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Abstract—In the past few decades, many anticancer drugs were 

discovered and developed, nowadays, the newer chemotherapeutic 

agents were being continually introduced. This is good news for 

cancer patients, but it puts a much burden on the physician. It is 

difficult for physicians to recommend drugs with the best efficacy for 

cancer patients with long experience. Therefore, an algorithm that 

recommends optimal drugs is needed. It is the best drug to have good 

sensitivity and low resistance to cancer patients. Algorithm should be 

designed based on Big Data about sensitivity correlation coefficient 

and resistance correlation coefficient. For optimal drug prediction, it 

is necessary to go through several complex layers. The DBN model is 

more suitable than the ANN model. 
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I. INTRODUCTION  

Drug development currently remains an expensive and time-

consuming process with extremely low success rate, it 

typically takes 10–15 years and $800 million–1 billion to 

bring a new drug to market
1
. This is one of the reasons for the 

need for effective drug use in cancer treatment. Today, there 

are many treatment options available to doctors. 

Chemotherapy is one of the major categories of the medical 

discipline specifically devoted to pharmacotherapy for cancer, 

which is called medical oncology. There are the first-

generation, chemical drugs, second-generation, target anti-

cancer drugs, and third-generation, Immune-cancer drugs in 

chemotherapy. Advances in cancer immunotherapy are the 

result of several decades of basic research. Now, many clinical 

trials are performing in attempts to treat cancer with wild-type 

or naturally attenuated viruses
2
. Due to too many anticancer 

drugs, it is difficult to find which drug is the most effective 

treatment. The optimal treatment options will play a pivotal 

role in saving lives. The time given to cancer patients is very 

short. It is the role of the physician to prescribe optimal 

therapeutic drugs. The physician has to find the optimal drugs 

on the many therapeutic drugs, the clinical experience alone is 

not enough.  Now, we are in the age of artificial intelligence 

processing big data to provide useful information. The medical 

field is no exception. Artificial intelligence physician, Watson, 

offers drug prescription solutions in addition to cancer 

diagnosis. It needs an algorithm to recommend the optimal 

drug for type and stage of each cancer.  

II. BASIC ARCHITECTURE FOR OPTIMIZING TREATMENT  

During oncogenesis, gene mutations or expression changes 

accumulate in some pathways regulating specific aspects of 

cell proliferation. Cancer-related pathways allow cells to grow 

and divide unchecked including apoptosis, cell cycle, DNA 

damage repair, and growth factor responses
3
. These pathways 

play important roles in cell response to chemotherapy drugs. 

 
TABLE 1. List of Chemotherapy Drugs4,5,6. 

Family Drugs Target Remark 

Nitrogen 

Mustard 

Chlorambucil, 
Interstrand 

cross-link. 

DNA 

adducts 

Melphalan, 
Interstrand 
cross-link. 

DNA 
adducts 

Cyclophosphamide. 
Interstrand 

cross-link. 

DNA 

adducts 

Ifosfamide 
Interstrand 
cross-link. 

DNA 
adducts 

Aziridines, 

Triethylenemelamine, 

Interstrand 

cross-links, 
Monofunctional 

adducts 

DNA 

adducts 
(A-G, 

G-G) 

Triethylenethiophosphoramide 

(thio-tepa) 

Interstrand 

cross-links, 

Monofunctional 

adducts 

DNA 

adducts 

(A-G, 

G-G) 

Mitomycin C 

Interstrand 
cross-links, 

Monofunctional 

adducts 

DNA 

adducts 

Hexamethylmelamine 

(Altretamine) 

Interstrand 

cross-links, 

Monofunctional 
adducts 

DNA 

adducts 

Alkyl 

Sulphonates 
Busulphan 

Interstrand 

cross-links 

DNA 

adducts 

Nitrosoureas 

CENUs 
(2chloroethylnitrosoureas). 

Interstrand 
cross-links 

DNA 
adducts 

BCNU 
(carmustine). 

