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I. INTRODUCTION  

Robust parameter design is one of the most creative and 

effective tools in quality engineering. This tool works by 

identifying factor settings to reduce the variation in products 

or processes. Robust parameter design had been practised in 

Japan for many years before it was introduced to the United 

States of America by its originator Genichi Taguchi in the 

mid-1980’s [1].  

One of the central ideas in the Taguchi approach to 

parameter design is the use of the performance criterion that 

he called Signal-to-noise ratio (SNR) for variation reduction 

and parameter optimization. The signal-to-noise ratio is a 

performance measure that combines the mean response and 

variance [2]. The extend to which maximization of such 

criterion can be linked with minimization of quadratic loss 

was considered in [3].  

The signal-to-noise ratio that is used depends on the goal 

of the experiment. Different goals of the designed experiment 

are as follows:  

1. The nominal the best: The experimenter wishes for the 

response to attain a specific target value.  

2. The smaller the better: The experimenter is interested in 

minimizing the response.  

3. The larger the better: The experimenter is interested in 

maximizing the response.  

The signal-to-noise ratio has generated many controversies 

as seen by the discussions on Box’s paper [4] and the panel 

discussions edited by Nair [5]. Different studies have proposed 

statistical improvements to the signal-to-noise ratio, for 

example [6]. 

Multiple comparisons of treatments is one of the most 

important topics in designed experiments. In the literature, the 

concept of multiple comparisons of treatments based on 

signal-to-noise ratios is not widely studied. Bizimana et al. [7] 

published the paper entitled Statistical Tests for Pairwise 

Comparisons of Signal-to-Noise Ratios: The Nominal the Best 

Case. The objective of the current paper is to propose 

statistical tests based on signal-to-noise ratios for pairwise 

comparisons of treatments when the response variable is the 

smaller the better case. We initially define the signal-to-noise 

ratio for the smaller the better case. In addition, for performing 

statistical inference, we determine the asymptotic distribution 

of the estimate of the signal-to-noise ratio. Statistical tests for 

pairwise comparisons of signal-to-noise ratios are presented. 

A Monte Carlo study and an illustrative example on real data 

are provided. 

II. SIGNAL-TO-NOISE RATIO FOR THE SMALLER THE 

BETTER CASE  

Let 1 2, , , ny y y…  be a realization of iid random variables 

1 2, , ,
n

Y Y Y…  normally distributed with mean µ  and 

variance
2
.σ In many cases, it is of interest to achieve the 

smallest value for the response while the variation is minimum 

[8]. Taguchi treats this situation as if there is a target value 

zero. As result, the quadratic loss function 2( 0)E y − leads to a 

performance criterion derived from 2
( )E y . The performance 

characteristic is based on 2

1

1
.

n

i

i

y
n =
 In this case, Taguchi makes 

use of the logarithmic transformation, and thus suggests as the 

appropriate signal-to-noise ratio the following expression: 

� ( )2
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1

1  
1

10 log ,
n

S i

i

SNR y
n =

 = −  
 
   

where n  denotes the sample size.  

III. ASYMPTOTIC DISTRIBUTION OF THE ESTIMATE OF THE 

SIGNAL-TO-NOISE RATIO  

In order to conduct the tests of hypothesis for pairwise 

comparisons of signal-to-noise ratios, it is important to know 

the distribution of the estimate of the signal-to-noise ratio. The 

multivariate delta theorem [9] is applied for determining the 

asymptotic distribution of the estimate of the signal-to-noise 

ratio.  

Result 1. Asymptotic distribution of �
S

SNR  

Let 
1 2
, , ,

n
y y y…  be realizations of iid random variables 

1 2
, , ,

n
Y Y Y…  normally distributed with mean µ and variance 

2
.σ Then the estimate of the signal-to-noise ratio for the 

smaller the better case, � SSNR , is asymptotically distributed as 

normal with mean � ( )2 210
ln

ln10SSNR
µ σ µ− = + 

 
 and variance 
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[10]. 

