
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

187

Zachariah Pelletier and Munther Abualkibash, “Evaluating the CIC IDS-2017 Dataset Using Machine Learning Methods and Creating

Multiple Predictive Models in the Statistical Computing Language R,” International Research Journal of Advanced Engineering and

Science, Volume 5, Issue 2, pp. 187-191, 2020.

Evaluating the CIC IDS-2017 Dataset Using Machine

Learning Methods and Creating Multiple Predictive

Models in the Statistical Computing Language R

Zachariah Pelletier
1
, Munther Abualkibash

2

1
School of Information Security and Applied Computing, Eastern Michigan University, Ypsilanti, Michigan, United States-48197

2
School of Information Security and Applied Computing, Eastern Michigan University, Ypsilanti, Michigan, United States-48197

Abstract— The analysis of network traffic is crucial to the design

and implementation of Intrusion Detection Systems. The R language

is a statistical computing environment capable of performing a

variety of data analysis techniques. In this paper, we will use the R

language to pre-process, analyze, and create a predictive model

using the CIC IDS-2017 dataset capable of predicting whether or not

network connections are malicious in nature. We will use the CIC

IDS-2017 data to train both an Artificial Neural Network and

Machine Learning algorithm and create a model capable of

classifying labeled network data.

Keywords— R Language : Machine Learning : Neural Network :

Network Traffic : nnet : Boruta : CIC IDS-2017 : randomForest :

Intrusion Detection system.

I. INTRODUCTION

The Intrusion Detection Evaluation Dataset (CICIDS2017) is a

network traffic dataset comprised of both normal traffic and

simulated abnormal data caused by intentional attacks on a test

network. Intrusion Detection Systems and Intrusion

Prevention Systems are critical in successfully detecting and

mitigating attacks on computer networks from outside threats.

Having up-to-date and relevant data from which to train these

systems is imperative to the success rate of such systems and

often makes the difference between a healthy and a

compromised network. The IDS 2017 Dataset was created

with the mitigation of contemporary attacks in mind while

using a variety of realistic common net-work attacks to

simulate attacks on a controlled network [1]. The focus lay on

generating realistic and di-verse background data over the

network while providing similarly realistic attack data. The

team that generated this data set abstracted the behaviour and

interactions of 25 users based on the HTTP, HTTPS, FTP,

SSH, and email protocols [1]. The creators of this dataset

identified a total of eleven criteria that they deemed necessary

for creating a reliable dataset for use as a benchmark, those

being: a complete network configuration, complete traffic, a

final dataset that is labelled, complete interaction, complete

capture, available protocols, attack diversity, heterogeneity,

feature-set with over 80 network features, and metadata [1].

R is a statistical computing language popular among data

scientists. Among various statistical tools, R is also known for

the availability of a wide selection of machine learning

libraries and third-party tools. In this paper, we will analyse

the IDS 2017 dataset using various machine learning

techniques. We will use an R library called Boruta to gauge

the relative importance of the network features in a systematic

way. Further-more, we will create a predictive model using a

Neural Network and machine learning methods. Since the IDS

2017 dataset is available in a variety of formats, we will use

the comma separated value format of the network data to

perform our analysis, although it is important to acknowledge

that the full PCAP (descriptive net-work capture) files are also

available for analysis [1].

II. DESCRIPTION OF THE DATASET

The CIC IDS-2017 Dataset was constructed using the

NetFlowMeter Network Traffic Flow analyser [2]. The tool

collects in excess of 80 network traffic features and supports

Bi-directional flows [2]. Thakkar and Lohiya describe the

setup for the data collection for the creation of the dataset [3].

