
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

208

Riya Tyagi and Anmol Agarwal, “Big-Integer,” International Research Journal of Advanced Engineering and Science, Volume 4, Issue 3,

pp. 208-211, 2019.

Big-Integer

Riya Tyagi
1
, Anmol Agarwal

2

1, 2
Dept. of Computer Science and Engineering, Graphic Era University, Dehradun, Uttarakhand, India-248002

Abstract— In the world of the stupendous amount of data, it is

necessary to perform operation or calculation on such data rapidly

and accurately. Data in itself is [1] not small, but also includes the

characteristics of huge variety and high velocity which causes

difficulty in operational tools and algorithms because they are

limited to perform operation on a certain amount of data and such

data usually comes in numerical form, which consists of an infinite

number of digits [10]. Daily data are generated in enormous amount

(approx. billion TB) from different sources like the stock market, big-

data, data-warehouses, big IT companies, Internet, banking, business

market and many more which need to perform operations on the data

quickly and accurately for the better growth and smooth functioning

in their areas. Due to continuously increasing data, it had become

difficult to calculate mathematical operation on data in the given

time. So, here we had come up with a solution, as an algorithm for

performing mathematical operation [2] on such data like addition,

subtraction and multiplication which is implementing in the middle-

level language C++ with the help of data structure "link-list" and

"dynamic memory allocation" of the data. This type of data is called

Big-integer which having ‘N' number of digits. Our algorithm

performs the operation on this data till system or device memory

becomes full and gives the result within 0-1 second with almost 100%

accuracy. This paper major objective behind this is, to introduce an

algorithm in C++ for obtaining the rapid result which must be

understandable and can be implemented easily in every field.

Keywords— Link-list, data structure, dynamic memory, and data

type.

I. INTRODUCTION

In this research paper, we are presenting a very optimize and

understandable algorithm for handling a large amount of data
[11]

 which is very big in terms of numbers. This methodology

is already there but we decide to use C++ so that everyone

could understand easily and able to identify the methodology

and data processing behind the algorithm
[3]

 which is helpful to

make required changes for everyone in the future. In this

algorithm, we use a linear data structure called "Link-List"

which stores the data node by node in the memory and each

node contains the data and the address of his next node. The

last node of the link-list contains the NULL as its address field

and the first node of the link-list is called the head of the link-

list. There are three kinds of the link-list present in

programming. The first one is a singly link-list in which we

can move only one direction, the second one is doubly link-list

in which we can move both the direction forward and

backward and the third one is circular link-list in which we

can move both the direction as well as we can move circularly.

The main reason behind the usage of link-list data structure is

to store the data dynamically not statically or continuous so

that we can create the nodes as much as memory present in the

CPU
[4]

 and it decreases the wastage of memory which is a

major aspect of dynamic programming. The one disadvantage

of the link-list is that we can‟t go directly on a specific node,

we need to go one by one. In this algorithm, we used a singly

link-list to store the numbers. The dynamic memory allocation

is done by malloc, realloc, calloc and free. We used "malloc"

to allocate the specified number of bytes or block of memory
[9]

 in the heap manually in the runtime, takes a value as

argument which is the size of the memory block. This method

returns a void pointer of that block of memory of not-defined

data type through which we access the allocated memory and

when we don't need that block of memory we use free to

deallocate the memory which decreases memory wastage.

These dynamic programming methods come under the

"cstdlib" header file in C++. We use type-casting to use

dynamic memory allocation methods on different datatypes.

II. CONSTRUCTION AND WORKING

In our algorithm for the creation of dynamic memory we

use malloc with the data structure “link-list”.

struct node{

 int info;

 struct node *next;

};

The structure named node contains two fields. The first

field is info that stores the digit of the number and the second

field is next which store the address of the next memory block.

For allocating the dynamic memory we use-

p=(node *)malloc(sizeof(node));

This p pointer store the address of the memory block

which is created by malloc. To store the information and for

performing operations in the memory block, we create three

methods as insert, len and reverse which used for inserting the

digit of the number, calculate the total length of the number

and reverse the number respectively. Insert function has two

arguments as head and d. "Head" is a node type variable that

points to the first node of the link-list through-out the program

and "d" is an integer type variable that stores the digits of the

number. This function returns node type value. Len function

has one argument as head and returns integer type value. The

reverse function has also one argument as head and return

node type value.

