

# Analysis of Rain – Flood Discharge Using HEC-HMS Model in Sadar Sub-catchment, Mojokerto

Indra Nurdianyoto<sup>1</sup>, Ery Suhartanto<sup>2</sup>, Emma Yuliani<sup>2</sup>

<sup>1</sup>Graduate School of Water Resources Engineering, Faculty of Engineering, Brawijaya University, Malang <sup>2</sup>Lecturer in Water Resources Engineering, Faculty of Engineering, Brawijaya University, Malang Email address: indra[DOT]nurdianyoto[AT]gmail[DOT]com

Abstract— Increased rainfall in watershed is able to influence water level-discharges and cause flood events. Hydrology model carried out to describe the watershed response from rainfall and spatial data review through GIS used to identify flood hazard area as an early warning. Sadar sub-catchment located in Mojokerto Regency / City which has a high level of flood vulnerability, HEC-HMS model performance evaluation with statistics parameter result of Nash-Sutcliffe Efficiency (NSE) is 0.608 (satisfactory), Root Mean Squared Error (RMSE) - standard deviation ratio (RSR) is 0.603 (satisfactory) and Percent Bias (PBIAS) is 0.08 (very good). Six influence factors produce spatial map of flood hazard area in Sadar sub-catchment, these factors are flow accumulation, land slope, elevation, rainfall, soil type and land use.

Keyword— Flood hazard, HEC-HMS, Sadar sub-catchment.

#### I. INTRODUCTION

Hydrometeorological disasters influenced by hydrological cycles in watershed, depend on physical characteristics of watershed such as watershed shape, topography, texture, soil density, ground water level and land use. Meteorology factor in the watershed includes intensity, duration, distribution, frequency, temperature, wind, humidity.

HEC-HMS (Hydrologic Engineering Center-Hydrology Modeling System) developed by the US Army Corps of Engineers-Institute for Water Resources, is a software that simulates runoff rainfall processes in watershed area (USACE 2010).

Sadar sub-catchment as part of Brantas River Basin, located in the Regency and City of Mojokerto East Java Province which has a high level of flood vulnerability.

The response of sub-catchment to rainfall and physical characteristics of Sadar Sub-catchment, surface runoff and water discharge affects to Sadar River can be simplified into hydrology model. Spatial data review conducted to identify flood hazard areas as an early warning and to minimizing disasters impact.

#### II. MATERIALS AND METHODS

#### Study Location

The research location on the Sadar Sub-catchment area of 386  $\rm km^2$  with main River Sadar 23 km long in the Regency / City of Mojokerto, East Java Province.

US Soil Conservation Service method links the characteristics of watersheds such as soil, vegetation and land use to curve numbers. Four Hydrologic Soil Groups (HSG) with A, B, C, and D notations connected the minimum

infiltration rate of soil. Antecedent Moisture Condition (AMC) in this study using AMC II.

Baseflow discharge and flood routing calculation in this study uses Gama I Synthetic Hydrograph equation (Harto, 2010) and Muskingum method. Gama I based on watershed area and drainage for baseflow discharge, Muskingum flood routing is a hydrograph forecasting at one point on stream or river section into another point (river trough or reservoir).

HEC-HMS simulates rain-flow and routing process, there are 3 components in hydrology model including basin models, meteorological models and control spesification. HEC-HMS model requires calibration and validation to verify model output compared to observed data. Evaluation using statistical parameter to provide model accuracy and reliability, there are Nash Sutcliffe Efficiency Index (NSE), Root Mean Squared Error (RMSE)-standard deviation ratio (RSR) and Percent Bias (PBIAS) equation:

1. (NSE)

$$NSE = 1 - \left[ \frac{\sum_{i=1}^{n} (Y_i^{obs} - Yi_i^{model})^2}{\sum_{i=1}^{n} (Y_i^{obs} - Yi_i^{rerata})^2} \right]$$

2. Root Mean Squared Error (RMSE)-Standard Deviation Ratio (RSR),

$$RSR = \frac{RMSE}{STDEV_{obs}} = \left[\frac{\sqrt{\sum_{i=1}^{n} (Y_i^{obs} - Yi_i^{model})^2}}{\sqrt{\sum_{i=1}^{n} (Y_i^{obs} - Yi_i^{rerata})^2}}\right]$$

3. Percent Bias (PBIAS),

$$PBIAS = \left[\frac{\sum_{i=1}^{n} (Y_i^{obs} - Y_i^{model}) * 100}{\sum_{i=1}^{n} Y_i^{obs}}\right]$$

Model evaluation divided into 4 performance criteria: very good, good, satisfactory, unsatisfactory shown in Table 1.

TABLE 1. Model Evaluation Performance Criteria

| Criteria           | NSE              | RSR                  | PBIAS                 |
|--------------------|------------------|----------------------|-----------------------|
| Vary good          | $0.80 < NSE \le$ | $0.00 \leq RSR \leq$ | PBIAS < +5            |
| Very good          | 1.00             | 0.50                 | $FDIAS < \pm 3$       |
| Good               | $0.70 < NSE \le$ | $0.50 < RSR \le$     | $\pm 5 \le PBIAS <$   |
| 0000               | 0.80             | 0.60                 | $\pm 10$              |
| Satisfying         | $0.50 < NSE \le$ | $0.60 < RSR \le$     | $\pm 10 \leq PBIAS <$ |
| Satisfying         | 0.70             | 0.70                 | ±15                   |
| Not satisfactory   | $NSE \le 0.50$   | RSR > 0.70           | $PBIAS \ge 15$        |
| Source Mariagi (20 | 15 2007)         |                      |                       |

Source: Moriasi (2015, 2007)

Land evaluation of soil, vegetation, climate and other components identify the factors causing flood events, these factors are flow accumulation, land slope, elevation, rainfall, soil type and land use (Kourgialas, 2011), interactions of



influence factors linked through distinguishing lines that have major and minor impacts on both.

Flood hazard areas grouped into 5 (five) levels: very low, low, moderate, high, and very high.

## III. RESULTS AND DISCUSSION

Watershed Delineation determinate boundaries of the Sadar Sub-catchment using Digital Elevation Model (DEM) map (http://tides.big.go.id/ DEMNAS/), river network and catchment name/code for HEC-HMS basin model component shown in Fig. 1.

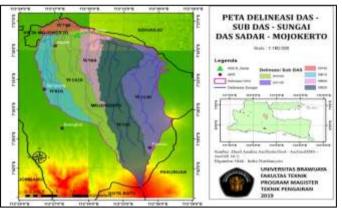



Fig. 1. Watershed Delineation Map of Sadar Sub-catchment

Watershed delineation of Sadar Sub-catchment divided into 6 (six) area, coded to W740 (12.43 km<sup>2</sup>), W810 (47.59 km<sup>2</sup>), W900 (32.81 km<sup>2</sup>), W920 (119.22 km<sup>2</sup>), W1030 (79.32 km<sup>2</sup>) and W1140 (84.76 km<sup>2</sup>).

Curve Number (CN) using SCS method AMC II shown in Table 2.

| I                         |    | HSC | Ĵ  |    |
|---------------------------|----|-----|----|----|
| Information               | Α  | В   | С  | D  |
| Water                     | 92 | 92  | 92 | 92 |
| Brush                     | 48 | 67  | 77 | 83 |
| Building                  | 81 | 88  | 91 | 93 |
| Forest                    | 30 | 55  | 70 | 74 |
| Wood Grass                | 43 | 65  | 76 | 82 |
| Resident District         | 51 | 68  | 79 | 84 |
| Pasture                   | 49 | 69  | 79 | 84 |
| Irrigated Rice fields     | 58 | 69  | 77 | 80 |
| Non Irrigated Rice Fields | 58 | 69  | 77 | 80 |
| Fallow                    | 77 | 86  | 91 | 94 |
| Farmsteads                | 59 | 74  | 82 | 86 |
|                           |    |     |    |    |

Source: Spatial Data Processing

| TABLE 3. HSG Values For Soi                                   | 1 Types         |                       |     |     |
|---------------------------------------------------------------|-----------------|-----------------------|-----|-----|
| Information                                                   | Information HSG |                       | SG  |     |
| mormation                                                     | Α               | HSG<br>B<br>50<br>100 | С   | D   |
| Regosol & Litosol Complex                                     |                 | 50                    |     | 50  |
| Association of Mediterranean Reddish Brown &<br>Grumusol Gray |                 | 100                   |     |     |
| Reddish Brown Latosol                                         |                 |                       |     | 100 |
| Brown Andosol Complex, Yellowish & Litosol<br>Brown Andosol   | 50              |                       |     | 50  |
| Regosol Gray                                                  |                 |                       | 100 |     |
| Alluvial Gray and Alluvial Gray Brown<br>Association          |                 |                       |     | 100 |
| Brown & Regosol Gray Latosol Association                      |                 | 100                   |     |     |
| Alluvial Gray                                                 | 100             |                       |     |     |
| Source: Spatial data processing                               |                 |                       |     |     |

Hydrologic Soil Groups (HSG) Criteria for soil types shown in Table 3.



