** p<0.001"

			Table 5: Mediation		n Model	28					
			CI	(28)							
		Ch	Ch annel_Com Neg	annel_Com Neg							
		CI	Religion	0.140	rc	obust					
			Religion	(0.0818)	IC.	Joust					
				0.140*	cl	uster					
				(0.0640)							
			1b.Undecided								
			2.Yes								
			3.No	-0.396	**	obust					
				(0.252)	IC	Joust					
				-0.396	cl	uster					
				(0.244)							
			Ν	419							
			Standard e ="* p<0.05	rrors in parenthe ** p<0.01		o<0.001"					
			L	•	1						
	(29)	(30) Table	6: Mediation effect on (31)	decision change (32)	Model 29	$\frac{0 - \text{Model 36}}{(33)}$	(34)	(3:	5)	(36)	
	Channel_Main Posi	Channel_Com Posi			Neg F	req Sounds	Freg Imagso			nages Pos	i
State	0.496***	0.350**	0.285*	0.282*	5	0.320**	0.328**	0.26		0.270*	robus
	(0.137)	(0.124)	(0.125)	(0.143)		(0.111)	(0.122)	(0.1		0.131)	
	0.496***	0.350***	0.285**	0.282*		0.320***	0.328***	0.2		.270**	cluste
Decision shares	(0.108)	(0.0795)	(0.102)	(0.127)		(0.0970)	(0.0844)	(0.1	48) (().0832)	
Decision change	0.629***	1.115***	0.434***	0.322**		0.374**	0.723***	0.454	1*** 0	825***	robus
	(0.117)	(0.207)	(0.0973)	(0.109)		(0.130)	(0.137)	(0.1		0.140)	TODUS
	0.629***	1.115***	0.434***	0.322*		0.374**	0.723***	0.454		825***	cluste
	(0.0926)	(0.226)	(0.103)	(0.146)		(0.141)	(0.114)	(0.1		0.127)	
N	421	421	420	420		426	424	42	26	425	
* p<0.05	Standard error ** p<0.01	rs in parentheses *** p	< 0.001"								
•	-	-									
	(37)	(38)	7: Mediation effect on (39)	(40)	(41)	<u>/ – Model 44</u> (42		43)	(44)		
	Efsounds Posi	Ef ImagSou Posi		· · /	(41) images N			Lots Bef	Load Lots		
State	0.226	0.229	0.255*		0.326**	0.28		38**	0.324		obust
	(0.130)	(0.128)	(0.120)	(0.146)	(0.123)	(0.12		122)	(0.144		
	0.226	0.229*	0.255*		0.326**	0.283		38**	0.324		cluster
D · · · 1	(0.144)	(0.0984)	(0.121)	(0.150)	(0.106)	(0.10	(0.	115)	(0.142	2)	
Decision cha	0.618***	0.726***	0.685***	0.756***	0.628***	0.477	*** 0.40	97***	0.617*	** .	obust
	(0.141)	(0.150)	(0.143)	(0.117)	(0.028^{+++})	(0.10		113)	(0.149		obust
	0.618***	0.726***			0.628^{***}			97***	0.617*		cluster
	(0.121)	(0.137)	(0.106)		(0.0627))956)	(0.183		
Ν	424	424	425	425	423	424	4 4	16	413		
* p<0.05		rs in parentheses *** p<	0.001"								
		Table	8: Mediation effect on	decision change	Model 45	5 – Model 49					
		(45)	(46)	(47)		(48)		(49)			
		Channel_Com Posi				Channel_Cli		Images			
	Market	0.310**	0.228	0.252*		0.316*		257*	robust		
		(0.114) 0.310**	(0.122) 0.228	(0.122) 0.252)	(0.123 0.316*		.124) .257	cluster		
		(0.113)	(0.160)	(0.232))	(0.129		.237	cluster		
	Decision change	1.115***	0.434***	0.512**		0.337*		69***	robust		
		(0.207)	(0.0973)	(0.135))	(0.117) (0	.129)			
		1.115***	0.434***	0.512**		0.337*		69***	cluster		
	Ν	(0.226) 421	(0.103) 420	(0.107) 419)	(0.106 420		.128) 427			
		Standard er	rors in parentheses			420					
	* p<0.05	** p<0.01	*** [o<0.001"							

_	Tal	ole 9: Mediation	effect on decisio	on change N	10del 50 – N	Iodel 53	
		(50)	(51)	(4	52)	(53)	
		Freq Sounds	Efimages Neg	Textima	ges Efneg	Timing Bef	
	Market	Ô.225	0.338**	0.2	244*	0.240*	robust
		(0.122)	(0.118)	(0	112)	(0.113)	
		0.225*	0.338***		44**	0.240**	cluster
							cluster
	D · · · 1	(0.108)	(0.0999))909))2***	(0.0923)	1 .
	Decision change	0.374**	0.628***		2***	0.477***	robust
		(0.130)	(0.112)		126)	(0.109)	
		0.374**	0.628***		2***	0.477***	cluster
		(0.141)	(0.0627)	(0.	100)	(0.122)	
	Ν	426	423	4	23	424	
	Standar	d errors in paren	theses				
	* p<0.05	* p<0.05	* p<0.05				
	•	- 			1.54 . 14 . 1	1.57	
Г		Table 10: Media					
		(54)	(55)		(56)	(57)	
		Channel_Com N	0 1		Twoimag	Timing Bef	
	Market	0.252*	0.225		0.221	0.240*	robust
		(0.122)	(0.122)	(0).114)	(0.113)	
		0.252	0.225*	C	0.221	0.240**	cluster
		(0.204)	(0.108)	(0).150)	(0.0923)	
	1b.Undecided		(,	()	,	(
	2.Yes						
	3.No	0.206	-0.348	C	.388	0.372	robust
	5.100	-0.396					Tobust
		(0.252)	(0.222)).236)	(0.276)	
		-0.396	-0.348		0.388	0.372	cluster
		(0.244)	(0.188)	(0	0.202)	(0.205)	
	N	419	426		428	424	
			rs in parenthese				
	="* p<0.05	** p<0.01	*	** p<0.001			
	Tab	le 11: Mediation	effect on decisi	on change N	Aodel 58 – N	Aodel 60	
			(58)	(59)	(60)		
		_		Efsounds	Timing		
		Fre	q Sounds	Posi	Bef		
	Profess	ional 0	.325**	0.219	0.377**	robust	
	FIDIESS						
			0.120)	(0.122)	(0.134)		
			.325**	0.219	0.377*		
			0.122)	(0.129)	(0.171)		
	1b.Unde						
	2.Ye	es					
	3.N	o -	-0.348	-0.425	0.372	robust	
			0.222)	(0.265)	(0.276)		
			0.348	-0.425	0.372	cluster	
			0.188)	(0.273)	(0.205)		
	Ν	(,	424	. ,		
	IN	G (1	426		424		
	="* p<		d errors in paren p<0.01	meses *** p<	0.001"		
	Ta	ble 12: Mediatio	n effect on decis	sion time M	odel 61 – M	odel 66	
	(61)	(62)	(63)		(64)	(65)	(66)
	Channel_Main N		. ,		. ,	iming Bef	Load Lots
	0.208	0.293*			.250*	0.377**	0.265*
	(0.126)	(0.127)).126) 250*	(0.126)	(0.126)

	(01)	(02)	(05)	(01)	(05)	(00)					
	Channel_Main Neg	Efimages Posi	Efimages Neg	Efsou Neg	Timing Bef	Load Lots Bef					
Professional	0.208	0.293*	0.217	0.250*	0.377**	0.265*	robust				
	(0.126)	(0.127)	(0.124)	(0.126)	(0.126)	(0.126)					
	0.208	0.293*	0.217	0.250*	0.377**	0.265*	cluster				
	(0.126)	(0.127)	(0.124)	(0.126)	(0.126)	(0.126)					
1b.Lengthen											
2.Shorten											
3.Equal	-0.523**	-0.691**	-0.424*	-0.365	-0.565**	-0.864***	robust				
	(0.189)	(0.239)	(0.199)	(0.224)	(0.209)	(0.212)					
	-0.523**	-0.691**	-0.424*	-0.365	-0.565**	-0.864***	cluster				
	(0.189)	(0.239)	(0.199)	(0.224)	(0.209)	(0.212)					
Ν	420	425	423	422	424	416					
	Standard errors in parentheses										

