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Abstract— The objective of this paper aims at modeling the 

precipitation data from Atalanti rain gauge station in Central-

Eastern Greece through an Artificial Neural Network (ANN) with 

multi-layer perceptron and a Seasonal Auto-Regressive Integrated 

Moving Average (SARIMA) model which can simulate systems 

characterized by complicated physical processes. First, a thorough 

statistical analysis of the rainfall timeseries and its residuals as well 

was carried out so as to figure out its main statistics before 

proceeding to further analysis. The use of stochastic methods, 

introduced by Box and Jenkins, has found wide application for fitting 

and forecasting the monthly rainfall timeseries which may be useful 

in decision making as well as risk management and water resources 

usage optimization. Also, the ANN model has the ability of identifying 

non-linear relationships between inputs and output datasets, 

therefore, a suitable tool for assessing various hydrological impacts. 

This essay illustrated the application of a feed-forward back 

propagation learning process with various algorithms with 

performance of multi-layer perceptors (MLP) to reproduce a given 

data file. During timeseries preparation, raw data were initially 

transformed to normal and stationary using differencing methods and 

autocorrelation plots of residuals were made to check the 

uncorrelated ―white noise‖. The objective is to find an appropriate 

model for best fitting the precipitation and to predict future series 

quantities according to the past. In this study, the monthly 

precipitation data of Atalanti meteorological station were 

investigated based on a 60-year period (1955-2014). This period was 

separated into training (70%, from 1955 to 1996), testing (20%, from 

1997 to 2008) and validation one (10%, from 2009 to 2014) to find 

the best fit of the timeseries to past already measured values. The 

best performance between observed and modeled results based on the 

model evaluation criteria, namely, R2, MSE, RMSE, model efficiency 

(E), MAE and % Bias, was achieved by the stochastic SARIMA 

(1,0,0)(0,1,0)12 model. Nevertheless, it has been proved that both 

stochastic and ANN models are useful tools for forecasting various 

hydrological processes and could be used in monthly rainfall 

prediction at a short time (one or two years) in order to help decision 

makers to establish priorities in terms of water demand management. 

 

Keywords— Box – Jenkins models; timeseries forecasting; residuals; 

multi-layer perceptors (MLP); feed-forward back propagation; 

model evaluation criteria. 

I. INTRODUCTION  

Precipitation prediction is the most important issue to water 

resources management (e.g., irrigation), planning, exploitation 

and to local as well as regional hydroeconomy because of high 

water demands (Amiri, 2004; Karel, 2011). Timeseries 

modelling and analysis is one of the most widely used 

predicting methods having three modelling stages; 

identification, estimation and diagnostic check for medium to 

long-term forecasting. A stochastic, hydrological variable, 

such as rainfall, is consisted of a deterministic Nt which is 

composed by trend, periodicity and persistence and a 

stochastic Zt time-dependent part, namely, white noise 

(Koutsoyiannis, 2000, 2008; Mimikou, 1994; Papoulis, 2002). 

The utmost purpose of timeseries modelling is to find a best fit 

to a dataset that can be defined by a model used for 

forecasting. Box-Jenkins (1976) models are significantly used 

because of the simplified mathematical structure and the 

relatively small number of parameters used to both stationary 

and non-stationary procedures, therefore there has been 

considerable interest in stochastically modelling weather 

parameters data. Finally, the great usefulness of these models 

is for the analysis and prediction of the timeseries as well as to 

study and analyze complex cases when other methods are 

either not applicable or require extremely complex equations 

which are not able to approach the physical conditions 

occurred in nature (Ripley, 1987; Salas, 1992). 