Fig. 2. Composite Curve Numbers Map

Time concentration is time for water to flow from furthest point to outlet in watershed shown in Table 4.

| DAS Sub           | Area (km <sup>2</sup> ) — | Lag T    | Time    |
|-------------------|---------------------------|----------|---------|
| Code              | Area (Kill) –             | Hours    | Minutes |
| W740              | 12.431                    | 3 h 44 m | 223.656 |
| W810              | 47.587                    | 1 h 42 m | 102.054 |
| W900              | 32.808                    | 2 h 6 m  | 126.344 |
| W920              | 119.218                   | 2 h 29 m | 148.903 |
| W1030             | 79.318                    | 2 h 41 m | 160.526 |
| W1140             | 84.764                    | 1 h 46 m | 106.023 |
| ourses Spatial de | to proposing              |          |         |

Source: Spatial data processing

Initial abstraction are loss value before surface runoff starts, included water storage, soil infiltration rate, land use, evaporation affected by watershed soil parameters shown in Table 4.

| TABLE | TABLE 4. Initial Abstraction Sadar Sub-catchment |                                  |  |  |  |  |  |
|-------|--------------------------------------------------|----------------------------------|--|--|--|--|--|
| Code  | Pot Retention. Max<br>(S-mm)                     | Initial Abstraction (Ia -<br>mm) |  |  |  |  |  |
| W740  | 42.749                                           | 8.550                            |  |  |  |  |  |
| W810  | 66.228                                           | 13.246                           |  |  |  |  |  |
| W900  | 59.509                                           | 11.902                           |  |  |  |  |  |
| W920  | 90.245                                           | 18.049                           |  |  |  |  |  |
| W1030 | 67.768                                           | 13.554                           |  |  |  |  |  |
| W1140 | 81.294                                           | 16.259                           |  |  |  |  |  |

Source: Spatial Data Processing

TABLE 5. Loss & Transform Parameters

| Information              | Watershed Delineation |         |         |         |         |         |  |
|--------------------------|-----------------------|---------|---------|---------|---------|---------|--|
|                          | Ι                     | II      | III     | IV      | V       | VI      |  |
| HEC-HMS Code             | W740                  | W810    | W900    | W920    | W1030   | W1140   |  |
| Area                     | 12.431                | 47.587  | 32.808  | 119.220 | 79.319  | 84.764  |  |
| Imperviousness           | 16.269                | 14.580  | 14.641  | 12.463  | 15.150  | 10.957  |  |
| Initial loss/abstraction | 8.550                 | 13.246  | 11.902  | 18.049  | 13.554  | 16.259  |  |
| SCS Curve Number         | 85.594                | 79.318  | 81.018  | 73.785  | 78.939  | 75.754  |  |
| SCS UH Lag               | 223.656               | 102.054 | 126.344 | 148.903 | 160.526 | 106.023 |  |

Source: Data processing

Input data to HEC-HMS from land evaluation result through spatial processing, created hydrology parameters loss and transform shown in Table 5. Basin models is physical

irce: Spatial data processing



models that describe Sadar Sub-catchment into boundaries, river basins, reservoirs, reach and junction shown in Fig. 3.



Fig. 3. HEC-HMS Basin Model Input

## Hydrology Analysis

Rainfall and river elevation data from Jasa Tirta I Public Corporation, period from 2012 to 2018 namely ARR Sadar, Tampung, Brangkal, Trawas and AWLR Sadar.

Hydrology analysis using thiessen polygon method for HEC-HMS meteorological component and isohiet method for flood hazard analysis using Inverse Distance Weighted (IDW) interpolation - ArcView. Thiessen polygon that influenced Sadar telemetry station for validation-calibration model are Sadar, Brangkal and Tampung rainfall stations (Trawas excluded) shown in Fig. 4.

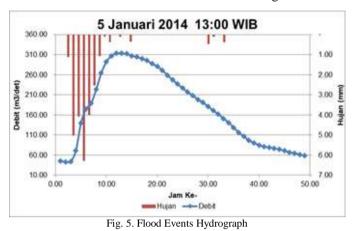



Fig. 4. Map of Polygon Thiessen

Baseflow discharge calculation use Gama I Synthetic Hydrograph (Harto, 2010) as input to HEC-HMS baseflow parameter. Baseflow discharge value for W810 is 7.455 m<sup>3</sup>/s, W740 is 1.936 m<sup>3</sup>/s, W920 is 14.10 m<sup>3</sup>/s, W900 is 5.520 m<sup>3</sup>/s, W1030 is 11.069 m<sup>3</sup>/s and W1140 is 7.876 m<sup>3</sup>/s. Input to HEC-HMS model routing parameter, flood routing using the Muskingum method, coefficient values produce K of 5.52 hours and X of 0.21.

Control specification model for HEC-HMS input selected from flood hydrograph event criteria: peak discharge > 100.00

 $m^{3}/s$ , isolated hydrograph type, one peak / single peak and enough rain, contain information such as date, peak discharge and rain accumulation of flood event shown in Fig. 5.



Flood event identification used for calibration - validation of the HEC HMS model, in the study calibration period are telemetry data 2013, 2014, 2015 and validation period is telemetry data 2017. Insufficient telemetry data for 2012, 2016 and 2018 not used as identification of flood event shown in Table 6.