* p<0.05

** p<0.01

^{***} p<0.001"

ISSN (Online): 2455-9024

	,						
		T-1-1-12 Interneted	SEM	Madal 70			
		•		ge Model 67 – Model 70			
	Learning channels#c.Family	(67) 0.227**	(68) 0.177*	(69) 0.265**	(70) 0.195*	robust	
	Learning channelsme.1 anny	(0.0704)	(0.0875)	0.265** (0.0950)	(0.0918)	roousi	
		0.227***	0.177*	0.265***	0.195***	cluster	
		(0.0658)	(0.0855)	(0.0671)	(0.0488)	Clusici	
	Learning channels	2.369***	2.762***	2.554***	2.813***	robust	
		(0.336)	(0.418)	(0.454)	(0.442)		
		2.369***	2.762***	2.554***	2.813***	cluster	
		(0.310)	(0.399)	(0.308)	(0.220)		
	Decision change	Learning channels#	Learning channels#	Learning channels#	Learning channels#	<i>i</i>	
	Decision change	c.Channel_Com Posi	c.Channel_Cliq Posi	c.Channel_Main Neg			
		0.103***	0.0401^{**}	0.0475***	0.0525**	robust	
		(0.0196) 0.103***	(0.0144)	(0.0127)	(0.0160)	1	
		0.103*** (0.0235)	0.0401** (0.0139)	0.0475*** (0.0128)	0.0525** (0.0165)	cluster	
	Learning channels	0.533***	(0.0139) 0.744***	0.707***	(0.0165) 0.686***	robust	
	Leathing channels	(0.0776)	(0.0592)	(0.0575)	(0.0677)	100051	
		0.533***	0.744***	0.707***	0.686***	cluster	
		(0.0927)	(0.0573)	(0.0586)	(0.0663)	Cluster	
	Ν	421	421	420	426		
	Standard	rd errors in parentheses					
	="* p<0.05	** p<0.01	*** p	><0.001"			
		Ų	U	ge Model 71 – Model 74			
		(71)	(72)	(73)	(74)		
	Learning channels#c.Family		0.294***	0.206	0.198	robust	
		(0.0928)	(0.0875)	(0.110)	(0.107)		
		0.144	0.294***	0.206*	0.198**	cluster	
	I mina abannale	(0.0870) 2.753***	(0.0801) 2 292***	(0.0825) 3.034***	(0.0627) 2 802***	1	
	Learning channels	2.753*** (0.445)	2.292*** (0.419)	3.034*** (0.526)	2.802*** (0.515)	robust	
		(0.445) 2.753***	(0.419) 2.292***	(0.526) 3.034***	(0.515) 2.802***	cluster	
		(0.444)	(0.388)	(0.403)	(0.307)	Clusier	
		Learning channels#	Learning channels#		Learning channels#		
	Decision change	c.Freq Sounds	c.Efimages Posi	c.Aug Efneg	c.Timing Bef		
		0.0394**	0.0857***	0.0757***	0.0507***	robust	
		(0.0144)	(0.0161)	(0.0150)	(0.0132)		
		0.0394*	0.0857***	0.0757***	0.0507***	cluster	
		(0.0161)	(0.0126)	(0.0164)	(0.0103)		
	Learning channels	0.747***	0.567***	0.582***	0.697***	robust	
		(0.0567)	(0.0702)	(0.0704)	(0.0584)		
		0.747***	0.567***	0.582***	0.697***	cluster	
		(0.0651)	(0.0510)	(0.0779)	(0.0506)		
	N	426	425	423	424		
	Standar ="* p<0.05	ard errors in parentheses ** p<0.01	s *** p<0.001"				
	-	-	-	ge Model 75 – Model 79	1		
	(75)	(76)		(77)		(79)	
Learning	0.150	0.319*	,***	0.184*		0.0884*	robust
channels#c.Family	(0.0808)	(0.094		(0.0822)		(0.0442)	
	(0.0808) 0.150**	0.319	,	(0.0822) 0.184**		(0.0442) 0.0884***	cluster
	(0.0484)	(0.114		(0.0573)		(0.0224)	Cluster.
Learning channels	2.996***	2.237*		2.843***		0.298	robust
Louinno	(0.385)	(0.45)		(0.392)		(0.212)	÷.,
	2.996***	2.237*	7***	2.843***		0.298**	cluster
	(0.223)	(0.56	60)	(0.262)		(0.112)	
Decision change	Learning channels#c.Timing Wh	hi Learning channels#	#c.Load Lots Bef Lea	arning channels#c.Load I	Lots Whi Learning c	channels#c.Vefi Sounds	
	0.0897***	0.0520	0***	0.0625***		-0.0272	robust
	(0.0179)	(0.013		(0.0166)		(0.0328)	1 tor
	0.0897***	0.0520		0.0625***		-0.0272	cluster
• · shannale	(0.0179)	(0.008 [°] 0.697*		(0.0154)		(0.0349)	buot
Learning channels	0.554*** (0.0766)	0.697* (0.060		0.659*** (0.0707)		0.907*** (0.0268)	robust
	(0.0766) 0.554***	(0.060 0.697*		(0.0707) 0.659***		(0.0268) 0.907***	cluster
	(0.0815)	0.697* (0.039		(0.0652)		(0.0242)	Clusic.
Ν	(0.0815) 424	(0.039	,	(0.0652) 413		(0.0242) 417	
	Standard errors in pare		<u>,</u>				
="* p<0.05	** p<0.01	*** p<0.).001"				
-	-						

Ta	ble 16: Integrated effect on decision ch				
	(80)	(81)	1 (
Learning channels#c.Community	0.144**	0.108	robust		
	(0.0489)	(0.0731)	1 /		
	0.144***	0.108	cluster		
.	(0.0361)	(0.0730)			
Learning channels	2.950***	3.438***	robust		
	(0.174)	(0.259)	1		
	2.950***	3.438***	cluster		
	(0.153)	(0.252)			
	Learning	Learning			
Decision change	channels#c.Channel_Com Posi 0.103***	channels#c.Channel_Main Neg 0.0475***			
			robust		
	(0.0196)	(0.0127)	-1		
	0.103***	0.0475***	cluster		
T : 1 1	(0.0235)	(0.0128)	1 /		
Learning channels	0.533***	0.707***	robust		
	(0.0776)	(0.0575)	1 /		
	0.533***	0.707***	cluster		
N	(0.0927)	(0.0586)			
N Standard among i	421	420			
Standard errors i ="* p<0.05	n parentneses ** p<0.01	*** p<0.001"			
= * p < 0.03	p<0.01	p<0.001			
	Table 17. Internated offect on decisi	on abanga Madal 144			
(144)	Table 17: Integrated effect on decisi robust	on change Woder 144	cluster		
Learning channels#c.State	0.191		0.191		
Learning channels#c.state	(0.138)		(0.228)		
	0.139		0.139		
	(0.119)		(0.154)		
	0.105		0.105**		
	(0.127)		(0.0326)		
	0.227*		0.227**		
r · 1 1	(0.107)		(0.0860) 2.822**		
Learning channels	2.822***				
	(0.619)		(0.976)		
	3.088***		3.088***		
	(0.525)		(0.660)		
	3.353***		3.353***		
	(0.567)		(0.223)		
	2.748***		2.748***		
	(0.464)		(0.401)		
Decision change	Learning channels#c.Load Lots	Whi Learning cha	nnels#c.Load Lots Whi		
	0.0570		0.0570**		
	(0.0336)		(0.0201)		
	0.0802*		0.0802**		
	(0.0380)		(0.0274)		
	0.104*		0.104**		
	(0.0421)		(0.0387)		
	0.0231		0.0231		
	(0.0224)		(0.0241)		
Learning channels	0.620***		0.620***		
	(0.139)		(0.0608)		
	0.595***		0.595***		
	(0.165)		(0.121)		
	0.507**		0.507**		
	(0.180)		(0.157)		
	0.856***		0.856***		
	(0.0935)		(0.0941)		
Ν	413		413		
	413 d errors in parentheses ** p<0.01	*	413 ** p<0.00		