On the other hand, Artificial Neural Networks (ANN), as a 

flexible mathematical structure, are developed to predict the 

hydrological parameters having the ability of giving solutions 

to complex physical processes’ problems with non-linear 

relationships since they do not require the a priori knowledge 

of a mathematical form used to describe an explicit description 

of the complex nature which, by default, exhibit extreme 

variability (Raman & Sunilkumar, 1995; Sajikumar & 

Thandaveswara, 1999). The neural networks need to be 

trained to perform a particular function by adjusting the values 

of the connections (weights) between elements. The weights 

are adjusted based on a comparison of ANN output and the 

target until they satisfactorily match. The model is considered 

to behave satisfactorily if its performance during the testing 

period is similar to that during the training one. The output 

timeseries is the response of the system and reflects the system 

processes. The most commonly used ANN method for 

modelling rainfall processes are the multi-layer feed forward 
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perceptron (MLP). 

Before proceeding to the aforementioned modelling, a 

statistical analysis of the rainfall timeseries has to be 

performed so as to determine those months with the greatest 

rainfall values, check the normality, the trend and the 

persistence as well as the outliers to figure out the exceedance 

probability of certain values, etc. To do so several diagrams 

were drawn, probability functions were estimated, the extreme 

values, the trend line and many other statistical parameters 

were detected and calculated on a yearly and monthly basis.  

II. MATERIALS AND METHODS 

A. Statistical Approach of Rainfall Timeseries 

The rainfall data of Atalanti meteorological station are 

derived from the Ministry of Environment and Energy 

concerning monthly values for the time period 1955-2014. As 

illustrated in Fig.1, the historical precipitation timeseries of 

the aforementioned rain gauge is displayed. A preliminary 

exploratory analysis of the yearly as well as monthly rainfall 

data is firstly implemented to detect extreme values, 

homogeneity, step and trends (Koutsoyiannis, 1997; Mimikou, 

1994; Manakos, 1999). The mean annual precipitation of the 

selected meteorological station is about 573.3mm with the 

75% of the total rainfall occurring in the wet season from 

October to April. The minimum and maximum rainfall events 

took place in 2000 (272.4mm) and 1994 (842.3mm), 

respectively. Also, the trend line (blach thick line) shows that 

there is no evident increase or decrease in precipitation during 

the 60-year data period. The below bar charts show that the 

most wet and humid month of the year is December followed 

by November and January. Instead, the months with the lowest 

rainfall are July, August and June as expected since the 

rainfall station belongs to Csa climate type (typical 

Mediterranean type). 

 

 

  
Fig. 1: Atalanti station’s yearly rainfall distribution for the time period 1955-2014. The black thick line shows the over-annual trend while the dashed 

ones represent the mean, maximum amd minimum rainfall years. Seasonal precipitation is also displayed. 
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Also, it can be shown that the major rainfall events start in 

October, reach their peak in December and remain at high 

levels until March (Lappas, 2018). 

Moreover, in pie chart the seasonal rainfall distribution is 

illustrated. As seen, winter accumulates precipitation at a rate 

of 38.9%, followed by 31.1% during fall, spring rate by 

22.8%, while during summer season rainfall takes place only 

by 7.2%. Evaluating the two basic periods of a hydrological 

year (wet and dry) it seems that 77.6% of annual precipitation 

corresponds to wet period and only 22.4% to the dry one. 

B. Applied Methodology 

In this paper, precipitation based on Atalanti 

meteorological station was modeled by two methodologies; 

SARIMA (Seasonal AutoRegressive Integrated Moving 

Average) and Artificial Neural Network (ANN) model for the 

period from 1955 to 2014. The historical timeseries was 

divided into three periods, one from 1955 to 1996 (calibration 

period) which was used for choosing the most suitable model 

after the application of Box-Cox (1964) transformation to 

make the timeseries stationary, the other from 1997 to 2008 to 

test the model and the other one from 2009 to 2014 to validate 

it. 

 

Seasonal AutoRegressive Integrated Moving Average 

(SARIMA) 

Box and Jenkins (1976) proposed a general form of 

Seasonal ARIMA (p,d,q)(P,D,Q)12 for non-stationary 

timeseries, in which p and q are autoregressive and moving 

average parameters and P and Q are seasonal autoregressive 

and moving average parameters, respectively (Khazavi et al, 

2012; Lappas, 2018; Manakos & Dimopoulos, 2004; Manakos 

& Georgiou, 2009; Papamichail, 1989, 1993; Paschalis, 2009). 