It was captured over a duration of 5 days over which over 80

features and 15 classes were captured [3]. The attack

infrastructure consisted of 4 PCs, 1 router, and 1 switch while

the victim infrastructure was made up of 3 servers, 1 firewall,

and 2 switches [3]. It differs from other traditional network

datasets in that it uses different network profiles to generate

ultra-realistic network data and attack data based on actual

users [3]. Other network datasets such as NSL-KDD and the

CAIDA rely on general labelled traffic with a limited number

of attack types while the CIC IDS-2017 dataset uses a large

variety of attack types and more pseudo-organic content from

realistic user pro-files [3]. The entire dataset itself was

designed and collected with the eleven characteristics of an

ideal dataset in the forefront of the implementation [4]. While

the CIC IDS-2017 dataset is considered a fairly recent and

contemporary solution for supplementing intrusion detection

systems, Thakkar and Lohiya have identified several

shortcomings of the dataset and its usability. The first major

issue that was identified was the sheer size of the data stored

in each output file. Since there are a large number of data

instances in each file, it is very cumbersome to process each

file and load all of the data into memory. The size of the files

also accounts for greater processing time and a decrease in the

efficiency of many classification algorithms.

It was also identified that there are missing and redundant

data records in this dataset, which can either skew and

improperly weight the factors in a classification algorithm that

uses the dataset to train a predictive model [3]. Finally, the

CIC IDS-2017 dataset is prone to an issue called „high-class

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

188

Zachariah Pelletier and Munther Abualkibash, “Evaluating the CIC IDS-2017 Dataset Using Machine Learning Methods and Creating

Multiple Predictive Models in the Statistical Computing Language R,” International Research Journal of Advanced Engineering and

Science, Volume 5, Issue 2, pp. 187-191, 2020.

imbalance‟ which leads to low accuracy of the resulting

predictive model [6]. While these issues continue to exist in

this dataset, they can be eliminated or mitigated by more

rigorously pre-processing the data before use.

III. RELATED WORK

A. Deep Learning Approach for Intelligent Intrusion

Detection System

The authors of this paper use a Deep Neural Network to

detect anomalies related to attacks on a net-work system [5].

They use the IDS 2017 dataset as well as several other well

known cyber security datasets as benchmark datasets for

training their neural network and creating a predictive model

that is capable of detecting unforeseen and unpredictable

cyber attacks [5]. The authors of this paper aim to identify the

best algorithm for effectively detecting future cyberattacks

that is also flexible for use between multiple different datasets.

The Deep Neural Network that is used to complete this

classification was run with a cycle rate of 1000 epochs with a

learning rate varying from 0.01 to 0.05 [5]. The resulting DNN

that was built performed well when trained against the

KDDCupp99 dataset as well as the NSL-KDD dataset [5].

The authors propose a scalable security framework that

can scale with the systems it protects. The key instrument that

allows this scalable architecture to function consists of several

parallel machine-learning algorithms that are all optimized in

different techniques for detection. This allows the system to

handle a very large amount of network traffic into and

between different facets of the system creating an increasingly

complex fabrication of communication and tracing. To further

enhance this security framework, the authors also worked to

add modules for monitoring the DNS and BGP events in the

networks [5].

B. A Detailed Analysis of CICIDS2017 Dataset for Designing

Intrusion Detection Systems

In their paper analyzing the CICIDS2017 dataset for use

with designing Intrusion Detection Systems, Ranjit

Panhigrahi and Samarjeet Borah evaluate the dataset to

identify its shortcomings and to attempt to relabel the dataset

to reduce a high-class imbalance problem [6]. Both authors

agree that the dataset includes quite a few redundant records,

many of which seem to be irrelevant to the training of an IDS.

This seems to be taken into consideration when the dataset

was being constructed as most of the background (or benign

traffic) is generated based upon individual user profiles. Due

to the overwhelming number of benign records, however, the

authors conclude that there are too few attack vectors to be

useful to an intrusion detection system.

Another major shortcoming identified by the authors is

missing or incomplete information in the dataset. They have

observed 288602 instances of connections with missing class

labels and 203 instances of connections with other missing

information [6]. Finally, they touched on an issue that is

prevalent in the CIC2017 dataset where the dataset is biased

towards a majority class that is more prevalent in the dataset

[6]. In this case, benign and DoS Hulk connections are much

more prevalent in the dataset and which results in lower

accuracy of the resulting IDS and a higher rate of false alarm.