| No   Date Event   Peak<br>Discharge   Thiessen<br>Rainfall   Period     1   26 Mei 2013   16:00 - 28 Mei 2013   20:00   271.50   16.51     2   28 Mei 2013   20:00 - 30 Mei 2013   16:00   141.10   8.65     3   16 Jun 2013   21:00 - 17 Jun 2013   23:00   127.20   3.37     4   14 Juli 2013   17.00 - 16 Juli 2013   05:00   245.50   10.14     5   25 Nov 2013   15.00 - 26 Nov 2013   17.00   177.30   8.06     7   11 Des 2013   15.00 - 12 Des 2013   17.00   177.30   8.06     7   11 Des 2013   15.00 - 07 Feb 2014   13.00   11.33   11.33     10   61 Eeb 2014   15.00 - 07 Feb 2014   15.00   177.30   24.78     12   10 Feb 2014   15.00 - 11 Feb 2014   13.00   174.60   16.83     14   22 Apr 2014   15.00   21 Feb 2014   15.00   177.30   24.78     14   22 Apr 2014   15.00   21 Feb 2015   17.00 <th></th> <th colspan="7">TABLE 6. Flood Events Identification</th>  |    | TABLE 6. Flood Events Identification |                      |       |                   |          |             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------|----------------------|-------|-------------------|----------|-------------|--|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No |                                      | Data Exant           |       |                   |          | Daniad      |  |
| 1 26 Mei 2013 16:00 - 28 Mei 2013 20:00 271.50 16.51   2 28 Mei 2013 20:00 - 30 Mei 2013 16:00 141.10 8.65   3 16 Jun 2013 21:00 - 17 Jun 2013 23:00 127.20 3.37   4 14 Juli 2013 17.00 - 16 Juli 2013 05.00 245.50 10.14   5 25 Nov 2013 15.00 - 26 Nov 2013 19.00 141.10 11.96   6 09 Des 2013 16.00 - 10 Des 2013 17.00 177.30 8.06   7 11 Des 2013 15.00 - 12 Des 2013 18.00 141.10 9.11   8 14 Des 2013 11.00 - 15 Des 2013 15.00 169.00 19.38   9 05 Jan 2014 13.00 - 07 Jan 2014 13.00 313.50 11.83   10 31 Jan 2014 13.00 - 01 Feb 2014 15:00 177.30 24.78   12 10 Feb 2014 15:00 - 07 Feb 2014 15:00 177.30 24.78   12 10 Feb 2014 15:00 - 11 Feb 2014 13.00 186.80 24.12   13 13 Mar 2014 13:00 - 16 May 2014                                                                                                                                                                   | NO |                                      | Date Event           |       | Discharge         | Kainfall | Period      |  |
| 2 28 Mei 2013 20:00 - 30 Mei 2013 16:00 141.10 8.65   3 16 Jun 2013 21:00 - 17 Jun 2013 23:00 127.20 3.37   4 14 Juli 2013 17.00 - 16 Juli 2013 05:00 245.50 10.14   5 25 Nov 2013 15:00 - 26 Nov 2013 19:00 141.10 11.96   6 09 Des 2013 16:00 - 10 Des 2013 17:00 177.30 8:06   7 11 Des 2013 15:00 - 12 Des 2013 18:00 141.10 9:11   8 14 Des 2013 11:00 - 15 Des 2013 15:00 169:00 19:38   9 05 Jan 2014 13:00 - 07 Jan 2014 13:00 313:50 18:87   10 31 Jan 2014 13:00 - 07 Feb 2014 15:00 177.30 24:78   12 10 Feb 2014 15:00 - 11 Feb 2014 13:00 186:80 24:12   13 13 Mar 2014 13:00 - 14 Mar 2014 23:00 174:60 16.83   14 22 Apr 2014 15:00 21 Des 2014 23:00 172.70 5.25   16 20 Des 2014 15:00                                                                                                                                                                                   |    |                                      |                      |       | m <sup>3</sup> /s | mm       |             |  |
| 3 16 Jun 2013 21:00 - 17 Jun 2013 23:00 127.20 3.37   4 14 Juli 2013 17.00 - 16 Juli 2013 05.00 245.50 10.14   5 25 Nov 2013 15.00 - 26 Nov 2013 19.00 141.10 11.96   6 09 Des 2013 16.00 - 10 Des 2013 17.00 177.30 8.06   7 11 Des 2013 15.00 - 12 Des 2013 15.00 169.00 19.38   9 05 Jan 2014 13.00 - 07 Jan 2014 13.00 313.50 18.87   10 31 Jan 2014 13.00 - 07 Feb 2014 15:00 177.30 24.78   12 10 Feb 2014 15.00 - 07 Feb 2014 15:00 177.30 24.78   12 10 Feb 2014 15.00 - 11 Feb 2014 13.00 186.80 24.12   13 13 Mar 2014 13.00 - 14 Mar 2014 23.00 174.60 16.83   14 22 Apr 2014 15:00 - 14 Mar 2014 23.00 239.00 -   17 29 Jan 2015 13.00 -                                                                                                                                                                                                                                      | 1  | 26 Mei 2013                          |                      | 20:00 | 271.50            | 16.51    |             |  |
| 4   14 Juli 2013   17.00   16 Juli 2013   05.00   245.50   10.14     5   25 Nov 2013   15.00   26 Nov 2013   19.00   141.10   11.96     6   09 Des 2013   16.00   10 Des 2013   17.00   177.30   8.06     7   11 Des 2013   15.00   12 Des 2013   18.00   141.10   9.11     8   14 Des 2013   11.00   15 Des 2013   15.00   169.00   19.38     9   05 Jan 2014   13.00   -07 Jan 2014   13.00   313.50   18.87     10   31 Jan 2014   13.00   -07 Feb 2014   15:00   177.30   24.78     12   10 Feb 2014   15.00   -07 Feb 2014   15:00   177.30   24.78     13   3 Mar 2014   13.00   -14 Mar 2014   23.00   174.60   16.83     14   22 Apr 2014   15:00   -16 May 2014   05.00   172.70   5.25     16   20 Des 2014   15.00   21 Des 2014   23.00   24                                                                                                                                  | 2  | 28 Mei 2013                          | 20:00 - 30 Mei 2013  | 16:00 | 141.10            | 8.65     |             |  |
| 5   25 Nov 2013   15.00   26 Nov 2013   19.00   141.10   11.96   Calibration     6   09 Des 2013   16.00   10 Des 2013   17.00   177.30   8.06     7   11 Des 2013   15.00   12 Des 2013   18.00   141.10   9.11     8   14 Des 2013   11.00   15 Des 2013   15.00   169.00   19.38     9   05 Jan 2014   13.00   07 Jan 2014   13.00   313.50   18.87     10   31 Jan 2014   13.00   0.1 Feb 2014   18:00   313.50   11.33     11   06 Feb 2014   15.00   -07 Feb 2014   15:00   177.30   24.78     12   10 Feb 2014   15.00   -11 Feb 2014   13.00   186.80   24.12     13   13 ma 2014   13.00   -14 Mar 2014   23.00   174.60   16.83     14   22 Apr 2014   15:00   21 Des 2014   05:00   172.70   5.25     16   20 Des 2014   15:00   21 Des 2015 <t< td=""><td>3</td><td>16 Jun 2013</td><td>21:00 - 17 Jun 2013</td><td>23:00</td><td>127.20</td><td>3.37</td><td></td></t<>      | 3  | 16 Jun 2013                          | 21:00 - 17 Jun 2013  | 23:00 | 127.20            | 3.37     |             |  |
| 5 25 Nov 2013 15.00 26 Nov 2013 19.00 141.10 11.96   6 09 Des 2013 16.00 10 Des 2013 17.00 177.30 8.06   7 11 Des 2013 15.00 12 Des 2013 18.00 141.10 9.11   8 14 Des 2013 11.00 15 Des 2013 15.00 169.00 19.38   9 05 Jan 2014 13.00 -07 Jan 2014 13.00 313.50 18.87   10 31 Jan 2014 13.00 -07 Feb 2014 15:00 177.30 24.78   12 10 Feb 2014 15.00 -07 Feb 2014 15:00 177.30 24.78   13 13 Mar 2014 13.00 -14 Mar 2014 23.00 174.60 16.83   14 22 Apr 2014 15:00 -16 May 2014 05.00 172.70 5.25   16 20 Des 2014 15.00 21 Des 2014 23.00 239.00 -   17 29 Jan 2015 13.00 -21 Feb 2015 21.00 241.20 18.25   19 01 Mar 2015 15.00 -02 Mar 2015                                                                                                                                                                                                                                             | 4  | 14 Juli 2013                         | 17.00 - 16 Juli 2013 | 05.00 | 245.50            | 10.14    | Calibration |  |
| 7 11 Des 2013 15.00 - 12 Des 2013 18.00 141.10 9.11   8 14 Des 2013 11.00 - 15 Des 2013 15.00 169.00 19.38   9 05 Jan 2014 13.00 - 07 Jan 2014 13.00 313.50 18.87   10 31 Jan 2014 13.00 - 01 Feb 2014 18:00 313.50 11.33   11 06 Feb 2014 15.00 - 07 Feb 2014 15:00 177.30 24.78   12 10 Feb 2014 15.00 - 11 Feb 2014 13.00 186.80 24.12   13 13 Mar 2014 13.00 - 14 Mar 2014 23.00 174.60 16.83   14 22 Apr 2014 15:00 - 24 Apr 2014 10.00 130.40 6.50   15 14 May 2014 23:00 - 16 May 2014 23:00 172.70 5.25   16 20 Des 2014 15:00 21 Des 2014 23:00 239.00 -   17 29 Jan 2015 13.00 - 21 Feb 2015 21.00 241.20 18.25   19 01 Mar 2015 15.00 - 0                                                                                                                                                                                                                                      | 5  | 25 Nov 2013                          | 15.00 - 26 Nov 2013  | 19.00 | 141.10            | 11.96    | Canoration  |  |
| 8   14 Des 2013   11.00   15 Des 2013   15.00   169.00   19.38     9   05 Jan 2014   13.00   - 07 Jan 2014   13.00   313.50   18.87     10   31 Jan 2014   13.00   - 01 Feb 2014   18:00   313.50   11.33     11   06 Feb 2014   15.00   - 07 Feb 2014   15:00   177.30   24.78     12   10 Feb 2014   15.00   - 11 Feb 2014   13.00   186.80   24.12     13   13 Mar 2014   13.00   - 14 Mar 2014   23.00   174.60   16.83     14   22 Apr 2014   15:00   - 24 Apr 2014   10.00   130.40   6.50     15   14 May 2014   23:00   - 16 May 2014   05:00   172.70   5.25     16   20 Des 2014   15:00   21 Des 2014   23:00   239.00   -     17   29 Jan 2015   13.00   - 21 Feb 2015   21.00   241.20   18.25     19   01 Mar 2015   15.00   - 02 Mar 2015   19.00                                                                                                                          | 6  | 09 Des 2013                          | 16.00 - 10 Des 2013  | 17.00 | 177.30            | 8.06     |             |  |
