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Abstract— The analysis of network traffic is crucial to the design 

and implementation of Intrusion Detection Systems. The R language 

is a statistical computing environment capable of performing a 

variety of data analysis techniques. In this paper, we will use the R 

language to pre-process, analyze, and create a predictive model 

using the CIC IDS-2017 dataset capable of predicting whether or not 

network connections are malicious in nature. We will use the CIC 

IDS-2017 data to train both an Artificial Neural Network and 

Machine Learning algorithm and create a model capable of 

classifying labeled network data. 
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I. INTRODUCTION 

The Intrusion Detection Evaluation Dataset (CICIDS2017) is a 

network traffic dataset comprised of both normal traffic and 

simulated abnormal data caused by intentional attacks on a test 

network. Intrusion Detection Systems and Intrusion 

Prevention Systems are critical in successfully detecting and 

mitigating attacks on computer networks from outside threats. 

Having up-to-date and relevant data from which to train these 

systems is imperative to the success rate of such systems and 

often makes the difference between a healthy and a 

compromised network. The IDS 2017 Dataset was created 

with the mitigation of contemporary attacks in mind while 

using a variety of realistic common net-work attacks to 

simulate attacks on a controlled network [1]. The focus lay on 

generating realistic and di-verse background data over the 

network while providing similarly realistic attack data. The 

team that generated this data set abstracted the behaviour and 

interactions of 25 users based on the HTTP, HTTPS, FTP, 

SSH, and email protocols [1]. The creators of this dataset 

identified a total of eleven criteria that they deemed necessary 

for creating a reliable dataset for use as a benchmark, those 

being: a complete network configuration, complete traffic, a 

final dataset that is labelled, complete interaction, complete 

capture, available protocols, attack diversity, heterogeneity, 

feature-set with over 80 network features, and metadata [1]. 

R is a statistical computing language popular among data 

scientists. Among various statistical tools, R is also known for 

the availability of a wide selection of machine learning 

libraries and third-party tools. In this paper, we will analyse 

the IDS 2017 dataset using various machine learning 

techniques. We will use an R library called Boruta to gauge 

the relative importance of the network features in a systematic 

way. Further-more, we will create a predictive model using a 

Neural Network and machine learning methods. Since the IDS 

2017 dataset is available in a variety of formats, we will use 

the comma separated value format of the network data to 

perform our analysis, although it is important to acknowledge 

that the full PCAP (descriptive net-work capture) files are also 

available for analysis [1]. 

II. DESCRIPTION OF THE DATASET 

The CIC IDS-2017 Dataset was constructed using the 

NetFlowMeter Network Traffic Flow analyser [2]. The tool 

collects in excess of 80 network traffic features and supports 

Bi-directional flows [2]. Thakkar and Lohiya describe the 

setup for the data collection for the creation of the dataset [3]. 

It was captured over a duration of 5 days over which over 80 

features and 15 classes were captured [3]. The attack 

infrastructure consisted of 4 PCs, 1 router, and 1 switch while 

the victim infrastructure was made up of 3 servers, 1 firewall, 

and 2 switches [3]. It differs from other traditional network 

datasets in that it uses different network profiles to generate 

ultra-realistic network data and attack data based on actual 

users [3]. Other network datasets such as NSL-KDD and the 

CAIDA rely on general labelled traffic with a limited number 

of attack types while the CIC IDS-2017 dataset uses a large 

variety of attack types and more pseudo-organic content from 

realistic user pro-files [3]. The entire dataset itself was 

designed and collected with the eleven characteristics of an 

ideal dataset in the forefront of the implementation [4]. While 

the CIC IDS-2017 dataset is considered a fairly recent and 

contemporary solution for supplementing intrusion detection 

systems, Thakkar and Lohiya have identified several 

shortcomings of the dataset and its usability. The first major 

issue that was identified was the sheer size of the data stored 

in each output file. Since there are a large number of data 

instances in each file, it is very cumbersome to process each 

file and load all of the data into memory. The size of the files 

also accounts for greater processing time and a decrease in the 

efficiency of many classification algorithms. 

