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Abstract— This paper describes a control strategy for a nonlinear 

model of cement industry system and real time system designs are 

analyzed and their implementation in Labview simulation is outlined. 

Based on the Alopex evolutionary optimization algorithm with 

constrained T-S model, an intelligent fuzzy predictive controller to 

solve the control difficulties of industry process with multi-variables 

is approached. The application on cement rotary kiln control is 

discussed in detail. The rotary kiln calcinations is the most important 

part of cement production including complicated physical and 

chemical reaction processes with large inertia, pure hysteresis, 

nonlinearity and strong coupling characteristics and multi-variables. 

The main control system structure includes three control loops as the 

pressure control loop, the burning zone control loop and the back-

end of kiln temperature control loop. Parameters of the simulation 

model were set up based on the actual cement mill characteristics. 

The performances of the proposed control technique are compared 

with various conventional control techniques. The results of the 

proposed control technique indicate that this algorithm can prevent 

the cement industry effectively compared to the other control 

technique. 

 

Keywords— FPC, T-S model, Alopex evolutionary optimization, 

Cement industry. 

I. INTRODUCTION  

Many industrial process systems may not be as readily 

described mathematically due to the complexity of the 

components of the plant and the interaction between them. 

Cement mills are complex processing systems with 

interconnected processing and drive operations. It is well 

known that material grinding depends on many factors 

including mill geometry, speed, ball size distribution, mineral 

grind ability and granule geometry. Due to the inherent 

process complexivity development of an accurate model of the 

cement milling circuit is not a simple task. On some 

occasions, it is observed on real plants that intermittent 

disturbances like instance changes in the hardness of the raw 

material may drive the mill to a region where the controller 

cannot stabilize the plant. 

In the process of cement production, the rotary kiln 

calcinations is the most important technology link which 

includes complicated physical and chemical reaction process 

with large inertia, pure hysteresis, nonlinearity, time-varying, 

distributed parameters and strong coupling characteristics. It is 

hard to derive the exact mathematical model and cannot reach 

satisfied results with conventional control algorithms. Now, 

the cement rotary kilns are mainly controlled manually or 

semi- automatically, which is based on the experience of 

operators to attain acceptable performances with low 

production rate. The most used forms of advanced cement kiln 

automation are made of fuzzy logic and expert systems with 

the past twenty years. Recent years, there are some partly 

successful reports on trying other control strategies such as 

model predictive control. This paper presents the application 

of fuzzy predictive control based on the Alopex evolutionary 

optimization algorithm to implement the monitoring, analysis 

and optimization based on the field bus technology to the 

conventional cement production defects. 

II. CONTROL ALGORITHM DESIGN  

Generalized predictive control (GPC) has been 

successfully applied to the industrial processes. However, 

there are usually physical constraints on the input variables, so 

the research for input-constraint GPC is very meaningful. The 

conventional nonlinear planning methods are with the 

problems of high computation load along with the number of 

constraint conditions by exponential law. T-S fuzzy model has 

the ability of enough approximation to nonlinear functions in 

essence, and the frequent item sets can thus be expressed by 

linear equations which is easy for application of common 

control strategies. 

A. Intelligent Fuzzy Predictive Control Algorithm 

For the p × p system, the T-S fuzzy system can be 

approximated. Suppose the i
th

 rules of T-S model can be 

written as: 

R
i
 : if x1 is A1i and … and xm is Ami , then 

0 1 1 2 2 i i i i i

m my p p x p x p x     (1) 

where 

x1 = y1(k−1), … , xv = y1(k−v), xv+1 = y2(k−1) ,…, x(p- 1)v+1 = 

yp(k−1), …, xpv = yp(k−v), xpv+1 = u1(k−l),…, m=p(v+1), up(k-

l) denotes the p
th

 input component value of k-l time, {yi}and 

{us} are the input and output variables of object, p
i
 =[p

i
 p

i
 … 

p
i
 ] (j=0, 1, …, m) is 

j     j1     j2     jp 

the p
th

 dimensional column vector, Aji is the fuzzy set of 

corresponding variables. 

To a given generalized input vector 
10 20 0(  )mx x x  the output 

of T-S fuzzy model on the k time is the weighted mean value 

of equation (1) y 
i
 (i =1,2..., n) as 
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    (2) 

where, the weighted coefficient 1 0( )m

i j ji jA x    Π is the 

fuzzy operator, usually is minimax or product calculation. 

T-S fuzzy model uses linear equations to describe and is a 

nonlinear model in essence. First it gets the final output value, 

deriving the center of the fuzzy clustering, and then the control 

parameters of T-S model can be identified, finally the 

predictive control based on T-S model can be performed. 

Based on the results of identification, the expressions of 

system model can be developed. The input-output relations 

model can be written as 

       1 1    1k kA z y k B z u k C     (3) 

A, B ,C are all related with k . 