 

Proof 

The asymptotic distribution of the estimate of the signal-

to-noise ratio for the smaller the better case is determined 
following the same logic applied to the nominal the best case 

[7]. The estimate of the signal-to-noise ratio for the smaller the 

better case, say� SSNR , can be written as follows 
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Let ( )2
,µ σ=θ be a vector of unknown parameters of the 

normal distribution such that the vector ɵ ( )2,y s=θ  is its 

estimator. We recall that the variance-covariance matrix of 

ɵθ is given by ([9]) 
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              θ  

Let 2:g →R R be a bivariate function such that  

( ) ( ) ( ) ( )2 2 2
                             4  , ln .g g µ σ σ µ= = +           θ  

The corresponding partial derivatives respect to µ  and
2σ are, 

respectively,     
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The gradient vector is 

( ) ( )
2 2

2 2

                                                  6  

2

.
1

g

µ
σ µ

σ µ

 
 + ∇ =
 
 + 

     θ                                                

Applying the multivariate delta theorem leads to  
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i.e.,    
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or equivalently, 
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It follows that 
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where ~
a

 stands for asymptotically. 

Therefore, the estimate of the signal-to-noise ratio is 

asymptotically distributed as normal, this is, 

�
� �( ) ( )2 1~ , , 1

S S

a

S
SNR SNR
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where  
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IV. STATISTICAL TESTS FOR PAIRWISE COMPARISONS OF 

SIGNAL-TO-NOISE RATIOS 

In this section, exploiting the properties of the asymptotic 

normality and the Central Limit Theorem ([11], [12]), we 

present statistical tests for pairwise comparisons of signal-to-

noise ratios when the response variable is of the smaller the 

better case. We begin by considering two independent normal 

populations with mean 
i

µ and variance 2
, 1, 2.

i
iσ =   

Suppose that
1

y  and
2

y  are two independent samples of 

sizes 
1

n  and
2

n , respectively, drawn from the above 

mentioned populations such that:  

Sample 1: 
11 11 12 1

, , ,
n

y y y y= …  and  

Sample 2: 
22 21 22 2

, , , .
n

y y y y= …  

Let �
1S

SNR  and �
2S

SNR be the estimates of the signal-to-noise 

ratios. The corresponding population signal-to-noise ratios are 

1S
SNR  and 

2S
SNR respectively. It is desired to test the 

hypothesis  

( )
1 2 1 20 1 3: , 1:S S S SH SNR SNR H SNR SNR= ≠ag     ins    a t  

or equivalently, 

( )
1 2 1 20 1: 0 14: 0.

S S S S
H SNR SNR H SNR SNR− = − ≠agains t    

 

Result 2. Mean and standard deviation of � �
1 2S SSNR SNR−   

Let 
11 11 12 1, , , ny y y y= …  and 

22 21 22 2, , , ny y y y= …  be two 

independent samples of sizes 
1n  and 

2n , respectively, drawn 

from two independent normal populations with mean
iµ  and 

variance 2 , 1, 2.
i

iσ =  Under H0, the mean and standard 
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deviation of � �
1 2S SSNR SNR−  are asymptotically zero and 
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Proof 

In fact,  
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The standard deviation of the difference of �
1SSNR and �

2SSNR , 

say 
� �

1 2S SSNR SNR
σ

−
, is determined as follows: 
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Result 3. Statistical tests for comparing 
1SSNR and 

2SSNR  

The statistical test for comparing 
1SSNR and 

2SSNR in the case 

1 2 1, ,µ µ σ and 
2σ  are known is 

( ) ( )

2
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and the statistical test becomes
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when 
1 2 1, ,µ µ σ and 

2σ  are unknown [10]. 

Proof 

The statistical test in case 
1 2 1, ,µ µ σ and 

2σ are known is given 

by 

� �( ) ( )
� �
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S S S S

SNR SNR

SNR SNR SNR SNR
z

σ
−

− − −
=                          

and the statistical test when 
1 2 1, ,µ µ σ and 

2σ  are unknown is 
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Under
0H , 

1 2
0

S S
SNR SNR− = , and the statistics in (17) and 

(18) reduce to the following expressions. 