ISSN (Online): 2455-9024

Table 18: Integrated effect on decision Model 88								
(88)	robust	cluster						
Channel_Com Neg								
Learning channels#c.Religion	0.0735	0.0735						
	(0.0395)	(0.0393)						
Learning channels	3.242***	3.242***						
	(0.0885)	(0.0835)						
Decision								
Learning channels#c.Channel_Com Neg	-0.0517	-0.0517						
	(0.0303)	(0.0350)						
Learning channels	1.976***	1.976***						
-	(0.106)	(0.124)						
Ν	407	407						
Standard errors in parentheses								
* p<0.05	** p<0.01	*** p<0.001"						

P >	0.0	5			

1			(93)	(95)		
	Learning channels#c.Co	ommunity	0.0789**	0.0402	robust	
			(0.0265)	(0.0218)		
			0.0789**	0.0402	cluster	
			(0.0257)	(0.0236)		
	Learning channe	ls	0.445***	0.706***	robust	
			(0.0970)	(0.0801)		
			0.445***	0.706***	cluster	
			(0.0945)	(0.0863)		
		I	earning channels#	Learning channels#		
	Decision time		c.Vefi Sounds	c.Vefi Twoimages		
			0.0739	-0.108	robust	
			(0.0401)	(0.0565)		
			0.0739	-0.108	cluster	
			(0.0393)	(0.0597)		
	Learning channe	ls	1.582***	1.729***	robust	
			(0.0333)	(0.0530)		
			1.582***	1.729***	cluster	
			(0.0296)	(0.0551)		
	N		417	419		
		l errors in parenthese				
	="* p<0.05		** p<0.01	*** p<0.001"		
	Table 2	0. Integrated effect o	n decision change Model	97 – Model 105		
		2	n decision change Model (101)		(105)	
earning channels#	(97) Table 2	0: Integrated effect of (99)	n decision change Model (101)	97 – Model 105 (103)	(105)	robust
	(97)	(99)	(101)	(103)		robus
earning channels# c.Religion	(97) 0.0700	(99) 0.103*	(101) 0.0789	(103) 0.121**	0.156***	robus
	(97) 0.0700 (0.0386)	(99) 0.103* (0.0489)	(101) 0.0789 (0.0427)	(103) 0.121** (0.0415)	0.156*** (0.0455)	
	(97) 0.0700 (0.0386) 0.0700*	(99) 0.103* (0.0489) 0.103**	(101) 0.0789 (0.0427) 0.0789**	(103) 0.121** (0.0415) 0.121***	0.156*** (0.0455) 0.156***	
c.Religion	(97) 0.0700 (0.0386)	(99) 0.103* (0.0489)	(101) 0.0789 (0.0427) 0.0789** (0.0303)	(103) 0.121** (0.0415) 0.121*** (0.0330)	0.156*** (0.0455)	cluste
c.Religion	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245***	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246***	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213***	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931***	0.156*** (0.0455) 0.156*** (0.0404) 2.629***	cluste
c.Religion	(97) 0.0700 (0.0386) 0.0700* (0.0327)	(99) 0.103* (0.0489) 0.103** (0.0395)	(101) 0.0789 (0.0427) 0.0789** (0.0303)	(103) 0.121** (0.0415) 0.121*** (0.0330)	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958)	cluster robust
c.Religion	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870)	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.105)	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977)	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916)	0.156*** (0.0455) 0.156*** (0.0404) 2.629***	cluster robust
c.Religion	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670)	(99) $0.103*$ (0.0489) $0.103**$ (0.0395) $3.246***$ (0.105) $3.246***$ (0.0959)	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772)	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846)	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906)	robust cluster robust cluster
c.Religion Learning channels	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670) Learning channels#	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.105) 3.246*** (0.0959) Learning channels	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels#	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846) Learning channels#	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629***	cluster robust
c.Religion Learning channels	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670)	(99) $0.103*$ (0.0489) $0.103**$ (0.0395) $3.246***$ (0.105) $3.246***$ (0.0959)	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels#	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846)	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906) Learning channels#	cluster robust
c.Religion Learning channels	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670) Learning channels# c.Channel_Com Neg	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.105) 3.246*** (0.0959) Learning channelsi c.Channel_Cliq Ne	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels# g c.Efsou Neg	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846) Learning channels# c.Ef Twoimag Neg	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906) Learning channels# c.Load LiWhi	cluster robust
c.Religion	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670) Learning channels# c.Channel_Com Neg 0.0528***	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.105) 3.246*** (0.0959) Learning channels c.Channel_Cliq Ne 0.0353**	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels# g c.Efsou Neg 0.0552***	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846) Learning channels# c.Ef Twoimag Neg 0.0274* (0.0127)	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906) Learning channels# c.Load LiWhi 0.0288*	cluster robust cluster robust
c.Religion	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670) Learning channels# c.Channel_Com Neg 0.0528*** (0.0158)	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.105) 3.246*** (0.0959) Learning channelsi c.Channel_Cliq Ne 0.0353** (0.0125)	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels# g c.Efsou Neg 0.0552*** (0.0131)	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846) Learning channels# c.Ef Twoimag Neg 0.0274*	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906) Learning channels# c.Load LiWhi 0.0288* (0.0130)	cluste robus cluste robus
c.Religion earning channels Decision change	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670) Learning channels# c.Channel_Com Neg 0.0528*** (0.0158) 0.0528**	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.105) 3.246*** (0.0959) Learning channelss c.Channel_Cliq Ne 0.0353** (0.0125) 0.0353*	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels# g c.Efsou Neg 0.0552*** (0.0131) 0.0552**	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846) Learning channels# c.Ef Twoimag Neg 0.0274* (0.0127) 0.0274	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906) Learning channels# c.Load LiWhi 0.0288* (0.0130) 0.0288**	cluste robus cluste robus cluste
c.Religion earning channels Decision change	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670) Learning channels# c.Channel_Com Neg 0.0528*** (0.0158) 0.0528** (0.0190) 0.712***	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.0959) Learning channelss c.Channel_Cliq Ne 0.0353** (0.0125) 0.0353* (0.0143) 0.769***	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels# g C.Efsou Neg 0.0552*** (0.0131) 0.0552** (0.0175) 0.703***	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846) Learning channels# c.Ef Twoimag Neg 0.0274* (0.0127) 0.0274 (0.0158) 0.802***	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906) Learning channels# c.Load LiWhi 0.0288* (0.0130) 0.0288** (0.0108) 0.809***	cluste robus cluste robus cluste
c.Religion Learning channels Decision change	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670) Learning channels# c.Channel_Com Neg 0.0528*** (0.0158) 0.0528** (0.0190)	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.0959) Learning channelssi c.Channel_Cliq Ne 0.0353** (0.0125) 0.0353* (0.0143)	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels# g C.Efsou Neg 0.0552*** (0.0131) 0.0552** (0.0175)	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846) Learning channels# c.Ef Twoimag Neg 0.0274* (0.0127) 0.0274 (0.0158)	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906) Learning channels# c.Load LiWhi 0.0288* (0.0130) 0.0288** (0.0108)	cluster robust robust cluster robust
earning channels# c.Religion Learning channels Decision change Learning channels	(97) 0.0700 (0.0386) 0.0700* (0.0327) 3.245*** (0.0870) 3.245*** (0.0670) Learning channels# c.Channel_Com Neg 0.0528*** (0.0158) 0.0528** (0.0190) 0.712*** (0.0615)	(99) 0.103* (0.0489) 0.103** (0.0395) 3.246*** (0.105) 3.246*** (0.105) 3.246*** (0.0959) Learning channelst c.Channel_Cliq Ne 0.0353** (0.0125) 0.0353* (0.0143) 0.769*** (0.0507)	(101) 0.0789 (0.0427) 0.0789** (0.0303) 3.213*** (0.0977) 3.213*** (0.0772) # Learning channels# g 0.0552*** (0.0131) 0.0552** (0.0175) 0.703*** (0.0540)	(103) 0.121** (0.0415) 0.121*** (0.0330) 2.931*** (0.0916) 2.931*** (0.0846) Learning channels# c.Ef Twoimag Neg 0.0274* (0.0127) 0.0274 (0.0158) 0.802*** (0.0468)	0.156*** (0.0455) 0.156*** (0.0404) 2.629*** (0.0958) 2.629*** (0.0906) Learning channels# c.Load LiWhi 0.0288* (0.0130) 0.0288** (0.0108) 0.809*** (0.0449)	cluster robust