Interstrand 
cross-links 

DNA 

adducts 

 

CCNU 

(lomustine), 

Interstrand 

cross-links 

DNA 

adducts 

Methyl-CCNU 

(semustine) 

Interstrand 

cross-links 

DNA 

adducts 

Chlorozotocin 
Interstrand 
cross-links 

DNA 

adducts 

 

PLATINUM-

BASED 

AGENTS 

Cisplatin 
monofunctional 

DNA adducts 

DNA 

adducts 

Carboplatin 
monofunctional 

DNA adducts 

DNA 

adducts 

Oxaliplatin 
monofunctional 

DNA adducts 

DNA 

adducts 

Pyriplatin 
monofunctional 

DNA adducts 

DNA 

adducts 

 

Chemical drugs are the first line in cancer treatment. 

Chemotherapy is accompanied by many side effects, but it has 

https://en.wikipedia.org/wiki/Pharmacotherapy
https://en.wikipedia.org/wiki/Cancer
https://en.wikipedia.org/wiki/Oncology#Specialties
https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=17&cad=rja&uact=8&ved=0ahUKEwizibj62ZPZAhWHn5QKHYqHDqs4ChAWCFcwBg&url=http%3A%2F%2Fchemoth.com%2Ftypes&usg=AOvVaw2NqspKMDuMfis_96P4xHp3
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the advantage of directly attacking cancer cells. Cancer 

patients want the most effective drug among various chemical 

drugs. 

Many genes are overexpressed in cancer cells. When an 

anticancer drug is administered, cancer cells react in two 

forms. One is Sensitivity. The other is resistance
4
. Sensitivity 

means that growth of cancer cells is inhibited. Resistance 

means promoting the growth of cancer cells. 

When radiation or ROS (Reactive Oxygen Species) attacks 

normal cells, DNA in the nuclear membrane is damaged. 

Likewise, cancer cells are also attacked by chemicals, 

damaging DNA in the nuclear envelope. In Table 1, we can 

see the type of chemical attack of cancer cells. There are two 

main ways in which chemicals can attack cancer cells. One is 

to prevent replication by the bases linking complementary 

base pairs with drugs, the other is that the drug binds to one 

side of the base to prevent replication
7
. From the perspective 

of cancer cells, chemical drugs are enemies that destroy their 

DNA. Currently, about 130 chemical drugs are applied in 

clinical hospitals. In practice, there are at least five to twenty 

chemical agents corresponding to one cancer. However, for 

the algorithm design, it is assumed that there are 120 chemical 

drugs as shown in Table 2, and 5 chemicals are prescribed for 

each cancer in the progress stage. 

 
TABLE 2. Anticancer Drugs Lists on Cancer Types.  

Stage/Type 
Breast 

Cancer 

Colon 

Cancer 

Lung 

Cancer 

Liver 

Cancer 

Blood 

Cancer 

Brain 

Cancer 

Stage 1 1-5 6-10 11-15 16-20 21-25 26-30 

Stage 2 31-35 36-40 41-45 46-50 51-55 56-60 

Stage 3 61-65 66-70 71-75 76-80 81-85 86-90 

Stage 4 91-95 96-100 
101-

105 

106-

110 

111-

115 

116-

120 

* Chemical drugs: No.1 - No.120 

 

At this time, if a patient is stage 2 breast cancer, the 

physician prescribes one of five chemical drugs. In practice, 

two or more drugs are prescribed. However, the physician 

cannot know in advance the sensitivity and resistance of each 

drug to the patient. A life-threatening patient must take his fate 

into the physician's experience. This is why we need 

prescription algorithms for patients. If the physician knows in 

advance the sensitivity and resistance of the chemical to the 

patient, the physician can prescribe the optimal treatment. 

Chemical drugs do not always remove 100% cancer cells. 

Chemical drugs damage DNA of cancer cells. This is because 

chemical drugs attack DNA directly. Cancer cells react the 

same way as normal cells if DNA gets damaged. The DNA 

repair pathway is activated by recognizing DNA damage. 

Also, the cell cycle is stopped
8
. By the activity of DNA repair 

proteins, DNA can restore the original double helix structure. 