The authors proposed a relabeling scheme to solve this issue

which involves combining the minority classes and splitting

up the majority classes into smaller subclasses [6].

C. Improving AdaBoost-Based Intrusion Detection System

(IDS) on CIC IDS2017 Dataset

In their paper, the authors attempt to address the high-class

imbalance problem present in the CIC IDS 2017 dataset,

allowing the dataset to perform better with AdaBoost

machine-learning techniques [7]. In order to rebalance the

classes in the dataset and mitigate the resulting bias, a strategy

incorporating the Synthetic Minority Oversampling Technique

(SMOTE) is proposed. [7]. As addressed in this paper, this

technique is used to enhance the sensitivity of arrangement for

the minority classes in the dataset [7]. In order to implement

this system, the authors ran the data through the SMOTE

algorithm to relabel enhance data using this technique. They

then used the R programming language to select optimal

features from the dataset, then fed the selected data into an

AdaBoost machine learning algorithm to create a predictive

model. In order to accurately select optimal features from the

dataset to determine importance, they used the R package EFS

[10].

IV. DATA PRE-PROCESSING

We used the comma separated values format of the CIC

IDS 2017 Dataset for all of our processing. This dataset was

available from the Canadian Institute for Cybersecurity [1].

This source provides both original PCAP files and a

consolidated series of CSV files to work with. Since the R

programming language is able to process CSV files quite well,

we decided to use these instead of the PCAP files. A series of

steps had to be taken to ensure that the data is in an

appropriate format to be processed by our algorithms, in

addition, we had to make sure that there were no anomalies in

the data that would otherwise cause issues later. One area

where there was an especially large amount of friction was

attempting to automate the testing for importance. In order to

determine which network features were most important in our

dataset, we used a third-party library called Boruta [7].

Algorithms used to determine the importance of features are

very specific, and it does not take much to throw off the

results.

The first major issue we ran into regarding the format and

structuring of the CSV data was the fact that there were

duplicated columns in the dataset. After receiving a runtime

error when trying to process the data using Boruta, we

manually combed the data to find the superfluous column. It

turned out that the column labeled “fwd_header_length”

showed up as both column number 35 and column 56 and after

scripting a solution to check the contents of both columns, it

was determined that the data was identical and could therefore

be removed entirely without sacrificing any of our vector

features. We did not spend extra resources looking into

whether this same data was replicated in the original PCAP

data that was provided from the data source, but all of the

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

189

Zachariah Pelletier and Munther Abualkibash, “Evaluating the CIC IDS-2017 Dataset Using Machine Learning Methods and Creating

Multiple Predictive Models in the Statistical Computing Language R,” International Research Journal of Advanced Engineering and

Science, Volume 5, Issue 2, pp. 187-191, 2020.

CSV files were found to have this issue. Additionally, some

values in the data set were either set as the string „Infinity‟ or

„NaN‟ for Not a Number. It was not determined which

overflow or non-numerical values caused these to be inserted

into the dataset, but this became an issue when setting the

datatype of each column. In order to process our data using the

Boruta library, we had to replace all instances of these values

with numerical values that would not skew our data. We

decided to find the maximum value for the column that we

found each instance of the „Infinity value‟ and replace it with

that value doubled. In each case of NaN we decided to take the

mean of each column and use that value to replace all of these

instances.

Additionally, as mentioned in related work [6], there is a

large amount of the dataset that has missing information

(either class information or other information). In the R

language, these values result in an “N/A” or missing value for

the data frames which halt some our algorithms, such as the

Boruta test for importance. In order to successfully make an

evaluation on the dataset, we first had to eliminate instances of

packets with partial or missing information using the na.omit()

function in R. Failure to properly handle this will result in

several compiler errors from the system.