1- node *insert(node *head,int d)

2- int len(node *head)

3- node *reverse(node *head)

In our algorithm, we use string data type for storing the

number and typecast them into an integer with the help of

ASCII values for the mathematical operations like addition,

subtraction and multiplication. We use switch for performing

them separately and for this we use three methods like add,

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

209

Riya Tyagi and Anmol Agarwal, “Big-Integer,” International Research Journal of Advanced Engineering and Science, Volume 4, Issue 3,

pp. 208-211, 2019.

sub, and mul which perform addition, subtraction, and

multiplication of two numbers respectively.

1- node *add(node *head1,node *head2)

2- node *sub(node *head1,node *head2)

3- node *mul(node *head1,node *head2)

III. ADDITION

node *add(node *head1,node *head2)

This method performs an addition operation of two

numbers. We use two link lists for storing the two numbers. It

has two arguments as head1 and head2. Head1 points to the

first node of the first number and head2 points to the first node

of the second number. Both are of the node type. We access

both the link list at the same time and use two more node type

pointer i and j. "I" for the first number and j for the second

number. Both are a point at the beginning of the number or the

link-list and we access the link-list from start to end of the

link-list. For handle the carry operation we use integer type

variable "c" whose value can change according to the

calculation. If the numbers are negative or either one number

is positive or the second number is negative, our algorithm

also gives the accurate result of it. For this methodology, our

algorithm also checks negative and positive value whether the

entered number is positive or negative and performs operation

accordingly.

while(i!=NULL&&j!=NULL)

r=i->info+j->info+c;

If the value of r is greater than and equal to 10, we‟ll get the

carry by subtraction 10 from the value of r otherwise we set

the carry value as 0.

if(r>=10)

{

r=r-10;

c=1;

}

If the length of both the numbers is different then we access

the larger number link-list and repeat the same procedure as

above but this time we only add i or j values into carry and

rest of it, we copy to output link-list.

if(j==NULL)

{

while(i!=NULL)

{

r=i->info+c;

if(r>=10)

{

r=r-10;

c=1;

}

else

c=0;

head3=insert(head3,r);

i=i->next;

}

}

else

{

while(j!=NULL)

{

r=j->info+c;

if(r>=10)

{

r=r-10;

c=1;

}

else

c=0;

head3=insert(head3,r);

j=j->next;

}

}

IV. SUBTRACTION

node *sub(node *head1,node *head2)

This method perform subtraction operation of two

numbers. We use two link-list for storing the two numbers. It

has two arguments as head1 and head2. Head1 is points to the

first node of the first number and head2 points to the first node

of the second number. Both are of node type. We access both

the link list at the same time and use two more node type

pointer i and j. “i” for the first number and j for the second

number. Both are point at the beginning of the number or the

link-list and we access the link-list from start to end. After this

we check the node value for the borrow operation. If first

node is having bigger value than second node then it perform

normal subtraction but if it is less than we add 10
[7]

 to the first

node and subtract 1 from the next node of the respective link

list. It can give the correct answer with-in 1 sec.

if(i->info<j->info)

{

k=i;

if(i->next==NULL)

{

r=j->info-i->info;

head3=insert(head3,r);

}

else

{

i->info=i->info+10;

while(k->next->info==0)

{

k=k->next;

k->info=9;

}

k->next->info=k->next->info-1;

r=i->info-j->info;

head3=insert(head3,r);

}

}

else

{

r=i->info-j->info;

head3=insert(head3,r);

}

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

210

Riya Tyagi and Anmol Agarwal, “Big-Integer,” International Research Journal of Advanced Engineering and Science, Volume 4, Issue 3,

pp. 208-211, 2019.