It was also identified that there are missing and redundant 

data records in this dataset, which can either skew and 

improperly weight the factors in a classification algorithm that 

uses the dataset to train a predictive model [3]. Finally, the 

CIC IDS-2017 dataset is prone to an issue called „high-class 
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imbalance‟ which leads to low accuracy of the resulting 

predictive model [6]. While these issues continue to exist in 

this dataset, they can be eliminated or mitigated by more 

rigorously pre-processing the data before use. 

III. RELATED WORK 

A. Deep Learning Approach for Intelligent Intrusion 

Detection System 

The authors of this paper use a Deep Neural Network to 

detect anomalies related to attacks on a net-work system [5]. 

They use the IDS 2017 dataset as well as several other well 

known cyber security datasets as benchmark datasets for 

training their neural network and creating a predictive model 

that is capable of detecting unforeseen and unpredictable 

cyber attacks [5]. The authors of this paper aim to identify the 

best algorithm for effectively detecting future cyberattacks 

that is also flexible for use between multiple different datasets. 

The Deep Neural Network that is used to complete this 

classification was run with a cycle rate of 1000 epochs with a 

learning rate varying from 0.01 to 0.05 [5]. The resulting DNN 

that was built performed well when trained against the 

KDDCupp99 dataset as well as the NSL-KDD dataset [5]. 

The authors propose a scalable security framework that 

can scale with the systems it protects. The key instrument that 

allows this scalable architecture to function consists of several 

parallel machine-learning algorithms that are all optimized in 

different techniques for detection. This allows the system to 

handle a very large amount of network traffic into and 

between different facets of the system creating an increasingly 

complex fabrication of communication and tracing. To further 

enhance this security framework, the authors also worked to 

add modules for monitoring the DNS and BGP events in the 

networks [5]. 

B. A Detailed Analysis of CICIDS2017 Dataset for Designing 

Intrusion Detection Systems 

In their paper analyzing the CICIDS2017 dataset for use 

with designing Intrusion Detection Systems, Ranjit 

Panhigrahi and Samarjeet Borah evaluate the dataset to 

identify its shortcomings and to attempt to relabel the dataset 

to reduce a high-class imbalance problem [6]. Both authors 

agree that the dataset includes quite a few redundant records, 

many of which seem to be irrelevant to the training of an IDS. 

This seems to be taken into consideration when the dataset 

was being constructed as most of the background (or benign 

traffic) is generated based upon individual user profiles. Due 

to the overwhelming number of benign records, however, the 

authors conclude that there are too few attack vectors to be 

useful to an intrusion detection system. 

Another major shortcoming identified by the authors is 

missing or incomplete information in the dataset. They have 

observed 288602 instances of connections with missing class 

labels and 203 instances of connections with other missing 

information [6]. Finally, they touched on an issue that is 

prevalent in the CIC2017 dataset where the dataset is biased 

towards a majority class that is more prevalent in the dataset 

[6]. In this case, benign and DoS Hulk connections are much 

more prevalent in the dataset and which results in lower 

accuracy of the resulting IDS and a higher rate of false alarm. 

The authors proposed a relabeling scheme to solve this issue 

which involves combining the minority classes and splitting 

up the majority classes into smaller subclasses [6]. 

C. Improving AdaBoost-Based Intrusion Detection System 

(IDS) on CIC IDS2017 Dataset 

In their paper, the authors attempt to address the high-class 

imbalance problem present in the CIC IDS 2017 dataset, 

allowing the dataset to perform better with AdaBoost 

machine-learning techniques [7]. In order to rebalance the 

classes in the dataset and mitigate the resulting bias, a strategy 

incorporating the Synthetic Minority Oversampling Technique 

(SMOTE) is proposed. [7]. As addressed in this paper, this 

technique is used to enhance the sensitivity of arrangement for 

the minority classes in the dataset [7]. In order to implement 

this system, the authors ran the data through the SMOTE 

algorithm to relabel enhance data using this technique. They 

then used the R programming language to select optimal 

features from the dataset, then fed the selected data into an 

AdaBoost machine learning algorithm to create a predictive 

model. In order to accurately select optimal features from the 

dataset to determine importance, they used the R package EFS 

[10]. 