The last step that needed to be taken to ensure that all of

the data could be processed properly was to actually combine

all of the different labeled data into one file. As mentioned in

[3], the dataset itself is separated by attack type so that each

attack type has its own file along with benign data. In order to

fully process a complete model (with all attack types), all of

this data has to be combined into one complete file containing

all records. This became very cumbersome very quickly as the

resulting file was almost 1 gigabyte in size. Just reading the

file into memory to be processed by our algorithms would take

on average four to five minutes (the exact specifications of the

computer we used can be found in table I).

TABLE I. Hardware Specifications

Hardware Specs On Test Computer

Processor Memory GPU

2.0 GHz Intel Xeon Gold CPU 5117 8 Cores 64 GB NVIDIA

V. DETERMINATION OF IMPORTANCE

In order to determine the relative importance of each

individual network feature in the CIC IDS 2017 dataset (of

which there were over 80), we ran the dataset through an

automated test of importance in determining the packet type

using a package called Boruta [8]. Due to the size of the

complete dataset (which totaled 741 MB), we decided to cap

the number of iterations under which the tests for importance

would be run to 20. Even with the number of recursive

iterations capped, the entire test of importance for every

feature in the dataset to be determined took a total of 38.4

hours to complete. The determinacy of selection for each

epoch took on average 2 hours to complete. The top 10 most

importance features from this determination can be found in

table II.

TABLE II. Importance Benchmarks for Network Features

Feature

Importance Benchmarks for Network Features

Mean

Importance

Min

Importance

Max

Importance

Init_win_bytes_fwd 42.851426 40.324064 46.759915

Ack_flag_count 24.3363771 23.375138 25.527398

Fwd_packet_per_sec 24.0779123 22.208183 25.716682

Flow_packets_per_sec 23.1960694 21.509125 25.351291

Flow_iat_max 22.7701305 21.042116 23.934746

Flow_iat_min 22.5902703 18.070844 28.218225

Flow_duration 22.5343098 20.672436 24.731897

Init_win_bytes_bwd 22.4179293 20.433875 23.439661

Subflow_bwd_bytes 22.1918294 20.742846 24.335224

Flow_iat_mean 21.9582785 20.421413 23.388285

An interesting result to note from the relative importance

feature selection, is that all of the different metrics for measure

flow_iat were select within the top 15 most important features.

The network connection feature with the highest importance

(by far) was init_win_bytes_fwd. According to the

NetFlowMeter homepage, init_win_bytes_fwd refers to the

number of bytes sent in initial window in the forward direction

[2]. The next important network connection feature with the

ack_flag_count which refers to the number of times the ACK

flag was set in packets traveling over the connection [2].

Overall, it will be important to consider all of the flow_iat

metrics in our connection vectors moving forward, and it is

worth noting that the init_win_bytes_fwd is a very strong

predictor of the label type for a given connection vector. While

these ten features were found to be the most important to

determining the label of the data, the following features were

determined to have no importance to the predictive model

whatsoever. These features can be found in table III.

TABLE III. Least Important Benchmarks for Network Features

Feature

Least Important Benchmarks for Network

Features

Mean

Importance

Min

Importance

Max

Importance

Bwd_psh_flags 0.000000 0.000000 0.000000

Bwd_urg_flags 0.000000 0.000000 0.000000

Fwd_avg_bytes_per_bulk 0.000000 0.000000 0.000000

Fwd_avg_packets_per_bulk 0.000000 0.000000 0.000000

Fwd_avg_bulk_rate 0.000000 0.000000 0.000000

Bwd_avg_bytes_per_bulk 0.000000 0.000000 0.000000

Bwd_avg_packets_per_bulk 0.000000 0.000000 0.000000

Bwd_avg_bulk_rate 0.000000 0.000000 0.000000

VI. BUILDING A PREDICTIVE MODEL

A. Implementation Using NNET

In order to create a predictive model and evaluate the

efficiency of the CIC IDS 2017 dataset, a neural network was

created and configured in R. In order to create and train an

artificial neural network (ANN), we used the NNET library

[9]. To start off, we created a neural network to check against

the label for the data and added a subset of the dataset to start

training for. We selected a randomized sample of 1 million

connection vectors between lines 1 and 7 million, another

million between lines 7 million one and 14 million, and

another million lines between 14 million one and 23 million.