The general form of Seasonal ARIMA (p,d,q)(P,D,Q)s is as 

follows: 

φp(B)ΦP(B
s
)(1− B)

d
(1− B

s
)

D
Yt = θq(B)ΘQ(B

s
)at 

where, 

φp and ΦP define autoregressive processes, 

θq and ΘQ define moving average processes, 

p, P, q and Q are estimated from ACF (Autocorrelation 

Function) and PACF (Partial Autocorrelation Function) of the 

series, 

D and d show the order of seasonal and non-seasonal 

differencing used to make the series stationary, 

B is the backward operator, 

s is the period of the season and 

at is the white noise. 

SARIMA modelling includes three steps (Koutsoyiannis, 

2000; Manakos & Georgiou, 2009; Papamichail, 1989, 1993; 

Paschalis, 2009), namely, identification, estimation and 

validation process used for modelling the patterns in the raw 

data. First step; the identification model is based on the 

behavior of autocorrelation and partial autocorrelation 

functions where the values of p and q are estimated. Second 

step; efficient estimate of the parameters can be obtained only 

after identifying the autocorrelation and partial autocorrelation 

functions. Third step; validation model lies on the goodness of 

fit test that verifies the validity of the model. In this stage, the 

residuals (the differences between the scores predicted by the 

model and the actual scores for the series) of the model are 

usually considered to be time-independent and normally 

distributed over time (Ripley, 1987, Abudu et al., 2010). The 

foremost step in the process of modelling is to check for the 

series' stationarity, as the estimation procedures are available 

only for stationary series. If the model is found to be non-

stationary, stationarity could be achieved mostly by 

differencing the series using data transformation methods such 

as Box-Cox, logarithmic and square root. Residual scores are 

examined to determine if there are still patterns in the data that 

are not accounted for, that is, checking the randomness. 

Identifying and modelling the patterns in the data are 

sufficient to produce an equation, which is then used to 

forecast (Manakos & Dimopoulos, 2004). 

 

Artificial Neural Network (ANN) 

The basic structure of ANN usually consists of three 

layers; the input, where the data are introduced to the network, 

the hidden, where data are processed and the output layer, 

where the results of given outputs are produced (Fig.2). 

 

 

 
Fig. 2: A feed-forward back-propagation artificial neural network architecture either with one (left) or two hidden levels (right). 

 

The neurons basically consist of inputs which are 

multiplied by weights and then computed by a mathematical 

function which determines the activation of the neuron. 

Another function computes the output of the artificial neuron. 

The incoming data are processed by non-linear transfer 

functions at hidden and output layers to get the output. The 

transfer function transforms weighted input to output. A 

common transfer function is the sigmoid one which is an S-
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shaped graph. In hydrology, multiple-layer perceptron (MLP) 

networks, a single hidden layer with a sigmoid transfer 

function and an output layer with a linear transfer function, are 

preferred for their simplicity and effectiveness. The primary 

goal in training an ANN model is to minimize the error at the 

output layer by searching for a set of connection strengths that 

cause the ANN to produce outputs that are equal to or closer 

to the targets through a back-propagation training algorithm. 

The back-propagation algorithm uses supervised learning, 

which means that we provide the algorithm with examples of 

the inputs and outputs we want the network to compute and 

then the error (difference between observed and modeled 

results) is calculated (Barros & Kuligowski, 1998; Dawson & 

Wilby, 2001; Haykin, 1998). After training, the neural 

network can simulate the model. The final step involves 

testing the adequacy of the selected model. A basic neural 

model can be characterized by the functional descriptions of 

the connection network and the network activation as follows: 

 


n

i
iij

j xwS
0

 

Each node j receives incoming signals from every node i in 

the previous layer. Associated with each incoming signal xi is 

a weight wji. The effective incoming signal Sj to node j is the 

weighted sum of all the incoming signals. The effective 

incoming signal, Sj, is passed through a non-linear activation 

function (transfer function) to produce the outgoing signal of 

the node. The transfer function, which is a sigmoid one in this 

paper, is given as shown below: 
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where, Υj is bounded between 0 and 1. 