IV. DATA PRE-PROCESSING 

We used the comma separated values format of the CIC 

IDS 2017 Dataset for all of our processing. This dataset was 

available from the Canadian Institute for Cybersecurity [1]. 

This source provides both original PCAP files and a 

consolidated series of CSV files to work with. Since the R 

programming language is able to process CSV files quite well, 

we decided to use these instead of the PCAP files. A series of 

steps had to be taken to ensure that the data is in an 

appropriate format to be processed by our algorithms, in 

addition, we had to make sure that there were no anomalies in 

the data that would otherwise cause issues later. One area 

where there was an especially large amount of friction was 

attempting to automate the testing for importance. In order to 

determine which network features were most important in our 

dataset, we used a third-party library called Boruta [7]. 

Algorithms used to determine the importance of features are 

very specific, and it does not take much to throw off the 

results. 

The first major issue we ran into regarding the format and 

structuring of the CSV data was the fact that there were 

duplicated columns in the dataset. After receiving a runtime 

error when trying to process the data using Boruta, we 

manually combed the data to find the superfluous column. It 

turned out that the column labeled “fwd_header_length” 

showed up as both column number 35 and column 56 and after 

scripting a solution to check the contents of both columns, it 

was determined that the data was identical and could therefore 

be removed entirely without sacrificing any of our vector 

features. We did not spend extra resources looking into 

whether this same data was replicated in the original PCAP 

data that was provided from the data source, but all of the 
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CSV files were found to have this issue. Additionally, some 

values in the data set were either set as the string „Infinity‟ or 

„NaN‟ for Not a Number. It was not determined which 

overflow or non-numerical values caused these to be inserted 

into the dataset, but this became an issue when setting the 

datatype of each column. In order to process our data using the 

Boruta library, we had to replace all instances of these values 

with numerical values that would not skew our data. We 

decided to find the maximum value for the column that we 

found each instance of the „Infinity value‟ and replace it with 

that value doubled. In each case of NaN we decided to take the 

mean of each column and use that value to replace all of these 

instances. 

Additionally, as mentioned in related work [6], there is a 

large amount of the dataset that has missing information 

(either class information or other information). In the R 

language, these values result in an “N/A” or missing value for 

the data frames which halt some our algorithms, such as the 

Boruta test for importance. In order to successfully make an 

evaluation on the dataset, we first had to eliminate instances of 

packets with partial or missing information using the na.omit() 

function in R. Failure to properly handle this will result in 

several compiler errors from the system. 

The last step that needed to be taken to ensure that all of 

the data could be processed properly was to actually combine 

all of the different labeled data into one file. As mentioned in 

[3], the dataset itself is separated by attack type so that each 

attack type has its own file along with benign data. In order to 

fully process a complete model (with all attack types), all of 

this data has to be combined into one complete file containing 

all records. This became very cumbersome very quickly as the 

resulting file was almost 1 gigabyte in size. Just reading the 

file into memory to be processed by our algorithms would take 

on average four to five minutes (the exact specifications of the 

computer we used can be found in table I). 

 
TABLE I. Hardware Specifications 

Hardware Specs On Test Computer 

Processor Memory GPU 

2.0 GHz Intel Xeon Gold CPU 5117 8 Cores 64 GB NVIDIA 

V. DETERMINATION OF IMPORTANCE 

In order to determine the relative importance of each 

individual network feature in the CIC IDS 2017 dataset (of 

which there were over 80), we ran the dataset through an 

automated test of importance in determining the packet type 

using a package called Boruta [8]. Due to the size of the 

complete dataset (which totaled 741 MB), we decided to cap 

the number of iterations under which the tests for importance 

would be run to 20. Even with the number of recursive 

iterations capped, the entire test of importance for every 

feature in the dataset to be determined took a total of 38.4 

hours to complete. The determinacy of selection for each 

epoch took on average 2 hours to complete. The top 10 most 

importance features from this determination can be found in 

table II. 

