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Abstract—This paper has presented implementation of Kalman-Bucy 

filter for continuous time state estimation in Simulink. Many practical 

cases involving engineering science and embedded system requires 

filtering application. A Kalman-Bucy filter implemented in Simulink 

is used to estimate the output temperature of a typical heating system 

whose transfer function is considered in this paper. The result 

obtained showed that the designed filter performed effectively by 

rejecting the noise and tracking the input. 
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I. INTRODUCTION  

In many practical cases, involving engineering and embedded 

system, filtering application is often times desirable. One of 

such filter that has find wide acceptance and application in 

theory and in practice is the Kalman filter (KF). As a very 

powerful filter that has been used in various aspects, it can be 

used to perform the estimation of: the past, present, and even 

future states, and even in situation when the exact nature of 

modeled system is not known. In practice, it has helped to 

perform many tasks that would not have been possible without 

it. Its immediate areas of applications have been in the control 

of intricate dynamic systems like: in continuous 

manufacturing processes, aircraft, ships, or spacecraft. The 

Kalman filter is tool for obtaining estimates that are reliable 

[3]. 

The Kalman filter (KF) is a discrete time filter. In some 

cases a continuous time filter may be desired to estimate 

unmeasured states of a linear continuous time process. Then it 

will be required to design a continuous time filter that will 

replace the KF so as to be able to estimate unmeasured states 

of a linear continuous process. The Kaman-Bucy filter is such 

continuous time form of the KF. These filtering techniques to 

a large extended have impacted on control theory, signal 

processing and time series analysis [1]. 

In the study of the Kalman-Bucy filter for integrable L´evy 

process with infinite second momemt, [1] applied the Kalman-

Bucy filter to a situation where a finite dimensional L´evy 

processs drive both the system and observation processes. The 

result obtained showed that the observation noise components 

which have infinite variance contributed nothing to the 

filtering equations.  In [2], an improved approach to Kalman-

Bucy filtering using the identification algorithm was 

presented. It stated that accounting for the time delaying a 

system could render the KBF ineffective. Hence, the paper 

presented an identification algorithm that improved the KBF 

in the presence of time delay. A simple method for estimation 

of parameters in first order systems is presented in [4]. It used 

a step response technique to estimate the parameters of a first 

order system with time delay. In order to perform an estimate 

of the state of a continuous-time process, [5] presented a new 

nonlinear filter for continuous time measurement which has a 

more general stochastic measurement. In the study of 

estimation of the centre of gravity of a manoeuvring aircraft 

using Kalman filters and the ADMIRE aircraft model, [6] used 

a nonlinear aircraft model to estimate the centre of gravity 

during the manoeuvring. In order to effectively deal with 

nonlinearities in the ADMIRE aircraft model, the Kalman-

Bucy filter coefficients for pitching moment were modified as 

the aircraft manoeuvred. A Kalman-Bucy filter is presented in 

[8] for multivariable ship motion control system. Shaolin et al 

[9] presented an outlier- tolerant Kalman filter of state vectors 

in linear stochastic system. 

In this paper, the focus is on the implementation of 

Kalman- Bucy filter for a continuous time signal in Simulink. 

The Kalman-Bucy filter is used to estimate unmeasured states 

and output of a temperature system [10]. 

A. Problem Statement 

It is required to properly estimate the unmeasured states 

and output temperature of a heat system. In order to carry out 

this estimate, a Kalman-Bucy filter is chosen because the 

system is a continuous time process. Hence, it is assumed in 

this context that the temperature system is a linear continuous-

time process whose unmeasured states and output will be 

estimated using only the process input and measurement noise.  

B. The Kalman-Bucy Filter 

If the inputs and measured outputs are given such that 

assumptions are made on the process and output noise, the 

purpose of the Kalman-Bucy filter is to estimate unmeasured 

states (considering them to be observable) and the actual 

process outputs. Figure 1 shows the estimated states ẑ , and ŷ  

are the estimated measured outputs. 
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Fig. 1. Block diagram of input-output relation of the Kalman-Bucy filter. 

 

The Kalman-Bucy filter requires a differential Ricaati 

equation to be integrate through time unlike the Kalman-filter 

which uses a predictor-corrector algorithm to update the state 

estimates [7]. 