| 9   05 Jan 2014   13.00   - 07 Jan 2014   13.00   313.50   18.87     10   31 Jan 2014   13.00   - 01 Feb 2014   18:00   313.50   11.33     11   06 Feb 2014   15.00   - 07 Feb 2014   15:00   177.30   24.78     12   10 Feb 2014   15.00   - 11 Feb 2014   13.00   186.80   24.12     13   13 Mar 2014   13.00   - 14 Mar 2014   23.00   174.60   16.83     14   22 Apr 2014   15:00   - 24 Apr 2014   10.00   130.40   6.50     15   14 May 2014   23:00   - 16 May 2014   05:00   172.70   5.25     16   20 Des 2014   15:00   21 Des 2014   23:00   239.00   -     17   29 Jan 2015   13:00   - 21 Feb 2015   21:00   241.20   18.25     19   01 Mar 2015   15:00   - 02 Mar 2015   19:00   170.90   35.48     21   28 Mar 2015   18:00   - 29 Mar 2015   19:00 <td>7</td> <td>11 Des 2013</td> <td>15.00 - 12 Des 2013</td> <td>18.00</td> <td>141.10</td> <td>9.11</td> <td></td>   | 7  | 11 Des 2013                          | 15.00 - 12 Des 2013  | 18.00 | 141.10            | 9.11     |             |  |
| 10   31 Jan 2014   13.00   0 I Feb 2014   18:00   313.50   11.33     11   06 Feb 2014   15.00   07 Feb 2014   15:00   177.30   24.78     12   10 Feb 2014   15.00   - 11 Feb 2014   13.00   186.80   24.12     13   13 Mar 2014   13.00   - 14 Mar 2014   23.00   174.60   16.83     14   22 Apr 2014   15:00   - 24 Apr 2014   10.00   130.40   6.50     15   14 May 2014   23:00   - 16 May 2014   05:00   172.70   5.25     16   20 Des 2014   15:00   21 Des 2014   23:00   23:00   -     17   29 Jan 2015   13:00   - 21 Des 2015   21:00   241.20   18.25     19   01 Mar 2015   15:00   - 02 Mar 2015   15:00   261:20   21:52     20   05 Mar 2015   16:00   - 06 Mar 2015   19:00   170.90   35.48     21   28 Mar 2015   18:00   - 29 Mar 2015   10:00                                                                                                                          | 8  | 14 Des 2013                          | 11.00 - 15 Des 2013  | 15.00 | 169.00            | 19.38    |             |  |
| 11   06 Feb 2014   15.00   - 07 Feb 2014   15:00   177.30   24.78     12   10 Feb 2014   15.00   - 11 Feb 2014   13.00   186.80   24.12     13   13 Mar 2014   13.00   - 14 Mar 2014   23.00   174.60   16.83     14   22 Apr 2014   15:00   - 24 Apr 2014   10.00   130.40   6.50     15   14 May 2014   23:00   - 16 May 2014   05.00   172.70   5.25     16   20 Des 2014   15:00   21 Des 2014   23:00   239.00   -     17   29 Jan 2015   13:00   - 30 Jan 2015   16:00   206:50   11.74     18   19 Feb 2015   13:00   - 21 Feb 2015   21:00   241:20   18:25     19   01 Mar 2015   15:00   - 02 Mar 2015   15:00   261:20   21:52     20   05 Mar 2015   16:00   - 06 Mar 2015   19:00   170:90   35:48     21   28 Mar 2015   16:00   - 20 Apr 2015   10:00 <td>9</td> <td>05 Jan 2014</td> <td>13.00 - 07 Jan 2014</td> <td>13.00</td> <td>313.50</td> <td>18.87</td> <td></td> | 9  | 05 Jan 2014                          | 13.00 - 07 Jan 2014  | 13.00 | 313.50            | 18.87    |             |  |
| 12   10 Feb 2014   15.00   11 Feb 2014   13.00   186.80   24.12     13   13 Mar 2014   13.00   14 Mar 2014   23.00   174.60   16.83     14   22 Apr 2014   15:00   - 24 Apr 2014   10.00   130.40   6.50     15   14 May 2014   23:00   - 16 May 2014   05:00   172.70   5.25     16   20 Des 2014   15:00   21 Des 2014   23:00   239.00   -     17   29 Jan 2015   13:00   - 30 Jan 2015   16:00   206:50   11.74     18   19 Feb 2015   13:00   - 21 Feb 2015   21:00   241:20   18:25     19   01 Mar 2015   15:00   - 02 Mar 2015   19:00   170:90   35:48     21   28 Mar 2015   18:00   - 29 Mar 2015   19:00   214:70   8:71     23   27 Apr 2015   14:00   - 28 Apr 2015   10:00   163:60   43:65     23   27 Apr 2015   14:00   - 28 Apr 2015   15:00                                                                                                                           | 10 | 31 Jan 2014                          | 13.00 - 01 Feb 2014  | 18:00 | 313.50            | 11.33    |             |  |
| 13 13 Mar 2014 13.00 - 14 Mar 2014 23.00 174.60 16.83   14 22 Apr 2014 15:00 - 24 Apr 2014 10.00 130.40 6.50   15 14 May 2014 23:00 - 16 May 2014 05.00 172.70 5.25   16 20 Des 2014 15.00 21 Des 2014 23:00 239.00 -   17 29 Jan 2015 13.00 - 30 Jan 2015 16.00 206.50 11.74   18 19 Feb 2015 13.00 - 21 Feb 2015 21.00 241.20 18.25   19 01 Mar 2015 15.00 - 02 Mar 2015 15.00 261.20 21.52   20 05 Mar 2015 16.00 - 20 Apr 2015 19.00 170.90 35.48   21 28 Mar 2015 18.00 - 29 Mar 2015 19.00 163.60 43.65   23 27 Apr 2015 14:00 - 28 Apr 2015 16.00 154.70 23.78   24 01 Mei 2015 13.00 - 02 Mei 2015 23.00 217.80 2.97   25 02 Mei 2015 11.00 - 03 Mei 2015 23.00 217.80 2.97   25 02 Mei 2017 18:00 - 2                                                                                                                                                                            | 11 | 06 Feb 2014                          | 15.00 - 07 Feb 2014  | 15:00 | 177.30            | 24.78    |             |  |
| 13 13 Mar 2014 13.00 - 14 Mar 2014 23.00 174.60 16.83   14 22 Apr 2014 15:00 - 24 Apr 2014 10.00 130.40 6.50   15 14 May 2014 23:00 - 16 May 2014 05.00 172.70 5.25   16 20 Des 2014 15.00 21 Des 2014 23:00 239.00 -   17 29 Jan 2015 13.00 - 30 Jan 2015 16.00 206.50 11.74   18 19 Feb 2015 13.00 - 21 Feb 2015 21.00 241.20 18.25   19 01 Mar 2015 15.00 - 02 Mar 2015 15.00 261.20 21.52   20 05 Mar 2015 16.00 - 20 Apr 2015 19.00 170.90 35.48   21 28 Mar 2015 18.00 - 29 Mar 2015 19.00 163.60 43.65   23 27 Apr 2015 14:00 - 28 Apr 2015 16.00 154.70 23.78   24 01 Mei 2015 13.00 - 02 Mei 2015 23.00 217.80 2.97   25 02 Mei 2015 11.00 - 03 Mei 2015 23.00 217.80 2.97   25 02 Mei 2017 18:00 - 2                                                                                                                                                                            | 12 | 10 Feb 2014                          | 15.00 - 11 Feb 2014  | 13.00 | 186.80            | 24.12    |             |  |
| 14 22 Apr 2014 15:00 - 24 Apr 2014 10:00 130:40 6.50   15 14 May 2014 23:00 - 16 May 2014 05:00 172:70 5.25   16 20 Des 2014 15:00 21 Des 2014 23:00 239:00 -   17 29 Jan 2015 13:00 - 30 Jan 2015 16:00 206:50 11:74   18 19 Feb 2015 13:00 - 21 Feb 2015 21:00 241:20 18:25   19 01 Mar 2015 15:00 - 02 Mar 2015 15:00 261:20 21:52   20 05 Mar 2015 16:00 - 06 Mar 2015 19:00 170:90 35:48   21 28 Mar 2015 18:00 - 29 Mar 2015 19:00 163:60 43:65   23 27 Apr 2015 14:00 - 28 Apr 2015 16:00 154:70 23:78   24 01 Mei 2015 13:00 - 02 Mei 2015 15:00 15:300 29:72   25 02 Mei 2015 11:00 - 03 Mei 2015 23:00 217.80 2.97   25 02 Mei 2015 11:00 - 02 Feb 2017 23:00 116:00 155.39   27 20 Feb 2017 20:00 -                                                                                                                                                                            | 13 | 13 Mar 2014                          |                      | 23.00 | 174.60            | 16.83    | Calibration |  |
| 16   20 Des 2014   15.00   21 Des 2014   23.00   239.00   -     17   29 Jan 2015   13.00   - 30 Jan 2015   16.00   206.50   11.74     18   19 Feb 2015   13.00   - 21 Feb 2015   21.00   241.20   18.25     19   01 Mar 2015   15.00   - 02 Mar 2015   15.00   261.20   21.52     20   05 Mar 2015   16.00   - 06 Mar 2015   19.00   170.90   35.48     21   28 Mar 2015   18.00   - 29 Mar 2015   19.00   214.70   8.71     23   27 Apr 2015   14:00   - 28 Apr 2015   10.00   163.60   43.65     23   27 Apr 2015   14:00   - 28 Apr 2015   15.00   153.00   29.72     25   02 Mei 2015   11.00   - 03 Mei 2015   23.00   217.80   2.97     26   19 Feb 2017   18:00   - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20.00   - 21 Feb 2017   20:00 </td <td>14</td> <td>22 Apr 2014</td> <td></td> <td>10.00</td> <td>130.40</td> <td>6.50</td> <td></td>              | 14 | 22 Apr 2014                          |                      | 10.00 | 130.40            | 6.50     |             |  |
| 17   29 Jan 2015   13.00 - 30 Jan 2015   16.00   206.50   11.74     18   19 Feb 2015   13.00 - 21 Feb 2015   21.00   241.20   18.25     19   01 Mar 2015   15.00 - 02 Mar 2015   15.00   261.20   21.52     20   05 Mar 2015   16.00 - 06 Mar 2015   19.00   170.90   35.48     21   28 Mar 2015   18.00 - 29 Mar 2015   19.00   214.70   8.71     21   28 Mar 2015   18.00 - 20 Apr 2015   10.00   163.60   43.65     23   27 Apr 2015   14:00 - 28 Apr 2015   16.00   154.70   23.78     24   01 Mei 2015   13.00 - 02 Mei 2015   15.00   153.00   29.72     25   02 Mei 2015   11.00 - 03 Mei 2015   23.00   217.80   2.97     26   19 Feb 2017   18:00 - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20.00 - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19.00 - 25 Feb 2017   20:00                                                                | 15 | 14 May 2014                          | 23:00 - 16 May 2014  | 05.00 | 172.70            | 5.25     |             |  |