If the recovery failed, it enters the cell death pathway. If the 

activity of the cell apoptosis pathway is strong, it can be 

judged that the drug is sensitive to the chemical. Conversely, 

if the activity of the cell proliferation pathway remains the 

same despite the injection of the chemical, it can be judged 

that the drug is resistant. There is a criterion for judging the 

sensitivity of chemical drugs. In other words, Drug 

sensitivities are evaluated by the half maximal inhibitory 

concentration (IC50) relative to the control
9
. Drug sensitivity is 

judged by whether the growth of cancer cells is reduced. 

Compared to before and after injecting the drug, if the size of 

the cancer cells is reduced, it is sensitive. If the size of the 

cancer cells is the same, it is resistant. The sensitivity of 

cancer cells to chemicals means that they are smaller than the 

size of cancer cells before drug treatment. It needs to know the 

genes that are involved in drug sensitivity. These include cell 

cycle arrest genes and cell apoptosis genes, respectively. p21, 

p53, and RB are the cell cycle arrest genes
10

. MGMT, MSH2, 

and TDP1 are genes involved in DNA repair. Caspase-3 and 

p53 are genes involved in apoptosis
10

. It is assumed to be gene 

group 1 in Table 3, the genes responsible for DNA damage, 

gene group 2 in Table 3, genes for repairing DNA damage, 

and gene group 3 in Table 3, genes involved in cell apoptosis. 

Based on the sensitivity test results for chemical drugs 

administered to patients with stage 2 breast cancer, Table 3 

below was established with the binary algorithm. Cancer cells 

can be extracted through histological examination of cancer 

patients. When the cancer cells are administered in vitro, drug 

sensitivity of the gene group in Table 3 can be determined. For 

example, when the drug 34 in Table 3 was administered, 

Compared to the control group, the expression levels of gene 

group 1 and gene group 3 were 30% or more and the 

expression level of gene group 2 were 10% or more. On the 

other hand, when the drug 31 was administered, the gene 

group 1 involved in the cell cycle arrest showed no response. 

In the end, the doctor should administer drug 34, which is 

sensitive to breast cancer stage 2 patients. 

 
TABLE 3. Anticancer Drugs Sensitivity on Stage 2 Breast cancer.  

Sensitivity Drug 31 Drug 32 Drug 33 Drug 34 Drug 35 

Gene Group 1 1000 1000 0100 0001 0001 

Gene Group 2 0100 1000 0100 0010 0010 

Gene Group 3 0100 0100 0010 0001 0010 

* There is no difference to control group: 1000 

* the gene expression level was increased by less than 10% to the control 
group: 0100 

*The gene expression was increased by 10% or more but less than 30% to the 

control group: 0010 
* The gene expression was increased by more than 30% to the control group: 

0001 

 

On the other hand, cancer cells are also resistant to 

bacteria. Cancer cells have many options to defend against 

chemical attacks. Cancer cells have a gene to export drugs to 

the extracellular matrix
11

. When one proliferation pathway is 

blocked, it expresses a gene that activates a bypass pathway or 

expresses a gene that induces the activity of another pathway, 

thereby maintaining its survival
11

. Cancer often results when 

normal cellular growth goes away due to alterations in critical 

signal transduction cascades. Complex interactions between 

the TGF-β, Wnt, Hedgehog (Hh), Notch, mitogen-activated 

protein kinase (MAPK), Ras, and signal transducers and 

activators of transcription (STAT) signaling pathways play 

key roles in the transmission of proliferation, differentiation, 

migration, and survival signals (Table 4)
12

. Dysregulation of 

these pathways in the form of driver mutations is often found 

in the cancer cell. When cancer cells are attacked by 

chemicals, cancer cells become resistant by switching on 
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special survival genes when they sense danger. They express 

various genes involved in natural resistance. The following 

genes, genes that prevent DNA damage by chemical drugs, 

genes that repair DNA damage by chemical drugs, and genes 

that induce cell apoptosis inhibition are expressed. Genes 

involved in the release of chemical drugs, genes involved in 

the degradation of chemical drugs, and genes that induce 

changes in the proliferative pathway are genes that make 

acquisition resistance. Acquired resistance is said to occur 

when a cancer cell obtains the ability to resist the activity of 

chemical drugs to which it was previously sensitive. When a 

chemical is administered to a cancer cell, the cancer cell 

promotes the expression of various genes for survival. 