="* p<0.05 ** p<0.01

^{***} p<0.001"

	Table 21:	Integrated ef	fect on decisi	ion change Mo	odel 108 – M	odel 113		
	(108)	cluster	(110)	cluster	(112)	cluster	(113)	cluster
Learning channels#c.State	0.128*	0.128*	0.253	0.253**	0.168*	0.168*	0.463***	0.463***
-	(0.0519)	(0.0610)	(0.135)	(0.0779)	(0.0791)	(0.0696)	(0.131)	(0.0660)
			0.0736	0.0736			-0.122	-0.122
			(0.160)	(0.205)			(0.166)	(0.107)
			0.234	0.234*			0.129	0.129
			(0.145)	(0.112)			(0.141)	(0.106)
			-0.0286	-0.0286			0.165	0.165
			(0.132)	(0.0901)			(0.155)	(0.127)
Learning channels	2.894***	2.894***	2.802***	2.802***	2.288***	2.288***	0.824	0.824*
	(0.228)	(0.260)	(0.586)	(0.378)	(0.349)	(0.334)	(0.561)	(0.357)
			3.236***	3.236***			3.774***	3.774***
			(0.682)	(0.767)			(0.743)	(0.468)
			2.921***	2.921***			2.483***	2.483***
			(0.610)	(0.407)			(0.615)	(0.417)
			3.949***	3.949***			2.316***	2.316***
			(0.570)	(0.372)			(0.682)	(0.664)
		channels#	0	channels#	Learning	channels#		g channels#
Decision change	c.Channel_			_Main Neg	c.Channel_SN Neg		c.Channel_SN Neg	
	0.103***	0.103***	0.0812*	0.0812***	0.0311**	0.0311**	0.0349	0.0349
	(0.0196)	(0.0235)	(0.0316)	(0.0201)	(0.0108)	(0.0111)	(0.0268)	(0.0261)
			0.0546	0.0546			0.0862**	0.0862**
			(0.0297)	(0.0422)			(0.0323)	(0.0270)
			0.0362	0.0362**			0.00245	0.00245
			(0.0222)	(0.0116)			(0.0180)	(0.0165)
			0.0264	0.026	4***		0.00748	0.00748***
			(0.0166)	(0.00678)			(0.0115)	(0.00225)
Learning channels	0.533***	0.533***	0.508***	0.508^{***}	0.794***	0.794***	0.725***	0.725***
	(0.0776)	(0.0927)	(0.144)	(0.0893)	(0.0411)	(0.0450)	(0.0911)	(0.0952)
			0.686***	0.686***			0.602***	0.602***
			(0.126)	(0.186)			(0.130)	(0.122)
			0.764***	0.764***			0.899***	0.899***
			(0.106)	(0.0522)			(0.0632)	(0.0579)
			0.841***	0.841***			0.920***	0.920***
			(0.0780)	(0.0409)			(0.0450)	(0.0177)
N St. 1.1	421	421	420	420	420	420	420	420

Standard errors in parentheses ="* p<0.05 ** p< ** p<0.01

*** p<0.001"

Table 22: Integrated effect on decision change Model 115	
--	--

	d effect off decision change Model 1	15
	(115)	cluster
Learning channels#c.State	0.242	0.242*
	(0.125)	(0.100)
	0.282**	0.282**
	(0.0947)	(0.0958)
	-0.163	-0.163
	(0.107)	(0.109)
	0.280**	0.280**
	(0.105)	(0.0917)
Learning channels	2.309***	2.309***
	(0.528)	(0.462)
	2.270***	2.270***
	(0.393)	(0.404)
	3.998***	3.998***
	(0.446)	(0.447)
	2.375***	2.375***
	(0.463)	(0.389)
Decision change	Learning channels#c.Freq Sounds	
	0.0126	0.0126
	(0.0277)	(0.0290)
	0.0942*	0.0942*
	(0.0408)	(0.0437)
	0.0529	0.0529*
	(0.0310)	(0.0241)
	0.00630	0.00630
	(0.0152)	(0.00674)
Learning channels	0.783***	0.783***
	(0.102)	(0.113)
	0.550***	0.550**
	(0.166)	(0.173)
1	0.714***	0.714***

					(0.119)		(0.104)		
).912***		0.912***		
			Ν		(0.0617) 426		(0.0212) 426		
				ndard errors in parenth			420		
			="* p<0.05			** p<0.001	"		
			•	ted effect on decision of	<u> </u>				
	. .	(116)	(118)	(120)	(122)	(124)	(126)	
	Learning channels# c.State	0.149**	0.149**	0.119	0.143	*	0.111	0.107	robust
	e.suite	(0.0566)	(0.0561)	(0.0694)	(0.066	i9)	(0.0637)	(0.0552)	
		0.149	0.149*	0.119	0.14	3	0.111	0.107*	cluster
		(0.0808)	(0.0613)	(0.0758)	(0.082	.3)	(0.0762)	(0.0507)	
	Learning channels	2.794***	3.366***	3.675***	3.070*	**	2.938***	3.439***	robust
	channels	(0.243)	(0.246)	(0.303)	(0.29	5)	(0.277)	(0.244)	
		2.794***	3.366***	3.675***	3.070*		2.938***	. ,	cluster
		(0.332)	(0.270)	(0.338)	(0.370	0)	(0.329)	(0.238)	
	Decision	Learning channels#	Learning channels#	Learning channels#	Learning ch		Learning channels#	Learning channels#	
	change	c.Freq Sounds	c.Freg Imagsou	c.Freg Aug	c.Efimage		c.Efsounds Posi	c.Ef ImagSou Posi	
		0.0394**	0.0795***	0.0544**	0.0857		0.0641***		robust
		(0.0144) 0.0394*	(0.0173) 0.0795***	(0.0166) 0.0544**	(0.016 0.0857 ³		(0.0157) 0.0641***	(0.0183) 0.0793***	cluster
		(0.0161)	(0.0205)	(0.0185)	(0.012		(0.0184)	(0.0195)	cluster
	Learning	. ,				<i>,</i>	. ,		1 .
	channels	0.747***	0.563***	0.655***	0.567*		0.663***		robust
		(0.0567)	(0.0791)	(0.0769)	(0.070		(0.0630)	(0.0807)	
		0.747***	0.563*** (0.0910)	0.655*** (0.0816)	0.567*		0.663***		cluster
	Ν	(0.0651) 426	424	425	(0.051 425	,	(0.0749) 424	(0.0859) 424	
		tandard errors in parentl		125	123		121	121	
	="* p<0.05		*** p<0.001"						
		(129)		ted effect on decision of (122)				(127)	
L	earning channels#	(128)	(130)	(132)	(134)	cluster	(135)	(137)	
1	c.State	0.112	0.118	0.191*	0.322*	0.322***	0.118	0.130	robust
		(0.0575)	(0.0734)	(0.0755)	(0.134)	(0.0876)	(0.0699)	(0.0777)	
		0.112*	0.118	0.191**	0.229	0.229	0.118	0.130	cluster
		(0.0514)	(0.0657)	(0.0635)	(0.142) -0.00893	(0.128)	(0.0715)	(0.0815)	
					-0.00893 (0.128)	-0.00893 (0.111)			
					-0.0125	-0.0125			
					(0.151)	(0.163)			
L	earning channels	3.306***	3.730***	2.870***	1.989***	1.989***		3.457***	robust
		(0.252)	(0.323)	(0.330)	(0.581)	(0.338)	(0.305)	(0.345)	
		3.306***	3.730***	2.870***	2.372***	2.372***		3.457***	cluster
		(0.212)	(0.291)	(0.288)	(0.622)	(0.673)	(0.296)	(0.371)	
					3.382*** (0.546)	3.382*** (0.433)			
					3.390***	3.390***			
					(0.667)	(0.624)			
1	Decision change	Learning channels#	Learning channels#	Learning channels#	Learning	channels#	Learning channels	# Learning channels#	ŧ
1	Decision change	c.Ef Twimag Posi	c.Ef Aug Posi	c.Efimages Neg		ou Neg	c.Efsou Neg	c.Aug Efneg	
		0.0734***	0.0961***	0.0656***	0.0420	0.0420	0.0538***	0.0757***	robust
		(0.0169) 0.0734***	(0.0183) 0.0961***	(0.0135) 0.0656***	(0.0272) 0.0889*	(0.0339) 0.0889*	(0.0132) 0.0538**	(0.0150) 0.0757***	alustan
		(0.0140)	(0.0196)	(0.0120)	(0.0889°)	(0.0390)	(0.0170)	(0.0164)	cluster
		(0.0140)	(0.0170)	(0.0120)	0.0847**	0.0847*	(0.0170)	(0.0104)	
					(0.0295)	(0.0348)			
					0.0185	0.0185			
					(0.0136)	(0.0142)			
L	earning channels	0.604***	0.475***	0.644***	0.683***	0.683***		0.582***	robust
		(0.0735) 0.604***	(0.0888) 0.475***	(0.0604)	(0.108)	(0.106) 0.580***	(0.0540) 0.706***	(0.0704)	-1
		(0.0610)	(0.0954)	0.644*** (0.0555)	0.580*** (0.143)	(0.154)	(0.0654)	0.582*** (0.0779)	cluster
		(0.0010)	(0.075+)	(0.0333)	0.613***	0.613***		(0.0773)	
					(0.123)	(0.141)			
					0.881***	0.881***	:		
					(0.0589)	(0.0594)			