| 18   19 Feb 2015   13.00 - 21 Feb 2015   21.00   241.20   18.25     19   01 Mar 2015   15.00 - 02 Mar 2015   15.00   261.20   21.52     20   05 Mar 2015   16.00 - 06 Mar 2015   19.00   170.90   35.48     21   28 Mar 2015   18.00 - 29 Mar 2015   19.00   214.70   8.71     22   18 Apr 2015   20.00 - 20 Apr 2015   10.00   163.60   43.65     23   27 Apr 2015   14:00 - 28 Apr 2015   16.00   154.70   23.78     24   01 Mei 2015   13.00 - 02 Mei 2015   15.00   153.00   29.72     25   02 Mei 2015   11.00 - 03 Mei 2015   23.00   217.80   2.97     26   19 Feb 2017   18:00 - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20.00 - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19.00 - 25 Feb 2017   20:00   381.30   89.25     29   25 Mar 2017   16.00 - 26 Mar 2017   15.00                                                                | 16 | 20 Des 2014                          | 15.00 21 Des 2014    | 23.00 | 239.00            | -        |             |  |
| 19   01 Mar 2015   15.00   - 02 Mar 2015   15.00   261.20   21.52     20   05 Mar 2015   16.00   - 06 Mar 2015   19.00   170.90   35.48     21   28 Mar 2015   18.00   - 29 Mar 2015   19.00   214.70   8.71     22   18 Apr 2015   20.00   - 20 Apr 2015   10.00   163.60   43.65     23   27 Apr 2015   14:00   - 28 Apr 2015   16.00   154.70   23.78     24   01 Mei 2015   13.00   - 02 Mei 2015   15.00   153.00   29.72     25   02 Mei 2015   11.00   - 03 Mei 2015   23.00   217.80   2.97     26   19 Feb 2017   18:00   - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20.00   - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19.00   - 25 Feb 2017   20:00   381.30   89.25     29   25 Mar 2017   16.00   - 26 Mar 2017                                                                                                                      | 17 | 29 Jan 2015                          | 13.00 - 30 Jan 2015  | 16.00 | 206.50            | 11.74    |             |  |
| 20   05 Mar 2015   16.00   - 06 Mar 2015   19.00   170.90   35.48     21   28 Mar 2015   18.00   - 29 Mar 2015   19.00   214.70   8.71     22   18 Apr 2015   20.00   - 20 Apr 2015   10.00   163.60   43.65     23   27 Apr 2015   14:00   - 28 Apr 2015   16.00   154.70   23.78     24   01 Mei 2015   13.00   - 02 Mei 2015   15.00   153.00   29.72     25   02 Mei 2015   11.00   - 03 Mei 2015   23.00   217.80   2.97     26   19 Feb 2017   18:00   - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20.00   - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19.00   - 25 Feb 2017   20:00   381.30   89.25     29   25 Mar 2017   16.00   - 26 Mar 2017   15.00   186.40   74.42                                                                                                                                                                   | 18 | 19 Feb 2015                          | 13.00 - 21 Feb 2015  | 21.00 | 241.20            | 18.25    |             |  |
| 21   28 Mar 2015   18.00 - 29 Mar 2015   19.00   214.70   8.71   Calibration     22   18 Apr 2015   20.00 - 20 Apr 2015   10.00   163.60   43.65     23   27 Apr 2015   14:00 - 28 Apr 2015   16.00   154.70   23.78     24   01 Mei 2015   13.00 - 02 Mei 2015   15.00   153.00   29.72     25   02 Mei 2015   11.00 - 03 Mei 2015   23.00   217.80   2.97     26   19 Feb 2017   18:00 - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20.00 - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19.00 - 25 Feb 2017   20:00   381.30   89.25     20 Feb 2017   20.00 - 26 Mar 2017   15.00   186.40   74.42                                                                                                                                                                                                                                                  | 19 | 01 Mar 2015                          | 15.00 - 02 Mar 2015  | 15.00 | 261.20            | 21.52    |             |  |
| 22   18 Apr 2015   20.00 - 20 Apr 2015   10.00   163.60   43.65     23   27 Apr 2015   14:00 - 28 Apr 2015   16.00   154.70   23.78     24   01 Mei 2015   13:00 - 02 Mei 2015   15:00   153.00   29.72     25   02 Mei 2015   11:00 - 03 Mei 2015   23:00   217.80   2.97     26   19 Feb 2017   18:00 - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20:00 - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19:00 - 25 Feb 2017   20:00   381.30   89.25     29   25 Mar 2017   16:00 - 26 Mar 2017   15:00   186:40   74.42                                                                                                                                                                                                                                                                                                                              | 20 | 05 Mar 2015                          | 16.00 - 06 Mar 2015  | 19.00 | 170.90            | 35.48    |             |  |
| 23   27 Apr 2015   14:00 - 28 Apr 2015   16:00   154:70   23.78     24   01 Mei 2015   13:00 - 02 Mei 2015   15:00   153:00   29.72     25   02 Mei 2015   11:00 - 03 Mei 2015   23:00   217:80   2.97     26   19 Feb 2017   18:00 - 20 Feb 2017   23:00   116:00   155:39     27   20 Feb 2017   20:00 - 21 Feb 2017   21:00   141:40   102:29     28   24 Feb 2017   19:00 - 25 Feb 2017   20:00   381:30   89:25     29   25 Mar 2017   16:00 - 26 Mar 2017   15:00   186:40   74:42                                                                                                                                                                                                                                                                                                                                                                                                  | 21 | 28 Mar 2015                          | 18.00 - 29 Mar 2015  | 19.00 | 214.70            | 8.71     | Calibration |  |
| 24   01 Mei 2015   13.00   - 02 Mei 2015   15.00   153.00   29.72     25   02 Mei 2015   11.00   - 03 Mei 2015   23.00   217.80   2.97     26   19 Feb 2017   18:00   - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20.00   - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19.00   - 25 Feb 2017   20:00   381.30   89.25     29   25 Mar 2017   16.00   - 26 Mar 2017   15.00   186.40   74.42                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 | 18 Apr 2015                          | 20.00 - 20 Apr 2015  | 10.00 | 163.60            | 43.65    |             |  |
| 25   02 Mei 2015   11.00 - 03 Mei 2015   23.00   217.80   2.97     26   19 Feb 2017   18:00 - 20 Feb 2017   23:00   116.00   155.39     27   20 Feb 2017   20.00 - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19.00 - 25 Feb 2017   20:00   381.30   89.25     29   25 Mar 2017   16.00 - 26 Mar 2017   15.00   186.40   74.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23 | 27 Apr 2015                          | 14:00 - 28 Apr 2015  | 16.00 | 154.70            | 23.78    |             |  |
| 26   19 Feb 2017   18:00 - 20 Feb 2017   23:00   116:00   155:39     27   20 Feb 2017   20:00 - 21 Feb 2017   21:00   141:40   102:29     28   24 Feb 2017   19:00 - 25 Feb 2017   20:00   381:30   89:25     29   25 Mar 2017   16:00 - 26 Mar 2017   15:00   186:40   74:42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24 | 01 Mei 2015                          | 13.00 - 02 Mei 2015  | 15.00 | 153.00            | 29.72    |             |  |
| 27   20 Feb 2017   20.00 - 21 Feb 2017   21:00   141.40   102.29     28   24 Feb 2017   19.00 - 25 Feb 2017   20:00   381.30   89.25     29   25 Mar 2017   16.00 - 26 Mar 2017   15.00   186.40   74.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25 | 02 Mei 2015                          | 11.00 - 03 Mei 2015  | 23.00 | 217.80            | 2.97     |             |  |
| 28   24 Feb 2017   19.00 - 25 Feb 2017   20:00   381.30   89.25   Validation     29   25 Mar 2017   16.00 - 26 Mar 2017   15.00   186.40   74.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26 | 19 Feb 2017                          | 18:00 - 20 Feb 2017  | 23:00 | 116.00            | 155.39   |             |  |
| 28   24 Feb 2017   19.00 - 25 Feb 2017   20:00   381.30   89.25   Validation     29   25 Mar 2017   16.00 - 26 Mar 2017   15.00   186.40   74.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27 | 20 Feb 2017                          | 20.00 - 21 Feb 2017  | 21:00 | 141.40            | 102.29   |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 | 24 Feb 2017                          |                      | 20:00 | 381.30            | 89.25    | Validation  |  |
| 30 30 Mar 2017 14.00 - 31 Mar 2017 18.00 167.50 58.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29 | 25 Mar 2017                          | 16.00 - 26 Mar 2017  | 15.00 | 186.40            | 74.42    |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30 | 30 Mar 2017                          | 14.00 - 31 Mar 2017  | 18.00 | 167.50            | 58.34    |             |  |