If there is no value in the second link-list then first link-list

value normally added to the output link-list.

if(j==NULL&&i!=NULL)

{

while(i!=NULL)

{

head3=insert(head3,i->info);

i=i->next;

}

}

V. MULTIPLICATION

node *mul(node *head1,node *head2)

This method performs the multiplication operation of two

numbers. We use two link-list for storing the two numbers. It

has two arguments as head1 and head2. Head1 points to the

first node of the first number and head2 points to the first node

of the second number. Both are of the node type. We access

both the link list at the same time and use two more node type

pointer i and j. "i" for the first number and j for the second

number. Both are the point at the beginning of the number or

the link-list and we access the link-list from start to end and

for the carry handler, we use integer variable „c' which is

initialized with zero
[6]

. If the multiplication of two digits is

greater than 10 then we find the carry from that number by

dividing it by 10
[8]

 and remainder. After it, we proceed with

the normal calculation.

while(j!=NULL)

{

i=head1;

c=0;

head4=NULL;

head5=NULL;

if(j==head2)

{

while(i!=NULL)

{

r=(j->info*i->info)+c;

if(r>=10)

{

c=r/10;

r=r%10;

}

else

c=0;

head3=insert(head3,r);

i=i->next;

}

Same for all digits we calculate the multiplication of each digit

from another number and store the result in the third link list

as multiplication.

else

{

for(k=0;k<z;k++)

head4=insert(head4,0);

while(i!=NULL)

{

r=(j->info*i->info)+c;

if(r>=10)

{

c=r/10;

r=r%10;

else

c=0;

head4=insert(head4,r);

i=i->next;

}

if(c!=0)

head4=insert(head4,c);

z++;

}

if(head4!=NULL)

{

head3=reverse(head3);

head4=reverse(head4);

head5=add(head3,head4);

head3=head5;

}

j=j->next;

}

return(head3);

}

VI. CHARACTERISTICS

 Our algorithm is very user-friendly and easy to understand.

 It gives the correct answer in 1 second.

 This algorithm can be used in many research fields, stock

markets, share markets, etc.

 It is very efficient because it can be run on any no. of

digits.

 It takes less memory to run the program which makes it

more reliable.

 It is 100% accurate.

 It is time-saving and runs in real-time.

VII. CONCLUSION

This is necessary to perform operation data rapidly and

accurate and our algorithm becomes more reliable with these

characteristics. It can operate TB of data easily
[5]

 which

become more helpful in business, stock market, trading,

Internet, data-warehouses or banking, etc. So, our algorithm is

very user-friendly, accurate and time-saving to calculate big

mathematical problems.

REFERENCES

[1] S. A. Cook, On the minimum computation time of functions [Ph.D.
thesis], Department of Mathematics, Harvard University, May 1966.

[2] Karatsuba and Y. Ofman, "Multiplication of many-digital numbers by

automatic computers," USSR Academy of Sciences, vol. 145, pp. 293–
294, 1962

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms, MIT Press, 2000.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

211

Riya Tyagi and Anmol Agarwal, “Big-Integer,” International Research Journal of Advanced Engineering and Science, Volume 4, Issue 3,

pp. 208-211, 2019.

[4] Schonhage and V. Strassen, “Schnelle Multiplikation großerZahlen,”

Computing in Science & Engineering, vol. 7, pp. 139–144, 1971.
[5] P. L. Montgomery, “Modular multiplication without trial divi-sion,”

Mathematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[6] T.-J. Chang, C.-L. Wu, D.-C. Lou, and C.-Y. Chen, “A low-complexity
LUT-based squaring algorithm,” Computers &Mathematics with

Applications, vol. 57, no. 9, pp. 1494–1501, 2009

[7] N. S. Szabo and R. I. Tanaka, Residue Arithmetic and Its Applications to
Computer Technology, McGraw-Hill, 1967.

[8] D. Zuras, “On squaring and multiplying large integers,” in Proceedings

of the IEEE 11th Symposium on Computer Arithmetic, pp.260–271,
July1993

[9] M. Sadiq and J. Ahmed, “Complexity analysis of multiplication of long

integers,” Asian Journal of Information Technology, vol. 5, no. 2, 2006
[10] D. Zuras, “More on squaring and multiplying large integers,” IEEE

Transactions on Computers, vol. 43, no. 8, pp. 899–908, 1994.

[11] D. M. Gordon, “A survey of fast exponentiation methods,” Journal of
Algorithms, vol. 27, no. 1, pp. 129–146, 1998.