 
 

TABLE II. Importance Benchmarks for Network Features 

Feature 

Importance Benchmarks for Network Features 

Mean 

Importance 

Min 

Importance 

Max 

Importance 

Init_win_bytes_fwd 42.851426 40.324064 46.759915 

Ack_flag_count 24.3363771 23.375138 25.527398 

Fwd_packet_per_sec 24.0779123 22.208183 25.716682 

Flow_packets_per_sec 23.1960694 21.509125 25.351291 

Flow_iat_max 22.7701305 21.042116 23.934746 

Flow_iat_min 22.5902703 18.070844 28.218225 

Flow_duration 22.5343098 20.672436 24.731897 

Init_win_bytes_bwd 22.4179293 20.433875 23.439661 

Subflow_bwd_bytes 22.1918294 20.742846 24.335224 

Flow_iat_mean 21.9582785 20.421413 23.388285 

 

An interesting result to note from the relative importance 

feature selection, is that all of the different metrics for measure 

flow_iat were select within the top 15 most important features. 

The network connection feature with the highest importance 

(by far) was init_win_bytes_fwd. According to the 

NetFlowMeter homepage, init_win_bytes_fwd refers to the 

number of bytes sent in initial window in the forward direction 

[2]. The next important network connection feature with the 

ack_flag_count which refers to the number of times the ACK 

flag was set in packets traveling over the connection [2]. 

Overall, it will be important to consider all of the flow_iat 

metrics in our connection vectors moving forward, and it is 

worth noting that the init_win_bytes_fwd is a very strong 

predictor of the label type for a given connection vector. While 

these ten features were found to be the most important to 

determining the label of the data, the following features were 

determined to have no importance to the predictive model 

whatsoever. These features can be found in table III. 

 
TABLE III. Least Important Benchmarks for Network Features 

Feature 

Least Important Benchmarks for Network 

Features 

Mean 

Importance 

Min 

Importance 

Max 

Importance 

Bwd_psh_flags 0.000000 0.000000 0.000000 

Bwd_urg_flags 0.000000 0.000000 0.000000 

Fwd_avg_bytes_per_bulk 0.000000 0.000000 0.000000 

Fwd_avg_packets_per_bulk 0.000000 0.000000 0.000000 

Fwd_avg_bulk_rate 0.000000 0.000000 0.000000 

Bwd_avg_bytes_per_bulk 0.000000 0.000000 0.000000 

Bwd_avg_packets_per_bulk 0.000000 0.000000 0.000000 

Bwd_avg_bulk_rate 0.000000 0.000000 0.000000 

VI. BUILDING A PREDICTIVE MODEL 

A. Implementation Using NNET 

In order to create a predictive model and evaluate the 

efficiency of the CIC IDS 2017 dataset, a neural network was 

created and configured in R. In order to create and train an 

artificial neural network (ANN), we used the NNET library 

[9]. To start off, we created a neural network to check against 

the label for the data and added a subset of the dataset to start 

training for. We selected a randomized sample of 1 million 

connection vectors between lines 1 and 7 million, another 

million between lines 7 million one and 14 million, and 

another million lines between 14 million one and 23 million. 

We subsequently used these samples to train our neural 

network. Additionally, we configured our ANN to use 5 
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neurons to form the network and have a decay of 1.0-5. 

Finally, we configured the ANN to have 500 iterations. At this 

point, we made our first attempt to train the ANN and build 

our predictive model. 