Source: Data processing



Hydrology parameter for HEC-HMS simulation are loss, transform, baseflow and routing with input value shown in Table 7.

| Information                   |         | Watershed Delineation |         |         |         |         |  |  |  |
|-------------------------------|---------|-----------------------|---------|---------|---------|---------|--|--|--|
| THIOT MALION                  | Ι       | II                    | III     | IV      | V       | VI      |  |  |  |
| Kode HEC-HMS                  | W740    | W810                  | W900    | W920    | W1030   | W1140   |  |  |  |
| Area                          | 12.431  | 47.587                | 32.808  | 119.220 | 79.319  | 84.764  |  |  |  |
| Imperviousness                | 16.269  | 14.580                | 14.641  | 12.463  | 15.150  | 10.957  |  |  |  |
| Initial loss/abstraction      | 8.550   | 13.246                | 11.902  | 18.049  | 13.554  | 16.259  |  |  |  |
| SCS Curve Number              | 85.594  | 79.318                | 81.018  | 73.785  | 78.939  | 75.754  |  |  |  |
| SCS UH Lag                    | 223.656 | 102.054               | 126.344 | 148.903 | 160.526 | 106.023 |  |  |  |
| Initial baseflow discharge    | 1.936   | 7.455                 | 5.520   | 14.481  | 11.069  | 7.976   |  |  |  |
| Recession Constant            | 0.800   | 0.800                 | 0.800   | 0.800   | 0.800   | 0.800   |  |  |  |
| Treshold type (ratio to peak) | 0.300   | 0.300                 | 0.300   | 0.300   | 0.300   | 0.300   |  |  |  |
| Muskingum K                   | 5.520   | 5.520                 | 5.520   | 5.520   | 5.520   | 5.520   |  |  |  |
| Muskingum X                   | 0.210   | 0.210                 | 0.210   | 0.210   | 0.210   | 0.210   |  |  |  |

Source: Data processing

Calibration-validation period for optimum result of HEC-HMS model using trial error manual, sub-catchment and river segment in model basin for model calculation influenced by Sadar water level telemetry which is located in the middle of Sadar River are sub-catchment code W740, W810, W1030, and reach R-40, R-60, R-70. Sensitive parameter are initial abstraction, curve number, initial base flow discharge, recession constant, ratio to peak, muskingum k – x and lag time.

Calibration period for flood event January 5<sup>th</sup> until January 7<sup>th</sup>, 2014 shown in fig. 10.

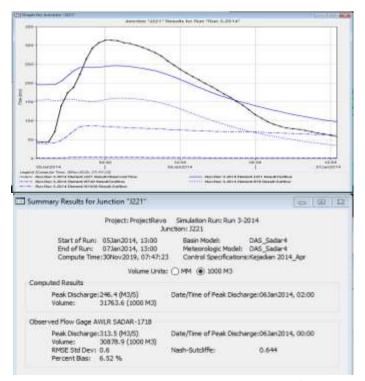



Fig. 10. Calibration period HEC-HMS model on January 5th, 2014

TABLE 8. HEC-HMS Model Calibration on January 5th, 2014

| Parameter                     | Sub-catchment |             |         |             |         |             |  |
|-------------------------------|---------------|-------------|---------|-------------|---------|-------------|--|
| rarameter                     | W             | 740         | W810    |             | W       | 1030        |  |
|                               | initial       | calibration | initial | calibration | initial | calibration |  |
| Initial loss/abstraction      | 8.550         | 7.810       | 13.246  | 20.985      | 13.554  | 1.002       |  |
| SCS Curve Number              | 85.594        | 88.504      | 79.318  | 72.531      | 78.939  | 98.978      |  |
| SCS UH Lag                    | 223.656       | 123.180     | 102.054 | 108.720     | 160.526 | 201.370     |  |
| Initial baseflow discharge    | 1.936         | 1.043       | 7.455   | 154.800     | 11.069  | 40.000      |  |
| Recession Constant            | 0.800         | 0.457       | 0.800   | 0.277       | 0.800   | 0.799       |  |
| Treshold type (ratio to peak) | 0.300         | 0.994       | 0.300   | 0.324       | 0.300   | 0.999       |  |
|                               |               | R - 40      |         | R - 60      |         | R - 70      |  |
| Muskingum K                   | 5.520         | 6.707       | 5.520   | 4.629       | 5.520   | 8.295       |  |
| Muskingum X                   | 0.210         | 0.500       | 0.210   | 0.500       | 0.210   | 0.500       |  |

Source: Data processing

Validation period for flood event March 25<sup>th</sup> 2017 until March 26<sup>th</sup> 2017 shown in Fig. 11.