Hoang Hue Chi, "How logical are your decisions?" International Research Journal of Advanced Engineering and Science, Volume 5, Issue 2, pp. 61-89, 2020.

N	425	425		423	422 422	422	423
Standard errors in '* p<0.05	n parentheses ** p<0.01	***	p<0.001"				
* p<0.03	*** p<0.01		p<0.001				
		Table 25: Integ	rated effect	on decision cha	ange Model 139 – Mode	1 145	
		(139)	(141)	cluster	(142)	(145)	
Learning cha							robust
c.State	2	0.158*	0.0770	0.0770	0.192**	0.162**	
		(0.0732)	(0.122)	(0.0761) 0.393***	(0.0686) 0.192**	(0.0624)	1 (
		0.158** (0.0531)	0.393* (0.155)	(0.102)	(0.0591)	0.162* (0.0779)	cluster
		(0.0331)	0.146	0.102)	(0.0391)	(0.0779)	
			(0.134)	(0.0727)			
			0.168	0.168			
			(0.141)	(0.111)			
Learning cha	annels	3.060***	3.420***	3.420***	2.921***	3.016***	robust
		(0.320)	(0.539)	(0.372)	(0.304)	(0.277)	
		3.060***	2.094**	2.094***	2.921***	3.016***	cluster
		(0.230)	(0.709)	(0.549)	(0.267)	(0.336)	
			3.074***	3.074***			
			(0.585) 3.018***	(0.332) 3.018***			
		Learning channels#	(0.622) Learning	(0.490) g channels#	Learning channel	s# Learning channel	s#
Decision ch	nange	c.Timing Bef	-	Lots Bef	c.Load Lots Bet	-	
Decision en	lange	0.0507***	0.0505	0.0505***	0.0520***	0.0625***	robust
		(0.0132)	(0.0308)	(0.0119)	(0.0138)	(0.0166)	
		0.0507***	0.0671	0.0671***	0.0520***	0.0625***	cluster
		(0.0103)	(0.0372)	(0.0191)	(0.00877)	(0.0154)	
			0.0696*		0.0696***		
			(0.0279)	(0.0156)			
			0.0315		0.0315***		
			(0.0176)	(0.00938)			_
Learning cha	annels	0.697***	0.639***	0.639***	0.697***	0.659***	robust
		(0.0584)	(0.132)	(0.0429)	(0.0609)	(0.0707)	-1
		0.697***	0.636*** (0.160)	0.636*** (0.0723)	0.697*** (0.0393)	0.659***	cluster
		(0.0506)	(0.160) 0.648***	0.648***	(0.0595)	(0.0652)	
			(0.127)	(0.0563)			
			0.824***	0.824***			
			(0.0816)	(0.0420)			
Ν		424	416	416	416	413	
	Ctauland a	rrors in parentheses					
	Standard e		*** -	< 0.001"			
="* p<0.		** p<0.01	· · · · F				
="* p<0.		*	1				
="* p<0.		Table 26: Integ	rated effect	on decision cha	nge Model 147 – Mode		
	.05	*	rated effect		<u>ange Model 147 – Mode</u> (149)	(150)	robust
Learn	05 ing channels#	Table 26: Integ (147)	grated effect (1	on decision cha 48)	(149)	(150)	robust
Learn	.05	Table 26: Integ (147) 0.125**	rated effect (1 (1	on decision cha 48) 43*	(149) 0.110	(150) 0.165*	robust
Learn	05 ing channels#	<u>Table 26: Integ</u> (147) 0.125** (0.0468)	rated effect (1 (1 0.1 (0.0	on decision cha 48) 43* 0725)	(149) 0.110 (0.0589)	(150) 0.165* (0.0687)	
Learn	05 ing channels#	Table 26: Integ (147) 0.125**	grated effect ((1 (0.1 (0.0 0.	on decision cha 48) 43*	(149) 0.110	(150) 0.165* (0.0687)	robust cluster
Learn	05 ing channels#	<u>Table 26: Integ</u> (147) 0.125** (0.0468) 0.125**	(1 (1 (0.1 (0.0 0. (0.0) (0.0)	on decision cha 48) 43* 1725) 143	(149) 0.110 (0.0589) 0.110	(150) 0.165* (0.0687) 0.165 (0.0855)	
Learn	05 ing channels# c.Market	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167)	rated effect (1 (1) (0.0 (0.0 (0.0 (3.30)	on decision cha 48) 43* 0725) 143 0964)	(149) 0.110 (0.0589) 0.110 (0.0719)	(150) 0.165* (0.0687) 0.165 (0.0855)	cluster
Learn	05 ing channels# c.Market	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007***	rated effect ((1 (0.1 (0.0 0. (0.0 (3.30 (0.) (3.30) (0.)	on decision cha 48) 43* 0725) 143 0964) 06*** 265) 06***	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982***	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851***	cluster
Learn	05 ing channels# c.Market	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167)	rated effect ((1 (0.1 (0.0 0. (0.0 (3.30 (0.) (3.30) (0.)	on decision cha 48) 43* 0725) 143 0964) 06*** 265)	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213)	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348)	cluster robust
Learn	05 ing channels# c.Market	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197)	rated effect ((1 (0.0 0. (0.0 3.30 (0. 3.30 (0.	on decision cha 48) 43* 1725) 143 9964) 96*** 265) 96*** 351)	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257)	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning	cluster robust
Learn	05 ing channels# c.Market	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels#	rated effect ((1 (0.1 (0.0 0. (0.0 3.30 (0.) 3.30 (0.) (0.) Learning	on decision cha 48) 43* 1725) 143 1964) 06*** 265) 16*** 351) channels#	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels#	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels#	cluster robust
Learn	05 ing channels# c.Market ning channels	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com	rated effect ((1 (0.1 (0.0 0. (0.0 3.30 (0. 3.30 (0. (0. Learning c.Chanr	on decision cha 48) 43* 1725) 143 1964) 06*** 265) 16*** 351) channels#	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq	cluster robust
Learn	05 ing channels# c.Market	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi	rated effect ((1 (0.1 (0.0 0. (0.0 3.30 (0. 3.30 (0. Learning c.Chann N	on decision cha 48) 43* 0725) 143 0964) 06*** 265) 06*** 351) channels#	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg	cluster robust cluster
Learn	05 ing channels# c.Market ning channels	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi 0.103***	rated effect ((1) (0.1) (0.0) (0.0) (0.0) (0.1)	on decision cha 48) 43* 1725) 143 1964) 96** 265) 96*** 351) channels# leg_Main leg 75***	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg 0.0538***	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg 0.0341**	cluster robust
Learn	05 ing channels# c.Market ning channels	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi 0.103*** (0.0196)	rated effect ((1) (0.1) (0.0) (0.0) (0.0) (0.1)	on decision cha 48) 43* 0725) 143 064) 06*** 265) 06*** 351) channels# 10 channels 10 channels# 10 channels# 10 channels# 10 channels# 10 channels#	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg 0.0538*** (0.0159)	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg 0.0341** (0.0126)	cluster robust cluster robust
Learn	05 ing channels# c.Market ning channels	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi 0.103*** (0.0196) 0.103***	rated effect ((1) (0.1) (0.0) (0.0) (0.0) (0.1) (0.2) (0.1) (0.2) (0.1) (0.2)	on decision cha 48) 43* 0725) 143 064) 06*** 265) 06*** 351) channels# 10 channels 10 channels# 10 channels# 10 channels# 10 channels# 10 channels#	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg 0.0538*** (0.0159) 0.0538**	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg 0.0341** (0.0126) 0.0341*	cluster robust cluster
Learn	05 ing channels# c.Market ning channels ision change	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi 0.103*** (0.0196) 0.103*** (0.0235)	rated effect ((1 (0.0 0. (0.0 3.30 (0. 3.30 (0. 3.30 (0. 3.30 (0. 4. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	on decision cha 48) 43* 1725) 143 0964) 06*** 265) 06*** 265) 06*** 351) channels# 126 75*** 1127) 75*** 0128)	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg 0.0538*** (0.0159) 0.0538** (0.0167)	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg 0.0341** (0.0126) 0.0341* (0.0143)	cluster robust cluster robust
Learn	05 ing channels# c.Market ning channels	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi 0.103*** (0.0196) 0.103*** (0.0235) 0.533***	rated effect of (1 (0.0 0. (0.0 3.30 (0. 3.30 (0. 3.30 (0. 3.30 (0. 4. 8. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	on decision cha 48) 43* 1725) 143 1964) 166*** 265) 166*** 265) 166*** 251) 166*** 351) 161_Main 180 75*** 1127) 75*** 1128) 107***	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg 0.0538*** (0.0159) 0.0538** (0.0167) 0.706***	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg 0.0341** (0.0126) 0.0341* (0.0143) 0.771***	cluster robust cluster robust cluster
Learn	05 ing channels# c.Market ning channels ision change	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi 0.103*** (0.0196) 0.103*** (0.0235) 0.533*** (0.0776)	rated effect ((1) (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 Learning c.Chanr N 0.04 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0	on decision cha 48) 43* 1725) 143 9964) 96*** 265) 96*** 351) channels# 105) 105) 107) 75*** 1128) 107) 75***	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg 0.0538*** (0.0159) 0.0538*** (0.0167) 0.706*** (0.0617)	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg 0.0341** (0.0126) 0.0341* (0.0143) 0.771*** (0.0508)	cluster robust cluster robust
Learn	05 ing channels# c.Market ning channels ision change	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi 0.103*** (0.0196) 0.103*** (0.0235) 0.533*** (0.0776) 0.533***	rated effect ((1) (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.	on decision cha 48) 43* 1725) 143 1964) 06*** 265) 06*** 351) channels# 106*** 351) channels# 107 75*** 1128) 17*** 10128) 17***	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg 0.0538*** (0.0159) 0.0538** (0.0167) 0.706*** (0.0617) 0.706***	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg 0.0341** (0.0126) 0.0341* (0.0143) 0.771*** (0.0508) 0.771***	cluster robust cluster robust cluster
Learn	05 ing channels# c.Market ning channels ision change ning channels N	Table 26: Integ (147) 0.125** (0.0468) 0.125** (0.0460) 3.007*** (0.167) 3.007*** (0.197) Learning channels# c.Channel_Com Posi 0.103*** (0.0196) 0.103*** (0.0235) 0.533*** (0.0776)	rated effect ((1) (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.	on decision cha 48) 43* 1725) 143 9964) 96*** 265) 96*** 351) channels# 105) 105) 107) 75*** 1128) 107) 75***	(149) 0.110 (0.0589) 0.110 (0.0719) 2.982*** (0.213) 2.982*** (0.257) Learning channels# c.Channel_Com Neg 0.0538*** (0.0159) 0.0538*** (0.0167) 0.706*** (0.0617)	(150) 0.165* (0.0687) 0.165 (0.0855) 2.851*** (0.245) 2.851*** (0.348) Learning channels# c.Channel_Cliq Neg 0.0341** (0.0126) 0.0341* (0.0143) 0.771*** (0.0508) 0.771***	cluster robust cluster robust cluster robust