The statistical test in case 
1 2 1, ,µ µ σ and 

2σ are known is given 

by 
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The statistical test in case 1 2 1, ,µ µ σ and 2σ are unknown is 

given by 

� �
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Under 
0 ,H ( )~ 0, 1

a

z N and ,
a

t tν∼ where 

1 2
2n nν = + − represents the degrees of freedom of the t  

distribution. The null hypothesis, 0 ,H is rejected if 
2

z zα>  or 

,
2

,t tα ν
> where 

2

zα  is the 
2

α
quantile of the standard normal 

distribution and 
,

2

tα ν
is the 

2

α
quantile of the t  distribution 

with ν degrees of freedom.  

V. MONTE CARLO STUDY OF THE PROPERTIES OF THE 

PROPOSED TESTS  

Monte Carlo simulations are performed to evaluate the 

performance of the proposed statistical tests in terms of test 

sizes and powers. Sample means and sample variances are 
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used to determine the estimates of signal-to-noise ratios. 

Simulation under
0

H , this is, simulation with equal population 

parameters (
X Y

µ µ=  and 
X Y

σ σ= ) permits estimating the 

test size. Under
1

H , simulations are conducted after applying 

an increment Δ to the population parameters. Simulations with 

different values of population parameters give the estimates of 

power tests. 

A. Procedure for Monte Carlo simulation 

The simulation process has been conducted according to the 

following procedure:  

1. From two independent normal populations, X  and ,Y  

such that ( )2
,X XX N µ σ∼  and ( )2

, ,Y YY N µ σ∼ simulate 

two independent samples of sizes 10.
X Y

n n= =  

2. Calculate the sample means and sample variances; 
2, ,
X

X Y s  and 2 .
Y

s   

3. Calculate the estimates of the signal-to-noise ratios; � XSNR  

and � .YSNR  

4. Based on asymptotic normality of the estimates of the 

signal-to-noise ratios, simulate 10000MC = replicates of 

�
�

�( )2,
X SNRX

a

X
SNR

SNR N µµ σ∼  and 

�
�

�( )2, .
Y SNRY

a

Y
SNR

SNR N µµ σ∼  Four configurations of sample 

sizes are used: 10, 20, 30, 60.n =  

5. For each replicate, conduct a t  test for the null hypothesis 

0
: 0,

X Y
H SNR SNR− =  and count the number of rejections 

(# Rejections). 

6. Determine the rejection rate: .
#

MC

Rejections
 

The parameters used in Step 1 are determined by applying 

an increment Δ according to the following scheme:  

1. Simultaneous change of population means and population 

variances. The population parameters are determined as 
follows: 

Y X µµ µ= + ∆   ;Y X σσ σ= + ∆and 
 

where µ∆  and σ∆ are 

increments in population mean and population variance, 

respectively. 
2. Changing the population means and maintaining the 

population variances at constant values. In this scheme, the 

population parameters are determined as follows: 
.Y X Y Xµµ µ σ σ= + ∆ = and  

3. Changing the population variances and maintaining the 

population means at constant values. In this case, the 
population parameters are determined as follows: 

.
Y X Y X σµ µ σ σ= = + ∆ and  

Four configurations of increments are used: 

0.001, 0.01, 0.1, 1.∆ =     The increment 0∆ =  implies equal 

parameters. 

B. Results 

Table I shows the estimated sizes of the test statistic. The 

population parameters used are 35
X Y

µ µ= =  and 2.
X Y

σ σ= =  

The row entries represent the proportion of times 
0

H  was 

rejected at 0.05α =  under 
0

H , this is, the proportion of 

times
0

H  is wrongly rejected. The test size is very close to the 

significance level. Moreover, it seems that the sample size 

does not affect the value of the test size.  

 
TABLE I. Estimated test sizes of the t test for various sample sizes. 

Sample size  Test size  

10 0.0497 

20 0.0513 

30 0.0513 

60 0.0537 

 

Table II contains the estimated powers obtained in 

changing the population means and population variances 

simultaneously. In this case, the population parameters used in 

simulations are: .Y X Y Xµ σµ µ σ σ= + ∆ = + ∆ and  The row 

entries represent the proportion of times 
0

H  is rejected at 

0.05α =  under
1

H , this is, the proportion of times
0

H  is 

correctly rejected. 

 
TABLE II. Estimated powers of t test for various sample sizes and various 

increments, changing the population means and population variances 

simultaneously. 