 

a. Models’ Evaluation Criteria 

The comparison between simulated results and the 

observed data was evaluated statistically. In order to select the 

appropriate model in timeseries modelling there are several 

criteria which may be used for representing a given set of data. 

With contribution of Minitab statistical software successive 

trials were performed for the best fit model, so that the 

predicted values of the stochastic and ANN model to be as 

close as those of the observed ones. Model evaluation criteria 

were used either based on statistics summarized from residuals 

or on the forecasting error (Abudu et al., 2010). For the first 

methods one can mention AIC (Akaike Information Criterion) 

given by the equation: 

AIC = -2logL + 2m 

where, 

m = p + q + P + Q and 

L is the likelihood function. 

The Akaike information criterion is a measure of the 

relative goodness of fit of a statistical model (Papamichail, 

1993, Manakos, 1999; Shamsnia et al., 2011). Given a set of 

candidate models for the data, the preferred model is the one 

with the minimum AIC value. Therefore, AIC not only 

rewards goodness of fit, but also includes a penalty that is an 

increasing function of the number of estimated parameters 

(overfitting). 

Another criterion is SBC (Schwartz-Bayesian Criterion) given 

by the equation: 

SBC= logσ
2
 + (mlogn)/n 

where, 

σ is the standard deviation of the population. 

and the integer number n given by the equation: 

n=p+P+q+Q+pP+qQ+1 

The model, in which the above statistics were the least, 

was chosen as the appropriate one.  

The most important measures for evaluating model 

performance used in this paper taking into account the 

forecasting error (Barros & Kuligowski, 1998; De Vos, 2003; 

Meher, 2014; Salas, 1992) were the coefficient of correlation-

r, the Mean Squared Error-MSE, the Root Mean Squared 

Error-RMSE, the Nash-Sutcliffe (1970) coefficient of 

efficiency-E, the Mean Absolute Error-MAE and the percent 

(%) Bias. Only when the performance of the model is 

satisfactory, both in calibration and testing-validation periods 

can the model be used with confidence. The coefficient of 

determination-R
2
 is obtained by performing a linear regression 

between the predicted values and the observed. These criteria 

were employed to measure the models’ goodness-of-fit and 

used to test the model efficiency in all phases (calibration-

training, testing and validation). The equation of correlation 

coefficient is as follows: 
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The difference between the simulated output and observed 

one was measured by the Mean Squared Error (MSE) function 

as: 
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which measures the fit of the simulated rainfall (Rsim) to the 

observed one (Robs). The objective is to minimize the sum of 

the squared errors. The smaller MSE the better model fit 

would be. 

Both RMSE and MAE are desirable when the evaluated 

output data are smooth or continuous and are given by the 

following equations: 
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Nash-Sutcliffe efficiency can range from −∞ to 1. An 

efficiency of 1 (E = 1) corresponds to a perfect match of 

modelled to the observed data. Essentially, the closer the 

model efficiency is to 1, the more accurate the model is. 
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Different statistics represent the goodness-of-fit of the 

calibrated monthly precipitation to the observed ones like the 

percent (%) Bias computed by the following equation: 

  obsobssim RRR100  %Bias   

where, simR represents the mean of the model generated 

rainfall and obsR represents the mean of the observed rainfall. 

III. RESULTS AND DISCUSSION 

A. SARIMA Model Design and Structure 

As shown below (Fig.3), the historical precipitation 

timeseries examined for the existence or not of trend and 

stationarity was displayed looking also for trends, if any, as 

well as moving averages. 

 

 
Fig. 3: Atalanti station’s monthly rainfall data for the time period 1955-2014. The red thick line shows the trend while the green one the 24-month 

moving average of the observed timeseries. Also, calibration (training), testing and validation periods are also shown. 