Hoang Hue Chi, "How logical are your decisions?" International Research Journal of Advanced Engineering and Science, Volume 5, Issue 2, pp. 61-89, 2020.

	Tab	ble 27: Integrated effect	on decision change M	odel 151 - 155		
	(151)	(152)	(153)	(154)	(155)	
Learning channels# c.Market	0.122*	0.112	0.203**	0.121*	0.140*	robust
	(0.0588)	(0.0600)	(0.0688)	(0.0614)	(0.0639)	
	0.122*	0.112	0.203**	0.121	0.140*	cluster
	(0.0606)	(0.0816)	(0.0664)	(0.0637)	(0.0632)	
Learning channels	3.306***	3.040***	2.976***	3.184***	3.241***	robust
-	(0.216)	(0.217)	(0.254)	(0.220)	(0.234)	
	3.306***	3.040***	2.976***	3.184***	3.241***	cluster
	(0.231)	(0.305)	(0.260)	(0.233)	(0.232)	
Desision shows	Learning channels#	Learning channels#	Learning channels#	Learning channels#	Learning channels#	
Decision change	c.Freq Images	c.Freq Sounds	c.Efimages Neg	c.Textimages Efneg	c.Timing Bef	
	0.0525**	0.0394**	0.0656***	0.0521***	0.0507***	robust
	(0.0160)	(0.0144)	(0.0135)	(0.0148)	(0.0132)	
	0.0525**	0.0394*	0.0656***	0.0521***	0.0507***	cluster
	(0.0165)	(0.0161)	(0.0120)	(0.0148)	(0.0103)	
Learning channels	0.686***	0.747***	0.644***	0.699***	0.697***	robust
C	(0.0677)	(0.0567)	(0.0604)	(0.0618)	(0.0584)	
	0.686***	0.747***	0.644***	0.699***	0.697***	cluster
	(0.0663)	(0.0651)	(0.0555)	(0.0625)	(0.0506)	
Ν	426	426	423	423	424	
Star	ndard errors in parenthe	eses				

* p<0.05

*** p<0.001" ** p<0.01

Table 28: Integrated effect on decision Model 157

· · · · · · · · · · · · · · · · · · ·	(157)	cluster
Learning channels#c.Market	0.172*	0.172*
Dealing enables environment	(0.0866)	(0.0717)
	0.220	0.220**
	(0.155)	(0.0679)
	0.0917	0.0917
	(0.116)	(0.119)
	0.000198	0.000198
	(0.115)	(0.139)
Learning channels	2.762***	2.762***
Learning chamers	(0.322)	(0.221)
	2.563***	2.563***
	(0.568)	(0.237)
	3.149***	3.149***
	(0.422)	(0.457)
	3.327***	3.327***
	(0.409)	(0.450)
Decision	(0.409)	(0.450)
Learning channels#c.Channel_Com Neg	-0.134*	-0.134*
Learning channels#c.Channel_Com Neg	(0.0549)	(0.0577)
	-0.0967	-0.0967
	(0.0720)	(0.0903)
	0.0640	0.0640
	(0.0613)	(0.0717)
	-0.0401	-0.0401
	(0.0489)	(0.0936)
Learning channels	2.308***	2.308***
Learning channels	(0.187)	(0.198)
	2.048***	2.048***
	(0.256)	(0.303)
	1.565***	· · · · ·
		1.565***
	(0.212) 1.944***	(0.271) 1.944***
	(0.176)	,
Ν		(0.332)
	408	408
Standard errors in parentheses	**0.01	*** 0 001"
="* p<0.05	** p<0.01	*** p<0.001"

Hoang Hue Chi, "How logical are your decisions?" International Research Journal of Advanced Engineering and Science, Volume 5, Issue 2, pp. 61-89, 2020.