We subsequently used these samples to train our neural

network. Additionally, we configured our ANN to use 5

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

190

Zachariah Pelletier and Munther Abualkibash, “Evaluating the CIC IDS-2017 Dataset Using Machine Learning Methods and Creating

Multiple Predictive Models in the Statistical Computing Language R,” International Research Journal of Advanced Engineering and

Science, Volume 5, Issue 2, pp. 187-191, 2020.

neurons to form the network and have a decay of 1.0-5.

Finally, we configured the ANN to have 500 iterations. At this

point, we made our first attempt to train the ANN and build

our predictive model.

Upon initially loading our data into the program and

running the setup for NNET to create the ANN, we

encountered a problem with the R session. It seems that there

was too much data to load in and successfully run the

program. In order to achieve a running result, it was

determined that we had to remove some of the data in order to

do any analysis on it. In order to achieve this, we decided to

try to limit the number of connections while simultaneously

fixing the class imbalance issue discovered in [6]. Since the

high-class imbalance presents itself and favors benign traffic,

we decided to limit the amount of benign traffic by removing

approximately 25% of the benign connection vectors. We also

decided to randomize the order of the connection vectors as

they were separated by attack type. In this way we were able

to solve the issue with the R session crashing while also

solving the high-class imbalance issue and making our raw

data more unpredictable.

Our first running attempt resulted in several errors from

the NNET package [9]. We got a compilation error stating that

there were too many “weights” or factors in our training data.

In order to attempt to fix this problem, we increased the

maximum number of weights considered in the model as

500,000. This solution seemed to fix the previous error but

resulted in an error pertaining to the neural network

encountering missing or partial values in the connection

vectors. When combing the data for incomplete data, we found

some missing information in the connection vectors, but there

were far too many to remove manually. The best

implementation we found to remove the connection vectors

that contained these partial values from the dataset altogether

was to apply the na.omit() function to the entire dataset. This

removed each instance in the dataset containing missing

values, but these still could not be used successfully to train

our ANN. In order to enforce a dataset that did not contain any

empty vectors, we had to pass an argument into the NNET

instance on creation called na.action and we set the action to

na.omit. This allowed the ANN to automatically omit N/A

values when running the training algorithm. The results from

this classification can be found in table IV.

We first trained the ANN with a maximum iteration range

of 50 iterations, then 500 iterations to compare the effect of

more training sessions on the ability for the model to

successfully predict network traffic. Our model trained on 500

iterations had an average success rate of 96.53% over a period

of 89.163 minutes while our 50-iteration model‟s average

success rate was only 87.79% over a period of 82.47 seconds.

While the individual prediction rates by attack differed only

slightly between the two levels of iteration ranges, the overall

average prediction rate decreased by a significant amount.

Overall, it seems that a high-class imbalance issue still exists

in the dataset due to some types of attacks being more

successfully predicted than others, but it does not seem as big

of an issue here.

TABLE IV. Attack Detection Metrics for 500 Iteration Neural Network

Attack

Attack Detection Metrics For 500 iteration Neural

Network

Number of

Connections Correctly

Predicted

Total

Connections

%

Correct

Benign (Normal

Traffic)
1839789 1841023 99.933%

DDoS 128025 128027 99.998%

Portscan 158898 158930 99.980%

Bot 1960 1966 99.695%

Infiltration 34 36 94.444%

Web Attack:
Brute Force

1505 1507 99.867%

Web Attack:

XXS
652 652 100%

Web Attack:
SQL Injection

19 21 90.476%

DoS Slowloris 5582 5796 96.308%

DoS Slowhttptest 5381 5499 97.854%

DoS Hulk 200067 231073 86.582%

DoS GoldenEye 10175 10293 98.854%

Heartbleed 10 11 90.909%

B. Implementation Using randomForest and Caret

RandomForest is a machine learning library that „random

forests‟ of input for classification and regression testing [11].