Upon initially loading our data into the program and 

running the setup for NNET to create the ANN, we 

encountered a problem with the R session. It seems that there 

was too much data to load in and successfully run the 

program. In order to achieve a running result, it was 

determined that we had to remove some of the data in order to 

do any analysis on it. In order to achieve this, we decided to 

try to limit the number of connections while simultaneously 

fixing the class imbalance issue discovered in [6]. Since the 

high-class imbalance presents itself and favors benign traffic, 

we decided to limit the amount of benign traffic by removing 

approximately 25% of the benign connection vectors. We also 

decided to randomize the order of the connection vectors as 

they were separated by attack type. In this way we were able 

to solve the issue with the R session crashing while also 

solving the high-class imbalance issue and making our raw 

data more unpredictable. 

Our first running attempt resulted in several errors from 

the NNET package [9]. We got a compilation error stating that 

there were too many “weights” or factors in our training data. 

In order to attempt to fix this problem, we increased the 

maximum number of weights considered in the model as 

500,000. This solution seemed to fix the previous error but 

resulted in an error pertaining to the neural network 

encountering missing or partial values in the connection 

vectors. When combing the data for incomplete data, we found 

some missing information in the connection vectors, but there 

were far too many to remove manually. The best 

implementation we found to remove the connection vectors 

that contained these partial values from the dataset altogether 

was to apply the na.omit() function to the entire dataset. This 

removed each instance in the dataset containing missing 

values, but these still could not be used successfully to train 

our ANN. In order to enforce a dataset that did not contain any 

empty vectors, we had to pass an argument into the NNET 

instance on creation called na.action and we set the action to 

na.omit. This allowed the ANN to automatically omit N/A 

values when running the training algorithm. The results from 

this classification can be found in table IV. 

We first trained the ANN with a maximum iteration range 

of 50 iterations, then 500 iterations to compare the effect of 

more training sessions on the ability for the model to 

successfully predict network traffic. Our model trained on 500 

iterations had an average success rate of 96.53% over a period 

of 89.163 minutes while our 50-iteration model‟s average 

success rate was only 87.79% over a period of 82.47 seconds. 

While the individual prediction rates by attack differed only 

slightly between the two levels of iteration ranges, the overall 

average prediction rate decreased by a significant amount. 

Overall, it seems that a high-class imbalance issue still exists 

in the dataset due to some types of attacks being more 

successfully predicted than others, but it does not seem as big 

of an issue here. 
 

TABLE IV. Attack Detection Metrics for 500 Iteration Neural Network 

Attack 

Attack Detection Metrics For 500 iteration Neural 

Network 

Number of 

Connections Correctly 

Predicted 

Total 

Connections 

% 

Correct 

Benign (Normal 

Traffic) 
1839789 1841023 99.933% 

DDoS 128025 128027 99.998% 

Portscan 158898 158930 99.980% 

Bot 1960 1966 99.695% 

Infiltration 34 36 94.444% 

Web Attack: 
Brute Force 

1505 1507 99.867% 

Web Attack: 

XXS 
652 652 100% 

Web Attack: 
SQL Injection 

19 21 90.476% 

DoS Slowloris 5582 5796 96.308% 

DoS Slowhttptest 5381 5499 97.854% 

DoS Hulk 200067 231073 86.582% 

DoS GoldenEye 10175 10293 98.854% 

Heartbleed 10 11 90.909% 

B. Implementation Using randomForest and Caret 

RandomForest is a machine learning library that „random 

forests‟ of input for classification and regression testing [11]. 

Caret is an R library capable of classification and regression 

training [12]. It is also capable of plotting regression and 

classification models in a visual aspect. Between both 

libraries, we were able to create a predictive model that was 

trained using our CIC IDS-2017 data and compare the results 

across the different attack vectors. Our goal was to use 

machine-learning algorithms to create a predictive model with 

the same data and compare the results against those from our 

ANN. We decided to use the same subsets of data for training 

and compare our results by testing our model against the 

complete data set. 

The configuration for Caret was relatively simple with the 

only two requirements for use being the setup of a data 

partition and a training control initialization. For the data 

partition, we passed in an equation looking primarily at the 

label of the data and we used 10 epochs for the training 

control. In order to train our predictive model, we used the 

train method from Caret passing in our data, the method to be 

used for training (randomForest), and the metric which 

accounts for accuracy. After attempting to run the algorithm 

with our data, we received several errors regarding missing 

data as we did when using the ANN. However, this time 

simply using the na.omit() function to omit all of the data was 

not effective in actually filtering the data in a way that would 

allow the algorithm to run. 