Resistance is the biggest barrier to drug therapy
13

. The process 

of finding the lowest resistance among the various drugs for 

cancer patients is essential as a process for finding highly 

sensitive drugs. Each drug has a different resistance pattern. 

Resistance is negative variables expressed as a Pearson 

correlation coefficient, positive variables to the chemical 

drugs indicate sensitivity
14

. Conversely, the negative variable 

is a measure of resistance
14

. Table 4 shows several pathways 

in which cancer cells proliferate. The genes that are active for 

each path are different. Cancer cells are active in at least one 

of the seven pathways in Table 4. At this time, the chemical 

agent impacts the proliferation pathway in the active state. 

Cancer cells make a bypass path to maintain the active state of 

the proliferation pathway. If this is not possible, it induces the 

activity of other proliferation pathways. All of the genes 

shown in Table 4 synthesize adapter proteins involved in 

cancer cell proliferation. 

 
TABLE 4. Cancer Pathways and Driver Genes15,16.  

Pathway Gene 1 Gene 2 Gene 3 Gene 4 

[1] MAPK RAS BRAF MEK ERK 

[2] NF-kappa B TRAF IRAK TAB IKK 

[3] TGF-beta TAB PI3K SMAD AKT 

[4] NOTCH PSE2 PSEN CSL APH1 

[5] WNT PIP5K1 GSK3 APC Rac 

[6] JAK-STAT TYK JAK STAT3 STAT3 

[7] HEDGEHOG GSK3 SUFU GLI1 GLI2 

* Gene 1-5: Adapter Proteins. * Driver gene encodes adaptor proteins 

 

The resistance correlation coefficient of the cancer cells to 

the drug can be known from drug experiments in vitro. Using 

a cDNA microarray kit and real-time RT-PCR, the expression 

level of genes involved in resistance can be measured. The 

resistance correlation coefficient is denoted by -(minus value) 

since it means a negative variable
17

. 

 
TABLE 5. Anticancer Drugs Acquired Resistance to Stage 2 Breast 

cancer15,16.  

Resistance Gene 1 Gene 2 Gene 3 Gene 4 

Drug 31 GSK3[001] SUFU[001] GLI1[001] GLI2[001] 

Drug 32 TAB[010] PI3K[001] SMAD[001] AKT[001] 

Drug 33 PIP5K1[100] GSK3[010] APC[001] Rac[001] 

Drug 34 RAS[100] BRAF[010] 
MEK[100] 

 
ERK[100] 

Drug 35 TYK[010] JAK[001] STAT3[001] STAT3[001] 

The resistivity correlation coefficients -0.2 or less: 100 

The resistivity correlation coefficients -0.4 or less: 010 

The resistivity correlation coefficients -0.5 or above: 001 

 

The results of the chemical resistance test for stage 2 

breast cancer patients are shown in Table 5. Drugs 31, 32, 33, 

and 35 show that the resistivity correlation coefficients are all 

above -0.5. On the other hand, Drug 34 has the highest 

resistance correlation coefficient of -0.4 and the remainder of 

all -0.2 or less. Drug 34 is relatively less resistant than other 

drugs. Drug 34 is optimal given the resistance correlation 

coefficient. Many clinical cases are needed to know precisely 

the resistivity correlation coefficient for chemical drugs. 

Through this, the accumulation of the big data enables to 

know the resistance correlation coefficient for each chemical 

agent in advance. Experiments with sensitivity and resistance 

to cancer cells from tumors can find the optimal chemical 

drug. However, the longer the frequency and duration of the 

same drug, the greater the acquisition resistance that was not 

initially present in cancer tissue
18

. Repeated administration of 

the same antibiotic is equivalent to antibiotic resistance. 