Caret is an R library capable of classification and regression

training [12]. It is also capable of plotting regression and

classification models in a visual aspect. Between both

libraries, we were able to create a predictive model that was

trained using our CIC IDS-2017 data and compare the results

across the different attack vectors. Our goal was to use

machine-learning algorithms to create a predictive model with

the same data and compare the results against those from our

ANN. We decided to use the same subsets of data for training

and compare our results by testing our model against the

complete data set.

The configuration for Caret was relatively simple with the

only two requirements for use being the setup of a data

partition and a training control initialization. For the data

partition, we passed in an equation looking primarily at the

label of the data and we used 10 epochs for the training

control. In order to train our predictive model, we used the

train method from Caret passing in our data, the method to be

used for training (randomForest), and the metric which

accounts for accuracy. After attempting to run the algorithm

with our data, we received several errors regarding missing

data as we did when using the ANN. However, this time

simply using the na.omit() function to omit all of the data was

not effective in actually filtering the data in a way that would

allow the algorithm to run.

It seemed that data was still present in the dataset that had

incomplete cases. In order to run the data through the

algorithm successfully, an additional step had to be taken to

ensure that every connection vector did not have any missing

data, we had to filter the data using the complete.cases()

function and pass only those cases into the training algorithm.

Finally, we had to explicitly tell R that in the cases where

incomplete data was found, the entire connection vector

should not be included in the training data. In order to do this,

we had to pass the na.action parameter into the training

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

191

Zachariah Pelletier and Munther Abualkibash, “Evaluating the CIC IDS-2017 Dataset Using Machine Learning Methods and Creating

Multiple Predictive Models in the Statistical Computing Language R,” International Research Journal of Advanced Engineering and

Science, Volume 5, Issue 2, pp. 187-191, 2020.

function and assign it to “Exclude”. After making this last

configuration, we were able to successfully run the function to

train the predictive model and get out results. The results from

this training method and classification can be found in table V.

TABLE V. Attack Detection Metrics for randomForest Training

Attack

Attack Detection Metrics For randomForest

Training

Number of

Connections

Correctly

Predicted

Total

Connections

%

Correct

Benign (Normal

Traffic)
1834784 1841023 99.661%

DDoS 127844 128027 99.857%

Portscan 158798 158930 99.917%

Bot 1912 1966 97.253%

Infiltration 33 36 91.167%

Web Attack:

Brute Force
1477 1507 98.009%

Web Attack:
XXS

649 652 99.540%

Web Attack:

SQL Injection
20 21 95.238%

DoS Slowloris 5640 5796 97.309%

DoS Slowhttptest 5486 5499 99.764%

DoS Hulk 217813 231073 94.262%

DoS GoldenEye 10018 10293 97.328%

Heartbleed 9 11 81.818%

After running the training program and checking the

results against the actual labels for the data, the randomForest

machine learning algorithm was found to have an average

accuracy rate of 96.24% and took 68.35 hours to execute.

Comparing our results, individual attack types seemed to have

differing results between our two methods of classification,

but the overall average classification rate was comparable. We

found that the results from the randomForest machine learning

algorithm were more consistent across different attack types.

VII. CONCLUSION

A full analysis and review of the CIC IDS 2017 dataset

used for training Intrusion Detection Systems has been

performed and evaluated with several machine learning

methods. We have found and examined many of the

advantages and shortcomings that this dataset brings with it.

Overall, we have found that the dataset excels in generating

realistic background (benign) traffic using a variety of user

profiles and has a good array of different contemporary

attacks. It has also been determined that the dataset suffers

from overall size and it is often too bulky to use for

performing any quick tasks. In many cases, the actual

virtualization of the software used to process the data cannot

handle the size of the dataset file and often changes needed to

be made to accommodate these issues.