Based on model (3), the generalized predictive control 

(GPC) is applied. 

s.t. min max Δu ≤ Δu(k + j −1) ≤ Δu , min max u ≤ u(k 

+ j −1) ≤ u , j =1,..., Nu 

B. Alopex Algorithm for Optimization 

Alopex is a kind of algorithm with combination of 

innovative and random optimization. It changes from the 

previous argument the impact of the objective function and be 

inspired, with the process control parameters to control the 

direction of travel of the probability of use of “noise” to get 

rid of local optimum, the algorithm has some climbing ability. 

It is not only to some extent overcomes the traditional 

heuristic operator’s shortcomings of easily trapped into local 

minima, but also overcome the insufficient of simulated 

annealing algorithm from completely random search to 

gradient search very slow convergence. It does not require the 

objective function differentiable, and can guarantee the 

solution obtained to meet a given accuracy with the main 

features of rapid search capability. 

For a practical optimization problem, it can usually be 

transformed into solving an object function F(x1, x2, …, xn) 

general extreme value, where x1, x2, …, xn are the independent 

variable to be determined. The Alopex algorithm can be 

written as 

       1i i ix t x t t    (4) 

   

 
i t   {  

               1

i

i

probability p t

probability p t

 





 
 (5) 

   [ ( )/ ]1/ 1 i t T

iP t e


   (6) 

         i i i  x t 1 x t 2 F t 1 F t 2t                (7) 

where F( x1, x2,…, xn ) is the objective function, xi (t) is the 

ith independent variable value on the time of t, δi(t) is the 

random step length of variable xi on the time of t, pi(t) is the 

probability of t time along with the direction of δ increasing. 

The positive and negative sign are depended on the practical 

problem, with the positive sign making F minimizing and 

negative sign making F maximizing. F(t −1), F(t − 2) are the 

values of F on the time of (t-1) and (t-2). 

When applying Alopex algorithm to a certain problem, the 

parameter δ and T in (1)-(4) should be determined. δ is 

depended on the range of variable with usually taken as one 

percent of dynamics variable space or less. 

Alopex algorithm in the iteration process, each 

independent variable not only changes to the positive, but also 

to a certain degree of probability to the reverse direction, with 

purpose of making the algorithm out of local optimum. From 

the test it can be learn that in order to get global optimal 

solution, the change of variable step forward should be smaller 

to avoid the step is too large to miss the global optimum. And 

the reverse step size should be large, because the purpose of 

the reverse change in the objective function is to get rid of 

local optimal value. If the reverse step is too small, the 

probability of the objective functions out of local optimum 

will not be large, this may lead to the objective function in 

swing back and forth on one side and cannot jump out of the 

local optimum value or even those who can jump out of local 

optimal values, but requires several iterations, resulting in 

income convergence speed decreases. So the improvements 

for this algorithm are needed. 

C.  Alopex Based Evolutionary Optimization Algorithm 

PSO algorithm is established from the 2D space model to 

the graphical movement of the flock. The birds are abstracted 

for particles without quality and volume and extended to N-

dimensional space. The location of the particle can be 

expressed as a vector Xi = ( x1, x2,…, xn ), and the flight speed 

is expressed as a vector Vi = ( v1, v2,…, vn ). Each particle has 

a fitness value and knows that they found so far the best 

position (p best) and the present position Xi. This can be taken 

as self-flying experience. In addition, each particle is also 

aware of the found best positions (g best) of all particles of the 

group (g best is the best value of p best). This can also be 

taken as peer particles’ experience. The next step movement is 

decided on the best experience of own and companions. 

The basic PSO algorithm has the advantage of less 

parameter to be determined for the user with simple operation. 

The disadvantages lie in the its easily fall into local minimum 

and the searching precision is relatively low. It is necessary to 

improve this algorithm. Based on the presented Alopex 

algorithm, the combination with the evolutionary optimization 

algorithm can be performed. The algorithm using real number 

coding for calculation, the calculation steps are: randomly 

select two individuals x1 and x2, assume that two individuals as 

(t - 2) and (t - 1) times vectors, then the probability of further 

iteration direction can be derived by the differences of these 

two vectors and with the objective function. Once the 

direction is  determined, some steps should be added or 

lessened to derive the new individual. Comparing the new and 

original individuals, if the performance is enhanced, the 

original one should be replaced, or preserving the original one. 

The whole algorithm has the characteristics of simple 

process, randomness and parallelism using the advantages of 

evolutionary algorithm and Alopex. The detailed process can 

be shown as 

Step 1. Initialize the particle swarm, the individuals are 

scattered into the solution space, then calculate the objective 

function value, giving the initial temperature T. 
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Step 2. Two individuals are randomly selected among the 

swarm; calculate the differences between the two individual 

vectors and product of the objective functions. 