 

   

   
Fig. 4: Probability plot, histogram and empirical CDF (Cumulative Distribution Function) of precipitation showing the non-normality of the monthly 
rainfall timeseries (up). Two-parameter Exponential distribution seems to fit the best after Box-Cox transformation and Seasonal Differencing (D=1) 

method (down). 
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In preparation of the time series to use the Box-Jenkins 

forecasting model (SARIMA), the timeseries was initially 

transformed to normal and stationary using differencing 

method. Normality of the monthly mean rainfall series was 

tested by normal probability paper, histogram of series and 

Kolmogorov-Smirnof, Ryan-Joiner (similar to Shapiro-Wilk) 

and chi square (χ
2
) test (Fig.4, Fig.5). The implementation of 

those tests showed that the historical rainfall timeseries did not 

have normal distribution and in order to obtain a series which 

had approximately a normal distribution, seasonal first order 

differencing (D=1) was performed. Furthermore, as illustrated 

above, the monthly rainfall data did not have any trend, that is, 

d=0 (non – seasonal trend), the timeseries was not of "white 

noise" and that the seasonal length equals to 12 months (1 

year). However, for stationarity checking the Box-Cox 

transformation was used and then the autocorrelation and 

partial autocorrelation functions were calculated for the 

estimation of p and q components of the Autoregressive (AR) 

and Moving average (MA) model, respectively. 

Autocorrelation refers to the way the observations in a 

timeseries are related to each other and is measured by the 

simple correlation between current observation (Yt) and 

observation from p periods before the current one (Yt-p). 

Partial autocorrelations are used to measure the degree of 

association between yt and yt-p when the y-effects at other time 

lags are removed. Theoritical ACFs and PACFs 

(autocorrelations versus lags) are available for the various 

models chosen for various values of orders of autoregressive 

and moving average components i.e. p and q (Fig.5). 

Comparing the correlograms (plot of sample ACFs/PACFs 

versus lags) obtained from the given measured data with the 

theoretical ones, one may find a reasonably good match and 

choose one or more SARIMA models. 

 

 

  

  
Fig. 5: Exponential and Gumbel distribution curves for the monthly and maximum rainfall timeseries, respectively (up). Autocorrelation (ACF) and 
Partial Autocorrelation functions (PACF) of the Atalanti station’s Box-Cox transformed rainfall timeseries for the time period 1955-2014 (down). 

 

According to this procedure the timeseries of 60 years 

(1955-2014) was divided into three parts, the one of 42 years 

(1955-1996), the second of 12 years (1997-2008) and the last 

one of 6 years (2009-2014) so as the model’s parameters to be 

confirmed. The model’s components that were re-assessed 

slightly differ from those of the first part (1955-1996). The 

best fit and most suitable seasonal stochastic model satisfying 

the most of the above model criteria was SARIMA 

(1,0,0)(0,1,0)12 which was then checked. The following 

figures show the 12-year and 6-year rainfall data predictions 

that came up with the application of the SARIMA 

(1,0,0)(0,1,0)12 model proving the very good fitting, showing 

also that the data derived by the application of above 

stochastic model may be used for a very satisfactory and 

reliable forecasting. The analytical, mathematical expression 

of the above model was of the form: 
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(1-φ1Β)(1-Β
12

)Zt=et or Zt=φ1(Ζt-1-Zt-12)+Zt-12+et 

with φ1=0.0344 (standard error (SE) = 0.074, T-value = 4.77 

and p-value = 0.0001<0.05). 

Model’s residuals were also used for validation. The 

residuals’ checking procedure took place to prove whether or 

not they were of "white noise" and this was achieved by the 

autocorrelation (ΑCF) and partial autocorrelation (PACF) 

functions. In Fig.6 it seems that most of the residuals were 

uncorrelated. However, due to a slight data remaining trend, 

some of the residuals exceeded the confidence limits 95%. It 

has to be mentioned that all the R
2
 stages were similar and so 

slose to line 1:1. So the best fit seasonal stochastic model was 

SARIMA (1,0,0)(0,1,0)12 which was the one that could be 

used for monthly rainfall values estimation and prediction of 

Atalanti meteorological station (Table 1). In addition, Fig.6 

shows the very good simulation of the above model on the 

observed precipitation timeseries. Finally, SARIMA model is 

applied as long as the above rainfall timeseries can provide 

safe predictions and create, if possible, reliable future time 

period. 