It has also been found that the data itself is not always

reliable when working with processes that require complete

data rows. There are many cases where the data cells read

„NaN‟, „Infinity‟, or simply cease to exist. Along with the

inconsistent data, the CIC IDS 2017 dataset has been found to

suffer from a high-level class imbalance, leading to the major

(most common classes) overpowering the minority classes.

Without actually eliminating data, the best proposed method

for solving this issue is to relabel and reallocate the data to

give the minority classes a more proportional amount of data

for the predictive model to use for training. We used the

Boruta test for importance to determine which features the in

the dataset were most important, and which of the features

were least important.

Finally, we build an Artificial Neural Network and used

machine learning algorithms from third-party R libraries to

build several predictive models using the data. We have found

that the success rate of prediction for the connection vector

differs by attack type, but the average rate has turned out be

highly successful (about the 96
th

 percentile in both cases).

Overall, we have determined what good features lie in both the

dataset and the R programming language, and what

applications best fit this solution for Intrusion Detection

Systems.

REFERENCES

[1] I. Sharafaldin. Intrusion Detection Evaluation Dataset (CICIDS2017),

Canadian Institute for Cybersecurity, January, 2018. Accessed on May
12, 2020. [Online]. Available: https://www.unb.ca/cic/datasets/ids-

2017.html

[2] A. H. Lashkari, G. Draper-Gil, M. S. I. Mamun, A. A. Ghorbani,
"Characterization of Tor Traffic Using Time Based Features", In the

proceedings of the 3rd International Conference on Information System

Security and Privacy, SCITEPRESS, Porto, Portugal, 2017.
[3] G. Draper-Gil, A. H. Lashkari, M. S. I. Mamun, A. A. Ghorbani,

“Characterization of Encrypted and VPN Traffic Using Time-Related

Features", In the proceedings of the 2nd International Conference on

Information Systems Security and Privacy (ICISSP 2016), p. 407-414,

Italy, 2016.

[4] A. Thakkar, R. Lohiya, “A Review of the Advancement in Intrusion
Detection Datasets”, In Procedia Computer Science issue 167 (2020), p.

636-645.

[5] A. Gharib, I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani. “An
evaluation framework for intrusion detection dataset”, In: 2016

International Conference on Information Science and Security (ICISS).

IEEE; 2016. p. 1–6.
[6] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, A. Al-

Nemrat, S. Venkatraman. “Deep Learning Approach For Intelligent

Intrusion Detection System”, In: IEEE Access; Volume 7, 2019. P.
41525-41550.

[7] R. Panigrahi, S. Boorah. “A Detailed Analysis of CICIDS2017 Dataset

for Designing Intrusion Detection Systems”, In the International Journal
of Engineering and Technology; Volumne 7, 2018. p. 479-482.

[8] A. Yulianto, P. Sukarno, N. A. Suwastika. “Improving AdaBoost-Based

Intrusion Detection Systems (IDS) on CIC IDS 2017 Dataset”, In J.
Phys.: Conf. Ser. 1192 012018.

[9] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward Generating

a New Intrusion Detection Dataset and Intrusion Traffic
Characterization”, 4th International Conference on Information Systems

Security and Privacy (ICISSP), Portugal, January 2018.

[10] “Package „Boruta‟,” Jul. 17, 2018. Accessed on April. 25, 2020.
[Online]. Available: https://cran.r-

project.org/web/packages/Boruta/Boruta.pdf
[11] “Package „nnet‟,” Feb. 25, 2020. Accessed on April. 20, 2020. [Online].

Available: https://cran.r-project.org/web/packages/nnet/nnet.pdf

[12] “Package „EFS: Ensemble Feature Selection‟,” Accessed on April 30,
2020. [Online]. Available:

https://cran.rproject.org/web/packages/EFS/index.html

[13] “Package „randomForest‟,” Mar. 25, 2018. Accessed on May. 3, 2020.
[Online]. Available: https://cran.r-

project.org/web/packages/randomForest/randomForest.pdf

[14] ”Package „Caret‟,” Mar.20, 2020. [Online]. Available: https://cran.r-

project.org/web/packages/caret/caret.pdf