It seemed that data was still present in the dataset that had 

incomplete cases. In order to run the data through the 

algorithm successfully, an additional step had to be taken to 

ensure that every connection vector did not have any missing 

data, we had to filter the data using the complete.cases() 

function and pass only those cases into the training algorithm. 

Finally, we had to explicitly tell R that in the cases where 

incomplete data was found, the entire connection vector 

should not be included in the training data. In order to do this, 

we had to pass the na.action parameter into the training 
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function and assign it to “Exclude”. After making this last 

configuration, we were able to successfully run the function to 

train the predictive model and get out results. The results from 

this training method and classification can be found in table V. 
 

TABLE V. Attack Detection Metrics for randomForest Training 

Attack 

Attack Detection Metrics For randomForest 

Training 

Number of 

Connections 

Correctly 

Predicted 

Total 

Connections 

% 

Correct 

Benign (Normal 

Traffic) 
1834784 1841023 99.661% 

DDoS 127844 128027 99.857% 

Portscan 158798 158930 99.917% 

Bot 1912 1966 97.253% 

Infiltration 33 36 91.167% 

Web Attack: 

Brute Force 
1477 1507 98.009% 

Web Attack: 
XXS 

649 652 99.540% 

Web Attack: 

SQL Injection 
20 21 95.238% 

DoS Slowloris 5640 5796 97.309% 

DoS Slowhttptest 5486 5499 99.764% 

DoS Hulk 217813 231073 94.262% 

DoS GoldenEye 10018 10293 97.328% 

Heartbleed 9 11 81.818% 

 

After running the training program and checking the 

results against the actual labels for the data, the randomForest 

machine learning algorithm was found to have an average 

accuracy rate of 96.24% and took 68.35 hours to execute. 

Comparing our results, individual attack types seemed to have 

differing results between our two methods of classification, 

but the overall average classification rate was comparable. We 

found that the results from the randomForest machine learning 

algorithm were more consistent across different attack types. 

VII. CONCLUSION 

A full analysis and review of the CIC IDS 2017 dataset 

used for training Intrusion Detection Systems has been 

performed and evaluated with several machine learning 

methods. We have found and examined many of the 

advantages and shortcomings that this dataset brings with it. 

Overall, we have found that the dataset excels in generating 

realistic background (benign) traffic using a variety of user 

profiles and has a good array of different contemporary 

attacks. It has also been determined that the dataset suffers 

from overall size and it is often too bulky to use for 

performing any quick tasks. In many cases, the actual 

virtualization of the software used to process the data cannot 

handle the size of the dataset file and often changes needed to 

be made to accommodate these issues. 

It has also been found that the data itself is not always 

reliable when working with processes that require complete 

data rows. There are many cases where the data cells read 

„NaN‟, „Infinity‟, or simply cease to exist. Along with the 

inconsistent data, the CIC IDS 2017 dataset has been found to 

suffer from a high-level class imbalance, leading to the major 

(most common classes) overpowering the minority classes. 

Without actually eliminating data, the best proposed method 

for solving this issue is to relabel and reallocate the data to 

give the minority classes a more proportional amount of data 

for the predictive model to use for training. We used the 

Boruta test for importance to determine which features the in 

the dataset were most important, and which of the features 

were least important. 

Finally, we build an Artificial Neural Network and used 

machine learning algorithms from third-party R libraries to 

build several predictive models using the data. We have found 

that the success rate of prediction for the connection vector 

differs by attack type, but the average rate has turned out be 

highly successful (about the 96
th

 percentile in both cases). 

Overall, we have determined what good features lie in both the 

dataset and the R programming language, and what 

applications best fit this solution for Intrusion Detection 

Systems. 
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