 

  

   

 

 

Fig. 6: Autocorrelation (ACF) and Partial Autocorrelation functions (PACF) of the residuals for the time period 1955-2014 (up). Residual plots of 

precipitation showing its normality and randomness (middle). Seasonal ARIMA (1,0,0)(0,1,0)12 model generated series (red dots) versus the observed 

monthly rainfall timeseries with R2=0.99 (down). 

 

TABLE 1: Model parameters comparison and evaluation of the monthly rainfall timeseries (1955-2014) at the Atalanti meteorological station. The best fit 

SARIMA model is represented by bold and italics. 

SARIMA model n AIC SBC SARIMA model n AIC SBC SARIMA model n AIC SBC 

(2,1,0)(1,1,1)12 7 26.27 3.72 (1,1,0)(1,1,1)12 5 19.56 3.71 (0,1,0)(0,1,1)12 4 38.17 3.75 

 

B. ANN Model Design and Structure 

The first and the most critical step in developing an 

effective ANN model is input and output definition as well as 

the selection of the input variables that have the most 

significant impact on model performance since a good subset 

of input variables can substantially improve model 

performance. The determination as to whether a parameter 

input is significant or not is dependent on the error of a trained 



International Research Journal of Advanced Engineering and Science 

ISSN (Online): 2455-9024 
 

 

56 
 

Lappas Ioannis, “Statistical Analysis of Precipitation and Cross-Comparison of Stochastic and Artificial Neural Network Models for a Short-

Term Rainfall Monthly Forecast in Atalanti Gauge Station (Central – Eastern Greece),” International Research Journal of Advanced 

Engineering and Science, Volume 5, Issue 2, pp. 49-58, 2020. 

model, which is not only a function of the inputs, but also 

model structure and calibration. Consequently, a separate 

validation set is needed to ensure that the model can 

generalize within the range of the data used for calibration 

(Aksoy & Dahamsheh, 2009, Nastos et al., 2013, Tolika et al., 

2007). The used data as model inputs included constant 

monthly recorded precipitation, air monthly temperature 

(average), evapotranspiration (potential and actual) as well as 

rainfall data during the periods t-1, t-3, t-12 and t-24 in 

relation with monthly observed precipitation. Output layer 

(target) was the predicted rainfall. Before applying the MLP 

method, the input data were normalized and standardized to 

fall in the range [0,1] and ensure that each variable is treated 

equally in the model in order to obtain optimal results. Prior to 

any data pre-processing was carried out, the whole dataset was 

divided into subsets i.e. training, testing and validation. Data 

pre-processing is necessary to ensure all variables receive 

equal attention during the training process speeding up also 

the learning process (Maier & Dandy, 2000). Hence, the 

available observed and calculated data (potential 

evapotranspiration through Thornthwaite equations and actual 

evapotranspiration through Thornthwaite-Mather model) were 

separated as 70% for training (1955-1996), 20% for testing 

(1997-2008) and 10% for validation (2009-2014). Obviously, 

the statistical properties of the various data subsets (e.g., 

training, testing and validation) need to be similar (similar 

statistical properties) to ensure that each subset represents the 

same statistical population (Fig.7). 

 

  

  

  
Fig. 7: Training, testing and validation dataset comparison between observed and modelled values. 