Acquired drug resistance is a major limitation for the 

successful treatment of cancer. Acquired resistance may arise 

readily after short periods of treatment, or gradually as a result 

of treatment over prolonged periods. Table 6 shows the time to 

appear acquisition resistance for the five drugs that can be 

used in patients with stage 2 breast cancer. Table 6 shows the 

algorithm binary on the duration of acquisition resistance after 

administration of the chemical. Of course, this is not the result 

of actual experiments. The mean variables can be counted if 

the big data on the acquisition time of resistance can be 

obtained through the experiment of acquisition resistance. 

Based on this, an optimal treatment strategy can be developed. 

 
TABLE 6. Optimizing Treatment Strategy to Minimize Acquired Resistance 

to Stage 2 Breast cancer. 

Acquisition 

period 

Drug 

31 

Drug 

32 

Drug 

33 

Drug 

34 

Drug 

35 

[1] within 8 weeks      

[2] within 16 
weeks 

01000  01000   

[3] within 32 

weeks 
   00100  

[4] within 48weeks  00010    

[5] within 60 

weeks 
    00001 

* When resistance appears within 8 weeks: 10000 

*When resistance appears within 16 weeks: 01000 

*When resistance appears within 32 weeks: 00100 

*When resistance appears within 48weeks: 00010 

*When resistance appears within 60weeks: 00001 

 

If physicians know in advance the acquisition period of 

drug resistance, they will get another treatment option. 

Currently, drug therapy for cancer patients is going beyond the 

chemical drugs to targeted cancer therapy. December 2017, 

the target chemotherapeutic agent is in charge of the second 

treatment
19

. Even if cancer cells have high sensitivity to 

chemical drugs, cancer cells themselves do not die 100%. 

Thus, a molecular target anti-cancer drug is necessary to 

remove cancer cells with acquisition resistance. Molecular 

targeted anti-cancer drugs are an essential option in cancer 

patients. The molecule-targeted anticancer drug needs gene 

mutation testing. Table 7 shows the options for prescribing 

Molecule-targeted anticancer drugs according to the results of 

https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwi_8dem3JPZAhWMq5QKHeMzC14QFghLMAQ&url=http%3A%2F%2Fwww.cell.com%2Fnucleus-cancer-pathways&usg=AOvVaw20FTgfg0e6zIDdNFRr8IUA
https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwidgNjAgZPZAhVML48KHcTrAQoQFgg_MAI&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3799537%2F&usg=AOvVaw1d_859iOUaQ2JkFm0T6yLF
https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0ahUKEwidgNjAgZPZAhVML48KHcTrAQoQFgg_MAI&url=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3799537%2F&usg=AOvVaw1d_859iOUaQ2JkFm0T6yLF
https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwij7Y3gta_ZAhXMo5QKHXCsBM4QFghLMAQ&url=https%3A%2F%2Fwww.cancer.gov%2Fabout-cancer%2Ftreatment%2Ftypes%2Ftargeted-therapies%2Ftargeted-therapies-fact-sheet&usg=AOvVaw36fckpcbmaPifnbtrJ06ps
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gene mutation tests in breast cancer patients. In particular, 

when there are two or more mutations in the genes, big data 

are needed for building a therapeutic combination of targeted 

anticancer drugs. Molecule-targeted anticancer drugs are drugs 

that attack receptor, domain, and adapter proteins, 

respectively, in the growth pathway of cancer cells. Genes that 

participate in the growth pathway of cancer cells are called 

driver genes, Genes that are independent of the proliferation 

pathway are called passenger genes
20

. 

 
TABLE 7. Molecular Targeted Anticancer Drug Option on Stage 2 Breast 

cancer. 

Target Gene BRCA1 Wild-type(11) BRCA1 Mutation(10) 

HER 2 Wild-type(00) 0011 0010 

HER 2 Mutation(01) 0111 0110 

*Trastuzumab(Herceptin) : 0011 

* Olaparib(Lynparza) : 0010 

*Neratinib. : 0111 

 

Genetic mutation testing for cancer patients is helpful in 

treatment strategies, but it also hints at new drug development. 