Table 29: Moderated mediations differentiated between learning channels Model 67

<u> </u>						
	Coef.	Robust Std. Err.	_	Dalat	1058 C	Tet even 1
	COEI.	Std. Err.	Z	P> z	[95% Conf.	Interval.
Structural						
Channel_Com Posi						
<- Family						
Visualer	.2428425	.1536304	1.58	0.114	0582674	.543952
Auditoree	.103211	.0432354	2.39	0.017	.0184712	.187950
Hapticer	.3049002	.007951	38.35	0.000	.2893165	.320483
Balanced	.2668428	.1434807	1.86	0.063	0143743	.548059
_cons						
Visualer	2.210634	.7479431	2.96	0.003	.7446924	3.67657
Auditoree	3.020183	.2382704	12.68	0.000	2.553182	3.48718
Hapticer	2.058076	.0804717	25.58	0.000	1.900355	2.21579
Balanced	2.174373	.6360219	3.42	0.001	.9277925	3.42095
Decision change <-						
Channel_Com Posi						
Visualer	.1941959	.0321774	6.04	0.000	.1311293	.257262
Auditoree	.1543765	.0612829	2.52	0.012	.0342643	.274488
Hapticer	.05	.0186941	2.67	0.007	.0133603	.086639
Balanced	.0473988	.0213132	2.22	0.026	.0056258	.089171
_cons						
Visualer	.1691383	.118336	1.43	0.153	062796	.401072
Auditoree	.3411271	.2571171	1.33	0.185	1628132	.845067
Hapticer	.73125	.056471	12.95	0.000	.6205689	.841931
Balanced	.7791908	.0721096	10.81	0.000	.6378585	.92052
var(e.medC 2)						
Visualer	.5360709	.0494157			.4474632	.642224
Auditoree	.4585159	.0261677			.4099926	.512782
Hapticer	.7069344	.0427856			.6278589	.79596
Balanced	.6868784	.0941981			.5249846	.898696
var(e.dDC01)						
Visualer	.124498	.0064644			.1124513	.137835
Auditoree	.0928022	.0232604			.0567818	.151672
Hapticer	.083138	.0104623			.0649654	.10639
Balanced	.0529117	.0120721			.0338334	.08274

Model 108

		Robust				
	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
Structural Channel_Com Posi						
<- State						
Visualer	.3265373	.0641965	5.09	0.000	.2007144	.4523602
Auditoree	.2644628	.1100171	2.40	0.016	.0488333	.4800923
Hapticer	.0625	.0156457	3.99	0.000	.031835	.093165
Balanced	0778047	.1032708	-0.75	0.451	2802118	.1246023
cons						
Visualer	1.964814	.2933736	6.70	0.000	1.389813	2.539816
Auditoree	2.342246	.4542936	5.16	0.000	1.451847	3.232645
Hapticer	3.234375	.1363559	23.72	0.000	2.967122	3.501628
Balanced	3.772384	.3528203	10.69	0.000	3.080869	4.463899
Decision change <-						,
Channel Com Posi						
Visualer	.1941959	.0321774	6.04	0.000	.1311293	.2572624
Auditoree	.1543765	.0612829	2.52	0.012	.0342643	.2744887
Hapticer	.05	.0186941	2.67	0.007	.0133603	.0866397
Balanced	.0473988	.0213132	2.22	0.026	.0056258	.0891719
_cons						
Visualer	.1691383	.118336	1.43	0.153	062796	.4010727
Auditoree	.3411271	.2571171	1.33	0.185	1628132	.8450674
Hapticer	.73125	.056471	12.95	0.000	.6205689	.8419311
Balanced	.7791908	.0721096	10.81	0.000	.6378585	.920523
var(e.medC_2)						0
Visualer	.5065671	.0412415			.4318547	.5942051
Auditoree	.4219051	.0329876			.3619609	.4917767
Hapticer	.7265625	.0402988			.6517201	.8099997
Balanced	.7059017	.0731399			.5761686	.8648462
var(e.dDC01)						
Visualer	.124498	.0064644			.1124513	.1378352
Auditoree	.0928022	.0232604			.0567818	.1516729
Hapticer	.083138	.0104623			.0649654	.106394
Balanced	.0529117	.0120721			.0338334	.082748

(Std. Err. adjusted for 14 clusters in Cla)

Model 118

		Robu	ist					
	Coef.	Std.	Err.	z	₽≻∣z∣	[95%	Conf.	Interval
Structural								
Freg Imagsou								
<- State								
Visualer	.3503782	.1577	7297	2.22	0.026	.041	2337	. 659522
Auditoree	.2818361	.0209	5272	13.73	0.000	.241	6036	.322068
Hapticer	0550605	.0334	1716	-1.64	0.100	120	6636	.010542
Balanced	.0892857	.0332	2683	2.68	0.007	.024	0811	.154490
_cons								
Visualer	2.46728	.7434	1594	3.32	0.001	1.01	0127	3.92443
Auditoree	2.770484	.0663	3023	41.79	0.000	2.64	0534	2.90043
Hapticer	4.172502	.1012	2356	41.22	0.000	3.974	4083	4.3709
Balanced	3.714286	.1279	9288	29.03	0.000	3.4	6355	3.96502
Decision change								
<- Freg Imagsou								
Visualer	.0693143	.0299	9687	2.31	0.021	.010	5768	.128051
Auditoree	.1249388	.0584	1592	2.14	0.033	.010;	3609	.239516
Hapticer	.08975	.0284	1424	3.16	0.002	.034	0039	.145496
Balanced	.0244474	.015	7114	1.56	0.120	006	3464	.055241
cons								
Visualer	.5480196	.1285	5302	4.26	0.000	.29	6105	.799934
Auditoree	.3797097	.252	7817	1.50	0.133	115	7334	.875152
Hapticer	.53425	.1305	5633	4.09	0.000	.278	3506	.790149
Balanced	.8347846	.0632	2372	13.20	0.000	.71	0842	.958727
var(e.medF_4)								
Visualer	.6105038	.0518	3299			.516	9207	.721029
Auditoree	.8232913	.0883	3616			.667	1083	1.0160
Hapticer	.8310026	.080	5063			.687	1267	1.00500
Balanced	.5881243	.038	3124			.517	9545	.667800
var(e.dDC01)								
Visualer	.1421422	.0099	9116			.123	9848	.162958
Auditoree	.0913119	.0279	9157			.050	1533	.166247
Hapticer	.0929362	.0181	1712			.063	3512	.136337
Balanced	.0604565	.016	5532			.0353	2349	.103731

Model 126

		100.000				test substants
	Coef.	Robust Std. Err.	z	P≻ z	[95% Conf.	Interval]
Structural						6
Ef ImagSou Posi <- State						
Visualer	.1738281	.0506865	3.43	0.001	.0744843	.2731719
Auditoree	.3321816	.1215265	2.73	0.006	.0939941	.5703692
Hapticer	0562946	.0504669	-1.12	0.265	1552079	.0426187
Balanced	.0428571	.0098842	4.34	0.000	.0234844	0622299
cons						
Visualer	3.060872	.2525881	12.12	0.000	2.565809	3.555936
Auditoree	2.477295	.5978455	4.14	0.000	1.30554	3.649051
Hapticer	4.176671	.2613957	15.98	0.000	3.664345	4.688997
Balanced	3.742857	.0618542	60.51	0.000	3.621625	3.864089
Decision change <-						10
Ef ImagSou Posi						
Visualer	.0615404	.035089	1.75	0.079	0072326	.1303135
Auditoree	.1340421	.0387436	3.46	0.001	.058106	.2099783
Hapticer	.1051229	.0517567	2.03	0.042	.0036816	.2065642
Balanced	.0180573	.0089508	2.02	0.044	.000514	.0356006
_cons						
Visualer	.5906335	.1490507	3.96	0.000	.2984995	.8827674
Auditoree	.3527625	.1783217	1.98	0.048	.0032583	.7022666
Hapticer	.4726088	.2267943	2.08	0.037	.0281002	.9171175
Balanced	.8640515	.0303414	28.48	0.000	.8045835	.9235194
<pre>var(e.medE_4)</pre>						2
Visualer	.5253716	.0797691			.3901445	.7074695
Auditoree	.6830901	.1464862			.4486843	1.039956
Hapticer	.7157472	.1074859			.5332517	.9606985
Balanced	.6360046	.0909608			.4805319	.8417794
var(e.dDC01)						
Visualer	.1423365	.0149504			.1158537	.1748729
Auditoree	.0914635	.0234518			.0553342	.1511825
Hapticer	.0926095	.0176036			.0638052	.1344173
Balanced	.0606027	.0166394			.035382	.1038011

(Std. Err. adjusted for 14 clusters in Cla)

Model 132

Hoang Hue Chi, "How logical are your decisions?" International Research Journal of Advanced Engineering and Science, Volume 5, Issue 2, pp. 61-89, 2020.