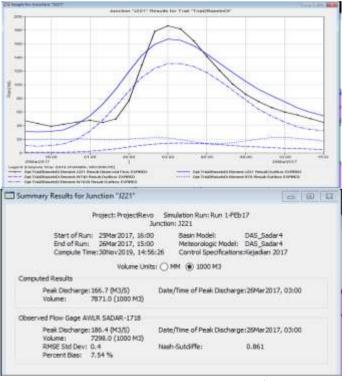



Fig. 11. HEC-HMS model validation on March 25th, 2017

HEC-HMS Model on March  $25^{th}$ , 2017 at 16:00 WIB until March  $26^{th}$ , 2017 at 15:00 WIB, peak discharge of HEC-HMS model 166.70 m<sup>3</sup>/s (observed peak discharge 186.40 m<sup>3</sup>/s), Nash-Sutcliffe validation is 0.861, RMSE Std Dev (RSR) is 0.4 and Percent Bias (PBIAS) is 7.54%. Comparison of initial parameters and model validation on March  $25^{th}$ , 2017 shown in Table 9.

The resulting HEC-HMS model is then evaluated by the reliability of the model with the statistical parameters Nash-Sutcliffe Efficiency (NSE), Root Mean Squared Error (RMSE) -standard deviation ratio (RSR), and Percent Bias (PBIAS). Evaluation on 30 flood events of the HEC-HMS Model was

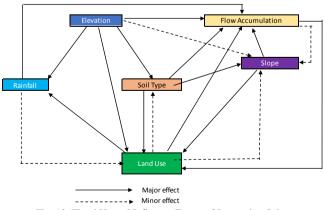


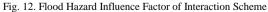
carried out to determine the level of model reliability so that a hydrological model was obtained that approached the field conditions.

| TABLE 9. | HEC-HMS | Model | Validation | on March | 25 <sup>th</sup> , | 2017 |  |
|----------|---------|-------|------------|----------|--------------------|------|--|
|----------|---------|-------|------------|----------|--------------------|------|--|

| Parameter                     | Sub-catchment |            |         |            |         |            |  |  |
|-------------------------------|---------------|------------|---------|------------|---------|------------|--|--|
| rarameter                     | W             | /740       | W       | /810       | W       | 1030       |  |  |
|                               | initial       | validation | initial | validation | initial | validation |  |  |
| Initial loss/abstraction      | 8.550         | 25.115     | 13.246  | 77.860     | 13.554  | 1.000      |  |  |
| SCS Curve Number              | 85.594        | 98.570     | 79.318  | 50.002     | 78.939  | 99.000     |  |  |
| SCS UH Lag                    | 223.656       | 493.780    | 102.054 | 272.380    | 160.526 | 500.000    |  |  |
| Initial baseflow discharge    | 1.936         | 1.081      | 7.455   | 27.645     | 11.069  | 10.000     |  |  |
| Recession Constant            | 0.800         | 0.077      | 0.800   | 0.010      | 0.800   | 0.262      |  |  |
| Treshold type (ratio to peak) | 0.300         | 0.711      | 0.300   | 0.328      | 0.300   | 0.271      |  |  |
|                               |               | R - 40     |         | R - 60     |         | R - 70     |  |  |
| Muskingum K                   | 5.520         | 4.625      | 5.520   | 4.983      | 5.520   | 4.068      |  |  |
| Muskingum X                   | 0.210         | 0.500      | 0.210   | 0.500      | 0.210   | 0.487      |  |  |
| Source: Data processing       |               |            |         |            |         |            |  |  |

Source: Data processing


HEC-HMS Sadar sub-catchment model evaluation performance using mean value of Nash Sutcliffe Efficiency Index (NSE), Root Mean Squared Error (RMSE)-standard deviation ratio (RSR) and Percent Bias (PBIAS) equation shown in Table 10.


TABLE 10. Evaluation HEC-HMS Sadar Sub-catchment Model

| Parameter Evaluation |              |           |  |  |  |
|----------------------|--------------|-----------|--|--|--|
| NSE                  | RSR          | PBIAS     |  |  |  |
| 0,608                | 0,603        | 0,08%     |  |  |  |
| satisfactory         | satisfactory | very good |  |  |  |

Source: Data processing

Land evaluation uses for flood hazard areas identification, influence factors of flood events and interactions between these factors, including flow accumulation, land slope, elevation, rainfall, soil type and land use (Kourgialas, 2011) shown in Fig. 12. Straight line and dotted line between factors indicates major or minor effect for each factor, to measure two different type one (1) point assigned to major effect and half a point (0.5) to minor effect, sum of factors rate shown in Table 11.





| TABLE 11. Factors Rate of Flood Hazard |                                                                                                                                         |                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Interaction Between<br>Factors         | Calculation                                                                                                                             | Results                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 1 major + 1 minor                      | (1 x 1) + (1 x 0,5)                                                                                                                     | 1,5 point                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 2 major + 0 minor                      | $(2 \times 1) + (0 \times 0,5)$                                                                                                         | 2,0 point                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 2  major + 2  minor                    | (2 x 1) + (2 x 0,5)                                                                                                                     | 3,0 point                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 1 major + 1 minor                      | (1 x 1) + (1 x 0,5)                                                                                                                     | 1,5 point                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 3  major + 0  minor                    | (3 x 1) + (0 x 0,5)                                                                                                                     | 3,0 point                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| 4 major + 1 minor                      | (4 x 1) + (1 x 0,5)                                                                                                                     | 4,5 point                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                        | Interaction Between<br>Factors<br>1 major + 1 minor<br>2 major + 0 minor<br>2 major + 2 minor<br>1 major + 1 minor<br>3 major + 0 minor | Interaction Between<br>FactorsCalculation1 major + 1 minor $(1 x 1) + (1 x 0, 5)$ 2 major + 0 minor $(2 x 1) + (0 x 0, 5)$ 2 major + 2 minor $(2 x 1) + (2 x 0, 5)$ 1 major + 1 minor $(1 x 1) + (1 x 0, 5)$ 3 major + 0 minor $(3 x 1) + (0 x 0, 5)$ 4 major + 1 minor $(4 x 1) + (1 x 0, 5)$ |  |  |  |  |  |

Source: Kourgialas (2011)

Analysis of flood hazard areas are calculated by multiplying weights and scores of influence factors, each value of contribution factors determined by percentage shown in Table 12.

Flood hazard areas influence factors in percentage namely for elevation factor is 31.5%, land use is 23.6%, soil type is 19.3%, rainfall is 11, 8%, slope is 7.4%, and flow accumulation is 6.4%. From analysis shown Sadar Subcatchment has 37% area located in <50 meters above sea level, 73% area is paddy fields, buildings and resident district which has high drainage coefficient. 51% area are regosol and litosol complex, rainfall cumulatif yearly > 1,900 mm, 83% area has 0-8% slope and flow accumulation especially outlet has high flood hazard criteria.

Sadar Sub-catchment flood hazard map result 5.9% area has very low, 7.2% area low, 27.2% area moderate, 56.4% area high and 3.2% area very high shown in Fig. 13.

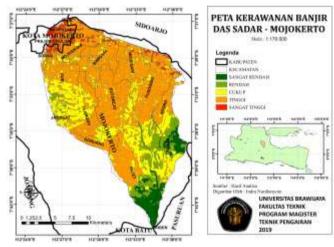



Fig. 13. Flood Hazard Map for Sadar Sub-catchment.