Among breast cancer patients with the same genetic mutation 

(BRCA1 mutation), there are a group of patients A group 

who respond to targeted chemotherapy, and patients B 

group who don't respond to targeted chemotherapy. If most of 

the B group of patients have mutations in the MEK gene, it is 

possible that the MEK gene is a driver gene that leads to the 

proliferation of cancer cells. This is a hint to try the 

development of a targeted anticancer agent corresponding to 

the MEK mutation.  

III. AN ALGORITHM FOR OPTIMIZING TREATMENT  

Artificial Neural Networks (ANN) and Deep Belief Networks 

(DBN): The more chemical drugs, the more doctor's choice. 

Clinical experience alone can't provide optimal treatment for 

cancer patients. Deep learning is needed to analyze big data on 

chemical sensitivity and resistance in real time
21

. The most 

common deep-running model is ANN (Artificial Neural 

Network). To analyze big data, it is necessary to construct 

Data Warehousing Software which stores and manages big 

data. The ANN model is an auto-encoder deep running. Auto-

Encoder is a tool that improves accuracy through pre-training, 

the deep learning method to use the weight in the auto-encoder 

is a back-propagation (BP) algorithm
22

. The BP algorithm 

principle is simple. It is calculated the value by assigning a 

weight between the input layer(unit) and the hidden 

layer(unit), put the value into the sigmoid function. Again, 

based on the median value, give weights between the hidden 

unit and output unit to obtain the estimated values
23

. This 

output value is continuously compared with the initial data 

value to update the error
23

. Recently, DBN (Deep Belief 

Network) model has improved the disadvantages of Auto-

Encoder
24

. DBN is a deep running of a stacked auto-encoder 

method. DBNs are formed by stacked RBM (Restricted 

Boltzmann Machines)
24

. Deep belief network consists of 

multiple layers of RBMs trained in a greedy, layer-by-layer 

way. Recently DBN with RBM models are successfully 

applied to a wide range of classification tasks
24

. RBMs, which 

are used as important learning modules for constructing deep 

belief nets, have been successfully applied in many fields, 

such as classification
25

. An RBM is a two-layer graphical 

model that can be used to learn a probability distribution over 

input data
25

. An RBM consists of a layer of visible units and a 

layer of hidden units
25

. Each visible unit is connected to all 

hidden units, and no intra-layer connection exists between any 

pair of visible units or any pair of hidden units
26

. There is 

evidence that adding more layers helps in classification tasks. 

RBMs are stochastic generative neural networks that can learn 

probability distributions over a set of their input vectors
26

. The 

main consequence of this definition is that such a neural 

network learns p(data) instead of p(label | data) – essentially 

these models are modeling data, not labels
26

. This allows us to 

deal with unlabelled or partially labeled data
26

. The AE learns 

the weight by using BP, but the more the layer is, the larger 

the weight learning and the less accurate. DBN is the model to 

improve this. DBN is a useful model when the amount of data 

is large or complex
26

. The idea was to cleverly train RBM on a 

training vector, then after finishing the training process to use 

the first RBM hidden layer neuron activations as input for a 

visible layer of the second stacked RBM to train it and 

continue this procedure for all subsequent layers
27

. When 

overall training is performed, the found network weights can 

be fine-tuned with a regular Error Back Propagation 

algorithm
25

. The ANN model requires a hidden layer, where X 

= data and Y = label, However, in DBN model, label (correct 

answer) can be created in layer even if only X = data
27

. In 

other words, since Input and Output are not required in 

Training Data, it is optimal for Unsupervised Learning. The 

DBN model is an algorithm for calculating the joint 

probability of several random variables
27

. Assuming that there 

are two variables X1 and X2, the conditional probability can 

be obtained by using an X1 variable as the change value and 

X2 as the fixed value. The condition value can then be 

obtained in reverse order. By repeating this process, we can 

obtain the joint probability. To analyze and predict complex 

variables, one layer is insufficient, and several layers are 

needed. It is DBM (Deep Boltzmann Machine) to apply RBM 

model to each layer. In other words, DBM is a multilayer 

neural network constructed by superimposing RBMs
28

. If 

there are multiple layers, the bottom layer is the input layer, 

and the final layer is the output layer. The middle layers are 

the hidden layers. Data is injected into the input layer. The 

value obtained by applying RBM to the input layer enters the 

hidden layer again. The value obtained by applying RBM to 

the hidden layer is a medium value. Finally, the values from 

each layer are probability values. DBM is a model for pre-

learning in the Unsupervised Learning method with no label
28

. 