ISSN (Online): 2455-9024

(a)		10000	10000	22.000	CALEBRE CROCERS	1.12
	Coef.	Robust Std. Err.	z	₽> z	[95% Conf.	[Interval]
Structural						1
Efimages Neg						
<- State						
Visualer	.4813084	.0476536	10.10	0.000	.387909	.5747078
Auditoree	.292695	.1116512	2.62	0.009	.0738626	.5115273
Hapticer	0033091	.0782367	-0.04	0.966	1566502	.1500321
Balanced	.0684416	.0751861	0.91	0.363	0789206	.2158037
cons						
Visualer	1.551402	.2319015	6.69	0.000	1.096883	2.005921
Auditoree	2.413129	.4870167	4.95	0.000	1.458594	3.367665
Hapticer	3.659828	.3552583	10.30	0.000	2.963534	4.356121
Balanced	3.501681	.3191518	10.97	0.000	2.876155	4.127207
Decision change						
<- Efimages Neg						
Visualer	.0818997	.0169989	4.82	0.000	.0485826	.1152169
Auditoree	.0867415	.0345698	2.51	0.012	.018986	.154497
Hapticer	.0682353	.0160434	4.25	0.000	.0367908	.0996798
Balanced	.0244423	.010353	2.36	0.018	.0041509	.0447338
_cons						
Visualer	.5299828	.0597685	8.87	0.000	.4128388	.6471268
Auditoree	.5598022	.1383251	4.05	0.000	.28869	.8309144
Hapticer	.6470588	.0696085	9.30	0.000	.5106287	.783489
Balanced	.8498623	.0573048	14.83	0.000	.7375471	.9621776
var(e.medE_7)						2
Visualer	1.013478	.0709981			.8834548	1.162638
Auditoree	1.326511	.1355299			1.085784	1.62061
Hapticer	1.291225	.0852814			1.134443	1.469675
Balanced	1.193373	.1567902			.922448	1.543869
var(e.dDC01)						
Visualer	.1359762	.0138406			.1113838	.1659984
Auditoree	.0945243	.0148232			.0695119	. 128537
Hapticer	.0873039	.01182			.0669561	.1138354
Balanced	.0533706	.0155441			.0301571	.0944526

(Std. Err. adjusted for 14 clusters in Cla)

REFERENCES

- Alistair Mutch, 2018, Practice, Substance, and history: Reframing institutional logics, Academy of Management Review, Vol. 43, No. 2, 242–258. https://doi.org/10.5465/amr.2015.0303
- [2] Atsushi, M. & Osamu, T. 2010. Comparing Frequency and Trueness Scale Descriptors in a Likert Scale Questionnaire on Language Learning Strategies, JLTA Journal, 12 (2010) pp. 116–136
- Bill Wooldridge, Birton Cowden, 2020, Strategic Decision-Making in Business, Subject: Business Policy and Strategy Online Publication Date: Jan 2020, DOI: 10.1093/acrefore/9780190224851.013.1 Access: 13 March 2020 7:13:45 PM
- [4] Brown, S. 2010. Likert Scale Examples for Surveys, ANR Program Evaluation, Iowa State University Extension
- [5] Burns, T. & Roszkowska, E..2016. Rational Choice Theory: Toward a Psychological, Social, and Material Contextualization of Human Choice Behavior. Theoretical Economics Letters, 2016, 6, 195-207 http://dx.doi.org/10.4236/tel.2016.62022

- [6] Chang, L. & Krosnick, J.A. 2003. Measuring the frequency of regular behaviors: Comparing the 'typical week' and the 'past week'. Sociological Methodology, 33, 55-80.
- [7] Corner, P.D., Kinicki, A.J., Keats, B.W.1994. Integrating Organizational and Individual Information Processing Perspectives on Choice, Organization Science, Vol.5, No.3 https://doi.org/10.1287/orsc.5.3.294
- [8] Daft RL, & Weick KE. 1984. Toward a model of organizations as interpretation systems. Academy of Management Review 9(2)
- [9] David, A.H. and Hock-Peng S., 2006, What is diversity and how should it be measured?, Sage publication
- [10] Dollinger MJ. 1984. Environmental boundary spanning and information processing effects on organizational performance. Academy of Management Journal 27(2): 351–368.
- [11] Goslar, Martin D., Green Gary I., Hughes Terry H. (1986). Applications and Implementation, Decision Support Systems: An Empirical Assessment for Decision Making, Decision Sciences, Vol 17
- [12] Gregory Moorhead & Ricky W. Griffin, 2001, Organizational Behavior: Managing People and Organizations, Sixth Edition, 6th edition, Publisher: Houghton Mifflin Harcourt Kast & Rosenzweig, 1972

Hoang Hue Chi, "How logical are your decisions?" International Research Journal of Advanced Engineering and Science, Volume 5, Issue 2, pp. 61-89, 2020.

ISSN (Online): 2455-9024

- [13] Joshua R.Knapp, Thomas Dalziel. 2007. Agency theory and the effects of cognitive social categorization. Academy of Management. Published Online: 30 Nov 2017 https://doi.org/10.5465/ambpp.2007.26506659
- [14] Kahneman, D. and Miller, D..1986. Norm theory: Comparing Reality to Its Alternatives. Psychological Review, 93, 136-153. http://dx.doi.org/10.1037/0033-295X.93.2.136
- [15] Kahneman, D., & Tversky, A. 1979. Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–291.
- [16] Kiss, Andreea N.; Barr, Pamela S. 2015. New venture strategic adaptation: The interplay of belief structures and industry context. Strategic Management Journal. Vol. 36 Issue 8, p1245-1263. DOI: 10.1002/smj.2285
- [17] Lietz, P. 2010. Research into questionnaire design: A summary of the literature, International Journal of Market Research Vol. 52 Issue 2, The Market Research Society DOI: 10.2501/S147078530920120X
- [18] M. Rozaidy, A. K. Siti-Nabiha, 2018, A framework on institutional entrepreneurships: The roles of logic and rhetorical institutionalism. The European Proceedings of Social & Behavioural Sciences (EpSBS), ICBSI 2018 International Conference on Business Sustainability and Innovation, ISSN: 2357-1330, https://doi.org/10.15405/epsbs.2019.08.21
- [19] Michael A. Hogg, 2001, A Social Identity Theory of Leadership, Volume: 5 issue: 3, page(s): 184-200, https://doi.org/10.1207/S15327957PSPR0503_1
- [20] O'Brien, L.1989. Learning Styles: Make the student aware. NASSP Bulletin
- [21] Saunders, Lewis & Thornhill. 2016. Research methods for business students, 4th edition, Prentice Hall, Financial times
- [22] Schneckenberg, D., Velamuri, V., & Comberg, C. (2019). The Design Logic of New Business Models: Unveiling Cognitive Foundations of Managerial Reasoning. European Management Review, 16(2), 427-447.
- [23] Seger, C.A. & Peterson, E. J. .2013. Categorization = Decision Making
 + Generalization, Neurosci Biobehav Rev. 37(7): 1187–1200. doi:10.1016/j.neubiorev.2013.03.015.
- [24] STATA, Intro 4 Substantive concepts, Intro 8 Robust and clustered standard errors, stata.com, Statistics Data Analysis, StataCorp, 4905 Lakeway Drive, College Station, Texas 77845 USA
- [25] Stephen A.Stumpf, Dale E.Zand, Richard D. Freedman, 1979, Designing Groups for Judgmental Decisions, Academy of Management Review, Vol. 4, No. 4, 589-600
- [26] Thornton, P. H., & Ocasio, W. 1999. Institutional logics and the historical contingency of power in organizations: Executive succession in the higher education publishing industry, 1958–1990. American Journal of Sociology, 105:801–843.
- [27] Thornton, P. H., & Ocasio, W. 2008. Institutional logics. In R. Greenwood, C. Oliver, R. Suddaby & K. Sahlin Andersson (Eds.), The Sage handbook of organizational institutionalism, London: Sage.Pache & Santos, 2013