 

During the data pre-processing the selection of the network 

parameters such as the transfer function, learning algorithm, 

etc. has to be made (Daliakopoulos et al., 2005, Tokar & 

Johnson, 1999). Once the ANN model structure is defined, 

data are collected and fed to the model. The approach used to 

ANN training was the supervised training algorithms. The 

method most commonly used for finding the optimum weight 

combination of feed-forward MLP neural networks is the 
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back-propagation algorithm. During the training process, one 

or several of the network parameters change to improve the 

network's performance. This process continues until weights 

converge to the desired error level or to a given acceptable 

level. After training is complete, testing and validation are the 

final steps in the development process (Dibike & Solomatine, 

2001; Minns & Hall, 1996; Mutly et al., 2008; Smith & Eli, 

1995). The trained results are compared to observed results 

and the trained model is assumed to be successful if the model 

gives good results for the given test set. Also, the testing set is 

used to reduce the overtraining of the network and to 

determine the optimum number of hidden layer nodes and the 

optimum values of the internal variables. Training stops when 

the error of the testing set starts to increase. The latter of the 

three datasets is used to validate the performance of a trained 

and tested ANN dealing with comparing the results of the 

developed model to observed ones. The main purpose of the 

model validation stage is to ensure that the model has the 

ability to generate forecasted data. As illustrated in Table 2, 

the evaluation criteria of all the ANN model phases were 

proved to be quite satisfactory, meaning that the selected 

model can be used for a short-term rainfall prediction. 

 
TABLE 2: Model evaluation criteria. 

Evaluation 

Criteria 

Training Period 

(1955-1996) 

Testing Period 

(1997-2008) 

Validation 

Period (2009-

2014) 

r 0.954 0.964 0.943 

R2 0.91 0.93 0.89 

MSE 296.2 151.9 176.1 

RMSE 17.2 12.3 13.4 

MAE 9.83 7.83 8.22 

E 0.853 0.875 0.866 

%Bias -4.23 5.17 -3.51 

IV. CONCLUSIONS 

Both stochastic and artificial neural network simulation are 

powerful methods, quite easily applicable and flexible. Their 

main advantage is the capability to perform in complex, 

synthetic systems describing them faithfully without simplistic 

assumptions. However, it is an approximate procedure and the 

accuracy of its results depends on the sample size. These 

simulations become powerful tools when a complex, natural 

system is to be studied and analytical (or other numerical) 

methods are not applicable or are very difficult requiring 

extremely complex equations and robust assumptions. Rainfall 

timeseries data of 60 years (1955-2014) were statistically 

described and studied over the Central – Eastern Greece at the 

Atalanti gauge station. Using seasonal model method, monthly 

mean rainfall values were simulated with high accuracy which 

was confirmed by the evaluation criteria (AIC, BSC, n) 

applied to training, testing and validating dataset. The 

SARIMA (1,0,0)(0,1,0)12 model seemed to be the most 

suitable in simulating the observed timeseries and forecasting 

the rainfall data at Atalanti meteorological station. Moreover, 

the seasonal ARIMA model can provide synthetic timeseries 

which may be used for the water resources planning proving 

its usefulness. On the other hand, ANN models provide a 

trustworthy, if adequately trained, mathematical and statistical 

method for data analysis. The structure of the paper’s model 

consisted of a supervised multi-layer perceptron with feed-

forward back propagation approach (sigmoid function). The 

used input data in ANN were separated into three categories; 

traing (70%), testing (20%) and validation (10%) period. 

Based on statistical analysis, the results during all the stages in 

terms of r, R
2
, MSE, RMSE, MAE, E and %bias had 

satisfactory similar values during all the model’s stages. 

Therefore, ANN was able to model the monthly rainfall data 

with fairly good accuracy when proper input variables are 

included. Nevertheless, comparing the two models it seemed 

that the applied stochastic model much better simulated the 

observed rainfall timeseries in relation with the applied ANN 

model since the SARIMA statistical indices were much better 

than the ANN’s. The fairly good fit of the aforementioned 

models as well as their relatively easy adaptation to physical 

conditions can be considered as a tool for the rational and 

sustainable water resources management and exploitation 

since many mathematical models fail to simulate the complex 

behaviour of most hydrological problems (non-linear 

relationships). 
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