The mathematical equations representing the filter update 

are stated as: 
1 VPCG T  (1) 

        tzCtyGtButzAz ˆ(ˆˆ 
 (2) 

QCPVPCPAAPP TT  1  (3) 

In the above equations, G  is Kalman-Bucy filter observer 

gain matrix which makes the observer sensitive to sensor 

noise, P is an estimate of the covariance of the measurement 

error and satisfies the Riccati equation, TC is the transpose of 

the measurement matrix C , V is a weighting matrix of 

measurement (sensor) noise, Q is the a weighting matrix of 

process (state) noise, A  is the system matrix, and B is the 

input matrix. For the filter implementation, both ẑ and 

P must be integrated through time. 

II. METHODOLOGY 

A. Modelling of Temperature System 

It is required to estimate the state and measured output 

temperature of a heat system whose dynamic equation is 

represented in form of a transfer function as [10]: 

13

8.0
)(




s
sG  (4) 

B. State Representation  

In order to present the system state space, it is assumed 

that the system is a linear continuous –time process with input 

and measurement noise as shown in figure 2. 
 

 

 
Fig. 2. Linear continuous-time process with input and output noise 

 

wBuAzz   (5) 

Czy   (6) 

vyy ˆ  (7) 

where u  is the vector of inputs, z is the actual states vector, 

y is the actual process outputs vector, ŷ is a vector of the 

actual process outputs, w and v  are state and output  noise 

respectively. In this context, the state or process and output 

noise are assumed to be zero Gaussian with covariance Q and 

R respectively. 

The state space representation of Eq. (4) is as follows: 

uzz
3

1

3

1
  (8) 

zy 8.0  (9) 

III. SYSTEM CONFIGURATION 

Figure 3 is the block diagram for implementing the 

Kalman-Bucy filter in Matlab/Simulink. FSI and FSO means 

FilterStatein and FilterStateout respectively. The Simulink 

block model uses an Embedded Matlab function named 

Kalman-Bucy Filter as shown in figure 3. The filter is used to 

estimate the unmeasured states of a continuous process 

(temperature of a heat system) and the output of the process 

using only the process noise and a noisy measurement. 

 
 

Fig. 3. Simulink block model for Kalman-Bucy filter implementation. 

IV. SIMULATION RESULTS AND DISCUSSION 

A. Results Overview 

The results obtained from the simulations carried-out in 

the Simulink environment of the Matlab software are 

presented in figure 4, 5, 6, and 7.  
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Fig. 4. Step response (Variance = 0.01, 0.1). 
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Fig. 5. Step response (Variance = 0.1, 0.1). 
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Fig. 6. Step response (Variance = 0.01, 0.01). 
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Fig. 7. Step response (Variance = 0.001, 0.001). 

B. Discussion 

The plots above were obtained by subjecting the 

considered continuous time process to two sources of zero-

mean Gaussian noise using the random signal of the 

Matlab/Simulink block. In figure 4, the input signal is 

corrupted with noise whose variance is 0.01 while the output 

signal is corrupted with noise whose variance is 0.1. In figure 

5, the input signal is corrupted with noise whose variance is 

0.1 while the output signal is corrupted with noise whose 

variance is 0.1. In figure 6, the input signal is corrupted with 

noise whose variance is 0.01 while the output signal is 

corrupted with noise whose variance is 0.01. In figure 7, the 

input signal is corrupted with noise whose variance is 0.001 

while the output signal is corrupted with noise whose variance 

is 0.001. It can be seen from the simulation results that the 

performance of the Kalman-Bucy filter in terms of rejecting 

the noise and estimating an output signal that tracks the step 

input signal accurately improves within the selected variance. 

V. CONCLUSION  

The paper has presented implementation of Kalman-Bucy 

filter for continuous time state estimation in Simulink. In this 

paper, it should be noted that both the Kalman- Bucy filter 

actually calculated the estimated state and the output but only 

the plots of the estimated output signal are presented. It can be 

seen that the implemented Kalman-Bucy filter performs very 

well by rejecting the noise signal and estimating a signal that 

tracks the referenced step input. Conclusively, the accurate 

tracking of the referenced step input by the estimating signal is 

achieved by selecting appropriate state and measurement noise 

variance.  
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