# IV. CONCLUSION

1. Calibration-validation HEC-HMS model of Sadar subcatchment for 30 flood events identification in 2013-2017, hydrology parameter model are loss (initial abstraction, curve number), base flow (initial base flow discharge, recession constant, ratio to peak), routing (muskingum k and x) and transform (lag time). HEC-HMS model performance evaluation for Nash-Sutcliffe Efficiency (NSE) is 0.608 (satisfactory), Root Mean Squared Error (RMSE) -standard deviation ratio (RSR) is 0.603 (satisfactory), and Percent Bias (PBIAS) is 0.08% (very good).



# International Research Journal of Advanced Engineering and Science

| Factor       | Classification                       | Flood        | Proposed<br>weight | Score | Weighted<br>Rating | Total<br>Weigth | %    |
|--------------|--------------------------------------|--------------|--------------------|-------|--------------------|-----------------|------|
|              |                                      | Hazard level |                    |       |                    |                 |      |
| Rainfall     | < 1400 mm                            | Very Low     | 1.0                |       | 1.5                | 82.5            | 11.8 |
|              | 1400 - 1500 mm                       |              | 2.0                |       | 3.0                |                 |      |
|              | 1500 - 1600 mm                       | -            | 3.0                |       | 4.5                |                 |      |
|              | 1600 - 1670 mm                       | Low          | 4.0                |       | 6.0                |                 |      |
|              | 1670 - 1750 mm                       |              | 5.0                | 1.5   | 7.5                |                 |      |
|              | 1750 - 1830 mm                       | Moderate     | 6.0                |       | 9.0                |                 |      |
|              | 1830 - 1900 mm                       |              | 7.0                |       | 10.5               |                 |      |
|              | 1900 - 1980 mm                       | High         | 8.0                |       | 12.0               |                 |      |
|              | 1980 - 2060 mm                       | ** *** *     | 9.0                |       | 13.5               |                 |      |
|              | > 2060 mm                            | Very High    | 10.0               |       | 15.0               | 1 6 5 0         |      |
| Land Use     | Forest                               | · · ·        | 0.1                |       | 0.3                | 165.3           | 23.6 |
|              | Brush                                | Very Low     | 1.0                |       | 3.0                |                 |      |
|              | Farmsteads                           |              | 2.0                |       | 6.0                |                 |      |
|              | Wood Grass                           | _            | 3.0                |       | 9.0                |                 |      |
|              | Pasture                              | Low          | 4.0                | 3.0   | 12.0               |                 |      |
|              | Non Irrigated Rice Fields            |              | 5.0                |       | 15.0               |                 |      |
|              | Irrigated Rice Fields                | Moderate     | 6.0                |       | 18.0               |                 |      |
|              | Fallow                               |              | 7.0                |       | 21.0               |                 |      |
|              | Resident District                    | High         | 8.0                |       | 24.0               |                 |      |
|              | Building                             |              | 9.0                |       | 27.0               |                 |      |
|              | Water                                | Very High    | 10.0               |       | 30.0               |                 |      |
| Soil Type    | Alluvial Gray                        | Very Low     | 1.3                |       | 3.8                | 135.0           | 19.3 |
|              | Brown Andosol Complex, Yellowish &   | ×            | 2.5                |       |                    |                 |      |
|              | Litosol Brown Andosol                | Low          | 2.5                |       | 7.5                |                 |      |
|              | Regosol Gray                         |              | 3.8                | •     | 11.3               |                 |      |
|              | Brown Latosol & Regosol Gray         | Moderate     | 5.0                | 3.0   | 15.0               |                 |      |
|              | Association of Mediterranean Reddish |              |                    |       |                    |                 |      |
|              | Brown & Grumusol Gray                |              | 6.3                |       | 18.8               |                 |      |
|              | Regosol & Litosol Complex            | High         | 7.5                |       | 22.5               |                 |      |
|              | Reddish Brown Latosol                |              | 8.8                |       | 26.3               |                 |      |
|              | Aluvial Gray & Aluvial Brown Gray    | Very High    | 10.0               |       | 30.0               |                 |      |
| Slope        | > 40%                                | Very Low     | 1.0                |       | 2.0                | 52.0            | 7.4  |
|              | 25 - 40 %                            | Low          | 2.0                |       | 4.0                |                 |      |
|              | 15 - 25%                             | Moderate     | 5.0                | 2.0   | 10.0               |                 |      |
|              | 8 - 15%                              | High         | 8.0                |       | 16.0               |                 |      |
|              | 0 - 8%                               | Very High    | 10.0               |       | 20.0               |                 |      |
| Elevation    | 2000 - 3150 m                        | Very Low     | 0.1                |       | 0.5                | 221.0           | 31.5 |
|              | 1500 - 2000 m                        |              | 1.0                |       | 4.5                |                 |      |
|              | 500 - 1500 m                         |              | 2.0                |       | 9.0                |                 |      |
|              | 300 - 500 m                          | Low          | 3.0                |       | 13.5               |                 |      |
|              | 200 - 300 m                          |              | 4.0                | 4.5   | 18.0               |                 |      |
|              | 150 - 200 m                          | Moderate     | 5.0                |       | 22.5               |                 |      |
|              | 100 - 150 m                          |              | 7.0                |       | 31.5               |                 |      |
|              | 50 - 100 m                           | High         | 8.0                |       | 36.0               |                 |      |
|              | 25 - 50 m                            |              | 9.0                |       | 40.5               |                 |      |
|              | < 25 m                               | Very High    | 10.0               |       | 45.0               |                 |      |
| Flow         | 0-150.000                            | Very Low     | 2.0                |       | 3.0                | 45.0            | 6.4  |
| Accumulation | 150.000 - 550.000                    | Low          | 4.0                |       | 6.0                |                 |      |
| (Piksel)     | 550.000 - 1.200.000                  | Moderate     | 6.0                | 1.5   | 9.0                |                 |      |
|              | 1.200.000 - 2.500.000                | High         | 8.0                |       | 12.0               |                 |      |
|              | 2.500.000 - 5.450.000                | Very High    | 10.0               |       | 15.0               |                 |      |
|              | SUM                                  |              |                    |       |                    | 700.8           |      |



2. Sadar sub-catchment influence factors to flood hazard areas in percentage are 31.5 % of elevation factor, 23.6% land use, soil type is 19.3%, rainfall is 11.8%, land slope is 7.4%, and flow accumulation is 6.4%. Flood hazard map result 5.9% area has very low, 7.2% area low, 27.2% area moderate, 56.4% area high and 3.2% area very high.

#### REFERENCES

- [1] Arsyad, Konservasi Tanah dan Air. Bogor : Institut Pertanian Bogor Press, 2009.
- [2] Asdak, Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogyakarta: Gajah Mada University Press, 1995.
- [3] A. N. Inayah, "Simulasi Retensi Air Permukaan Menggunakan Model HEC-GEOHMS Studi Kasus : DAS Ciliwung Hulu," M.S. thesis, Sekolah Pascasarjana, Institut Pertanian Bogor, Bogor, 2017.
- [4] Harto, Hidrologi Teori Masalah Penyelesaian. Yogyakarta: Nafiri Offset, 2000.

- [5] Kourgialas, "Flood management and a GIS modelling method to assess flood hazard areas – a case study," *Hydrological Science Journal*, vol. 56, issue 2, pp 212-225, 2011.
- [6] Limantara, Rekayasa Hidrologi Edisi Revisi, Yogyakarta: Penerbit ANDI, 2018.
- [7] Moriasi, "Hydrologic and water quality models : performance measures and evaluation criteria", ASABE Journal, vol. 58, issue 6, pp 1763-1785, 2015.
- [8] Ouédraogo, "Continuous modeling of the Mkurumudzi River catchment in Kenya using the HEC-HMS conceptual model: calibration, validation, model performance evaluation and sensitivity analysis", *MDPI Hydrology Journal*, vol. 5, issue 44, 2018.
- [9] Suhartanto, Panduan HEC-HMS dan Aplikasinya di Bidang Teknik Sumberdaya Air, Malang : CV. Citra Malang, 2008.
- [10] Soemarto, Hidrologi Teknik. Jakarta: Erlangga, 1987
- Hydrology National Engineering Handbook, Part 630 Natural Resources Conservation Service - US Department of Agriculture, USA, 1997-2015.