

A Collaborative Approach in Understanding the Die Crack Occurrence during Die Attach Assembly

Rennier S. Rodriguez, Frederick Ray I. Gomez

Central Engineering and Development NPI, Back-End Manufacturing & Technology, STMicroelectronics, Inc. Calamba City, Laguna, Philippines 4027

Keywords—*Die bond; die attach; semiconductor; die crack; pick and place; DOE; process improvement.*

I. OVERVIEW

• Die bonding process or die attach process refers to the "pick and bonding" process of silicon die from wafer tapes to a carrier, as shown in Fig. 1

Fig. 1. Pick-up process for standard silicon die.

• The pick-up process can be divided into two machine sequences: (1) a needle protruding through the wafer tapes which separates the silicon die to the wafer tape and (2) a vacuum supplied to the bondhead assembly to hold the units upon ejection

II. PROBLEM IDENTIFICATION

• Challenges are brought-up as the silicon die becomes thinner, as given in Fig. 2

Fig. 2. Crack/breaking in the silicon material during pick-up process.

• As the thickness of the silicon material decreases, the lesser it can withstand the stress induced by the die attach process

• Through proper identification of potential factors that might affect the picking consistency, a study may be conducted to formulate the correct configuration for a robust pick-up process and to understand the contribution of needle configuration during the process

III. DESIGN OF EXPERIMENTS

- Design-of-experiments (DOE) for needle or ejector pin configuration is formulated to determine the significance of the parameter in terms of stress level reduction
- Two different needle configurations in Fig. 4 with 4 and 5 needle pins, respectively are measured using finite element analysis

Fig. 3. Needle configurations used for DOE.

IV. PROCESS DESIGN SOLUTION AND IMPROVEMENT

The die stress level is observed to improve (lower value) with increasing needle count per ejector needle assembly, with 5-pin configuration having better (lower value) stress level than the 4-pin configuration as indicated in Fig. 4

Fig. 4. Stress level result for different needle configurations.

Rennier S. Rodriguez and Frederick Ray I. Gomez, "A collaborative approach in understanding the die crack occurrence during die attach assembly," *International Research Journal of Advanced Engineering and Science*, Volume 4, Issue 3, pp. 161, 2019.