Step 3. Calculate the probability vector p according to 

equation (6). 

Step 4. According to equation (5), determine the running 

direction of individual x1, update every variables of x1, using 

evaluation function to compute the objective function value by 

its position in the solution space. 

Step 5. Compare the changing of vector x1, if the improvement 

is derived, the new individual x1 is used for replacing the 

original one. 

Step 6. Updating the temperature T with certain rules, the 

iteration number adds 1. 

Step 7. When the finish condition is satisfied, the global 

optimal value can be outputted. The computation process 

ceased or returns to Step 2. 

III. APPLICATION FOR CEMENT ROTARY KILN 

MULTIVARIABLE PROCESS CONTROL  

To test the effectiveness of the presented method, an 

example of multivariable system is adopted and simulated. 

Cement rotary kiln thermal system decides the production, 

quality and energy consumption. There are several factors 

impact the thermal system of rotary kiln, including the rotation 

speed, the feed volume of coal, the feed volume of raw 

material and inner pressure of rotary kiln. When the kiln 

rotation speed increases, the temperature drops slightly and 

usually the speed is kept constantly. When the feed volume of 

coal increases, the reaction of decomposition furnace can be 

exacerbated to make the temperature higher; and when the 

feed volume of raw material increases, the reaction material in 

the kiln is added to make the temperature higher. But when the 

temperature increases to a certain value, since the material 

cannot get a fully reaction, the temperature of inner kiln drops. 

So the input volume of inner kiln material should be in a 

certain proportional relationship with the feed volume of coal 

to make them in a fully reaction state. The feed volume of coal 

and raw material are controlled by the speed of coal feed 

motor and raw material motor respectively. The rotary kiln 

should be remaining a micro-negative pressure state, because 

in the positive pressure state, the ventilation is poor and the 

fuel cannot be burned completely; in the large negative 

pressure state, the fast ventilation will take away the heat. The 

inner pressure of kiln is controlled by the speed of flue blower. 

The whole system can be shown as figure 1. 

 

 
Fig. 1. Cement rotary kiln system. 

Figure 2 denotes the control system of cement rotary kiln. 

The control links contain the burning zone temperature (feed 

volume of coal control), back-end of kiln temperature (feed 

volume of raw material control), and the inner pressure 

(blower speed control) three parts. The control system 

contains A/D, D/A converter and I/O modules together with a 

number of sensors or transformers. There are three control 

loops in the system, which are the pressure control loop, 

burning zone control loop and back-end of kiln temperature 

control loop. The advanced control algorithm is implemented 

by the IPC of the highest level in the system. 

 

 
Fig. 2. Cement rotary kiln structure. 

 

In the previous section, Alopex based evolution method 

and fuzzy predictive controller for the multivariable system 

such as rotary cement kiln has been developed. In this section, 

it is tested on the simulation model. Choosing 8 fuzzy rules, 

using given signals as input signals for tracking. Based on the 

above training data of real system, 1000 sets data points are 

used for fuzzy rules construction and modeling process as 

shown in Table I. 

 
TABLE I. Some Parameters Data of Real Cement Rotary Kiln. 

No. 

Wind 

speed 

(m/s) 

Rotation 

speed  

of coal 

motor 

(r/m) 

Burning 

zone 

temperature 

(°c) 

Raw 

material 

motor 

speed 

(r/m) 

Back-end 

kiln 

temperature 

(°c) 

Kiln 

rotation 

(r/m) 

1 24.13 643.15 1378.23 1234.61 670.12 464 

2 22.69 638.26 1363.21 1219.86 659.36 471 

3 23.88 651.76 1354.47 1310.37 671.23 479.43 

4 24.35 649.38 1321.83 1287.69 668.32 473.24 

5 25.23 658.36 1409.91 1269.71 672.43 469.56 

6 24.76 652.82 1405.68 1295.62 668.85 472.11 

 

From the results, the presented control system operated 

steadily with satisfied response time and lower overshoot, also 

with small temperature and pressure deviation, which proves 

the effectiveness of the control scheme. 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 3. System Response Curves of Three Controlled Variables (a) t1(k), (b) 

t2(k), (c) t3(k). 

IV. CONCLUSION  

This paper presents the application of fuzzy predictive 

control as main controller to control the cement industry. The 

T-S fuzzy predictive control model has been transformed into 

constrained optimization problem and solved by the Alopex  

 

based algorithm. Alopex algorithm helps to break out the local 

minimum points and enhances the precision of nonlinear 

optimization. Simulation is carried out in Labview platform on 

the cement rotary kiln system as an example with controlling 

the temperature and pressure of the cement rotary kiln, and 

simulation results were derived. The results show that the 

presented control and optimization scheme can reach satisfied 

performance and the solution algorithm for T- S model 

predictive control is effective with potential applications for 

multivariable process system as cement industries. 
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