Sample 0.001µ∆ =   0.01µ∆ =   0.1µ∆ =   1µ∆ =   

size 0.001σ∆ =   0.01σ∆ =    0.1σ∆ =  1σ∆ =   

 10 0.0546  0.6085 1  1 

 20 0.2555  1 1   1  
 30 0.9542  1 1  1 

 60 1 1 1  1 

 

Table III contains the estimated powers, obtained in 

changing the population means and maintaining population 

variances at constant values. In this 

case, .Y X Y Xµµ µ σ σ= + ∆ = and The row entries represent the 

proportion of times 
0

H  is rejected at 0.05α =  under
1
.H  

 

TABLE III. Estimated powers of t  test for various sample sizes and various 

increments, obtained in changing the population means and maintaining the 

population variances at constant values. 

 Sample size 0.001µ∆ =   0.01µ∆ =   0.1µ∆ =   1µ∆ =   

 10 0.0546 0.5673 1 1 

 20 0.2352 0.3436 1 1 

 30 0.9308 1 1 1 

 60 1 1 1 1 

 

Table IV contains the estimated powers, obtained in 

changing the population variances and maintaining population 

means at a constant value. In this 

case, .
Y X Y X σµ µ σ σ= = + ∆ and  The row entries represent the 

proportion of times 
0

H  was rejected at 0.05α = under 
1
.H  
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TABLE IV. Estimated powers of t test for various sample sizes and various 

increments, obtained in changing the population variances and maintaining the 

population means at constant values. 

 Sample size 0.001σ∆ =   0.01σ∆ =   0.1σ∆ =   1σ∆ =   

 10 0.0499 0.0519 0.219 1 

 20 0.0506 0.1084 1 1 

 30 0.0571 0.5058 1 1 

 60 0.2096 1 1 1 

 

Results in tables II, III and IV show that the estimated 

powers of t test increase as the increments increase. Effects of 

sample sizes to the estimated powers of t  test are remarkable. 

For the same value of increment in the population parameters, 

the proposed test detects a significance difference between 

two values of signal-to-noise ratios, with high power, if the 

corresponding sample size is also high. 

VI. REAL EXAMPLE  

We revisit the problem of a robust design conducted on a 

chemical process [13] and consider its original version where 

the objective was to minimize the proportion of impurities in 

the final product. The data obtained for the first two runs of 
the experiment are in table V.  

 

TABLE V. Mean and variance values for the first two runs of the chemical 

process. 

Experimental 

run 
Data Mean 

Standard 

deviation 

1 57.81 37.29 42.87 47.07 46.26 7.52 

2 24.89 4.35 8.23 14.69 13.04 7.77 

 

We compare the signal-to-noise ratios of the first two 

experimental runs. Conducting the required calculations leads 

to the results summarized in table VI. 

 
TABLE VI. Results for the test 

1 20 : T TH SNR SNR= . 

�
1SSNR  �

2SSNR  �� �
1 2S SSNR SNRσ −  t  

,
2

tα ν
 

33.42−  23.63−  1.093  9.37  2.45 

 

As 
,

2

9.37 2.45t tα ν
= > = , one concludes that 

1S
SNR and 

2S
SNR are statistically different at the level of significance 

0.05α = . 

VII. CONCLUSIONS  

This paper presents the statistical tests for pairwise 

comparisons of signal-to-noise ratios when the response 

variable is the smaller the better case. Based on multivariate 

delta theorem, the asymptotic distribution of the estimate of 

signal-to-noise ratio is determined. We propose statistical tests 

for pairwise comparisons of treatments with regard to the 

signal-to-noise ratio when the response variable is the smaller 

the better case. The correction to these pairwise comparisons 
can be done using the Bonferroni inequality as stated by 

Chang [14]. The correction consists in applying the adjusted 

level of significance and adjusted p − value.  

Illustrations of the proposed tests based on simulation and 

on real data are presented. The values of the estimated test 

sizes are displayed in Table I. Tables II, III, and IV display the 

values of the estimated test powers according to the three 

scenarios presented in the paragraph on Procedure for Monte 

Carlo simulation. The results of the Monte Carlo simulations 

show that the statistical tests we propose preserve the test size 

when simulations are conducted under 
0

H  and have excellent 

powers when simulations are conducted under
1

H . 
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