Then, fine-tuning is done by BP-based supervised Learning
29

. 

RBM model can be used as a highly powerful tool for 

predicting optimizing drug with high accuracy
30

.  

Applications of Deep Belief Networks (DBN): There are some 

steps involved in administering the optimal drug for cancer 

patients. First, Physician should make a list of approved drugs 

for each type of cancer. Here, he needs to find drug options 

that can be administered according to the cancer stage (Table 

1). For example, to find the optimal drug for stage 2 breast 

cancer, it needs to select the drugs with the highest sensitivity 
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among drugs 31, 32, 33, 34, and 35. It is assumed that there 

are 21 genes involved in sensitivity. In detail, it is assumed 

that the number of genes involved in cell cycle arrest (gene 

group A), DNA repair (gene group B), and cell death (gene 

group C) are 7 each. Candidate drugs are administered to 

cancer cells extracted from cancer tissues of stage 2 breast 

cancer patients, and mRNA expression levels of the sensitivity 

genes are measured. And the sensitivity correlation coefficient 

is measured based on this. Gene group A and B, rather than 

gene group C, are key determinants of the sensitivity of 

candidate drugs. Gene group C is directly involved in the cell 

death of cancer cells. When the RBM model is applied to 

determine the optimal candidate drug for stage 2 breast cancer 

patients, first, it enters each gene into 21 units of the input 

layer (layer 1) as below Table 8. The genes involved in DNA 

repair do not have a positive impact on the sensitivity. DNA 

repair helps cancer cells survive. Genes involved in DNA 

repair are not factors that directly affect the sensitivity. 
 

TABLE 8. Gene Group List: Layer 1. 

Gene Group A Gene Group B Gene Group C 

Gene A1 Gene B1 Gene C1 

Gene A2 Gene B2 Gene C2 

Gene A3 Gene B3 Gene C3 

Gene A4 Gene B4 Gene C4 

Gene A5 Gene B5 Gene C5 

Gene A6 Gene B6 Gene C6 

Gene A7 Gene B7 Gene C7 

 

Among the gene groups A, B, and C, When the candidate 

drug is administered to cancer cells, the mRNA expression 

level expressed in each gene group is measured. Table 9 

assumes measured values. Table 9 below shows the 

comparison with the control group. 
 

TABLE 9. Quantification of Transcriptome on Each drug: Layer 2. 

 Gene Group A Gene Group B Gene Group C 

Drug 31 1.2 1.3 1.2 

Drug 32 1.2 1.3 1.2 

Drug 33 1.2 1.4 1.1 

Drug 34 1.2 1.3 1.5 

Drug 35 1.2 1.2 1.1 

 

In Table 9, Drug 34 has the highest expression level of 

genes involved in apoptosis. Here, it is possible to test the 

gene that has the greatest influence on the sensitivity among 

the seven genes involved in apoptosis. Seven candidate genes 

are knocked out in turn, and the size of cancer cells following 

drug 34 administration is measured. (Table 7). Gene 7 has the 

greatest effect on cell death, followed by gene 6 (Table 7). 

Therefore, the expression level of genes 6 and 7 should be 

carefully observed in determining the sensitivity of the 

candidate drug. It is not always correct to administer candidate 

drug 34 for patients with stage 2 breast cancer. If the 

expression level of genes 6 and 7 is too low in some stage 2 

breast cancer patients, the effect of apoptosis is less than 

expected. When the RBM model is applied to the sensitivity 

test results of the candidate drug, the accuracy of sensitivity 

determination is increased by weighting the results of the 

genes 6 and 7. 

TABLE 10. Quantification of Apoptosis Gene Transcriptome on Drug 34: 

Layer 3.  

Drug 34 Knockout Gene Before(Tumor Size) After((Tumor Size) 

K-100 Control 1.00 0.40 

K-101 Gene 1 1.00 0.80 

K-102 Gene 2 1.00 0.75 

K-103 Gene 3 1.00 0.90 

K-104 Gene 4 1.00 0.70 

K-105 Gene 5 1.00 0.85 

K-106 Gene 6 1.00 0.65 

K-107 Gene 7 1.00 0.55 

* Cancer cell lines from K-100 to K-107 were extracted from cancer tissues of 

stage 2 breast cancer patient. 
* It is assumed that the size of the control cell line is 1.0. 

 

Now, we can apply the RBM model to the fourth layer 

(Layer 4) based on the resistance correlation coefficient. The 

resistance referred to here is not acquisition resistance but 

natural resistance. Genes that protect DNA damage and genes 

that inhibit cell apoptosis are important factors for resistance. 

The resistance correlation coefficient can be obtained by 

measuring the expression levels of the resistance genes for 

each candidate drug. In particular, the attention must be paid 

to the expression levels of genes involved in cell apoptosis. 

The fifth layer (Layer 5) is the application of the RBM model 

based on the acquisition resistance that the cancer cells will 

have after the candidate drug has been administered. Chemical 

drugs to cancer cells is very strong stress. Cancer cells repel 

very strongly against chemicals. This appears to be an 

acquisition resistance. Understanding at what time cancer cells 

have acquired resistance to chemical drugs is a very important 

factor in cancer treatment. Administration of the targeted 

anticancer drugs should be initiated before achieving 

acquisition resistance. Or simultaneous administration should 

be considered. Even with the same drug, the timing of 

acquisition resistance differs among cancer patients. It needs 

Big data about the timing of acquired resistance in cancer 

patients. This is to know when to stop chemical drugs. Finally, 

after the administration of candidate drug 34 for stage 2 breast 

cancer patients, a feedback check is needed to see if the 

sensitivity and resistance are as predicted. The BP method of 

the ANN model is applied here. Based on an arithmetic way, a 

sensitivity score and a resistance score is calculated for each 

cell line-drug pair. The final score for each cell line-drug pair 

is obtained by subtracting the sensitivity score from the 

resistance score. The final score is used to assess the 

likelihood that the cell line is sensitive to the drug. The final 

score differs from patient to patient on the same drug. For 

Drug 34, when predicted value differs from the actual value, 

we should find out another reason. Verify the main factor that 

causes the difference and modifies the potential value of each 

layer based on that factor. This is a weight change process. 

Using the DBN and ANN algorithms, the more stage 2 breast 

cancer patients receiving drug 34, the higher the accuracy of 

the drug prescription. 

IV. CONCLUSION  

On above, the algorithm has been tested on direct and 

indirect drug-DNA relationships, it is general and can be 

easily extended to integrate other types. The current version of 

https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0ahUKEwjzh7zL8pzZAhWBJ5QKHYSDCMYQFgh-MAk&url=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1111%2F1755-0998.12109%2Ffull&usg=AOvVaw1zerIZKygOl1mICfHQQEt1
https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0ahUKEwjzh7zL8pzZAhWBJ5QKHYSDCMYQFgh-MAk&url=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1111%2F1755-0998.12109%2Ffull&usg=AOvVaw1zerIZKygOl1mICfHQQEt1
https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=10&cad=rja&uact=8&ved=0ahUKEwjzh7zL8pzZAhWBJ5QKHYSDCMYQFgh-MAk&url=http%3A%2F%2Fonlinelibrary.wiley.com%2Fdoi%2F10.1111%2F1755-0998.12109%2Ffull&usg=AOvVaw1zerIZKygOl1mICfHQQEt1
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our prediction algorithm only considers connections between 

drugs and DNA. In the future, we will extend our approach to 

exploit the connections between drugs and proteins.  

Additional Information 

Supplementary information accompanies this paper at 

http://www.nature.com/srep 
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