

IFπGP Closed Sets in Intuitionistic Fuzzy Topological Spaces

Dr. K. Ramesh, S. Chitra, B. Shanmugapriya

Department of Mathematics, SVS College of Engineering, Coimbatore, Tamilnadu, India

Abstract— In this paper we introduce a new class of intuitionistic fuzzy set called intuitionistic fuzzy π generalized pre closed sets and π generalized pre open sets in intuitionistic fuzzy topological spaces. After giving the fundamental definitions we have discussed the various properties and examples. Also we have discussed some applications of π generalized pre closed sets in intuitionistic fuzzy topological spaces.

Keywords— Intuitionistic fuzzy topology, π generalized pre closed sets, π generalized pre open sets in intuitionistic fuzzy, intuitionistic fuzzy $\pi pT_{1/2}$ space and intuitionistic fuzzy $\pi gpT_{1/2}$ space.

I. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [10] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [2] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. Sarsak and Rajesh [7] introduced π generalized semi pre closed sets.

In this paper we introduce intuitionistic fuzzy π generalized semi closed sets and intuitionistic fuzzy π generalized semi open sets and study some of their properties.

II. PRELIMINARIES

Definition 2.1: [1] Let X be a non empty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ where the functions $\mu_A(x): X \to [0, 1]$ and $\nu_A(x): X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. We denote the set of all intuitionistic fuzzy sets in X, by IFS (X).

Definition 2.2: [1] Let A and B be IFSs of the form A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X$ }. Then

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \}$
- $(d) \ A \cap B = \{ \ \langle \ x, \ \mu_A(x) \land \mu_B(x), \ \nu_A(x) \lor \nu_B(x) \ \rangle \ / \ x \in X \ \}$
- (e) A \cup B = { $\langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle / x \in X$ }

Definition 2.3: [4] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms.

(i) $0_{\sim}, 1_{\sim} \in \tau$

 $\begin{array}{l} (ii) \ G_1 \cap G_2 \in \tau, \ \text{for any} \ G_1, \ G_2 \in \tau \\ (iii) \cup G_i \in \tau \ \text{for any family} \ \{ \ G_i \ / \ i \in J \ \} \subseteq \tau. \end{array}$

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [4] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined as follows:

(i) $int(A) = \bigcup \{ G / G \text{ is an IFOS in } X \text{ and } G \subseteq A \},\$

(ii) $cl(A) = \cap \{ K / K \text{ is an IFCS in } X \text{ and } A \subseteq K \}$. Note that for any IFS A in (X, τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

Definition 2.5:[6] An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- (i) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) ⊆ A
- (ii) intuitionistic fuzzy semi open set (IFSOS in short) if $A \subseteq cl(int(A))$
- (iii) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$
- (iv) intuitionistic fuzzy pre open set (IFPOS in short) if $A \subseteq int(cl(A))$
- (v) intuitionistic fuzzy α closed set (IF α CS in short) if cl(int(cl(A))) \subseteq A
- (vi) intuitionistic fuzzy α open set (IF α OS in short) if $A \subseteq int(cl(int(A)))$.

Definition 2.6:[7] Let $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS of an IFTS (X, τ) . Then the semi closure of A (scl(A) in short) is defined as scl(A) = $\cap \{ K / K \text{ is an IFSCS in } X \text{ and } A \subseteq K \}$.

Definition 2.7:[7] Let A be an IFS of an IFTS (X, τ) . Then the semi interior of A (sint(A) in short) is defined as sint(A) = $\cup \{ K | K \text{ is an IFSOS in } X \text{ and } K \subseteq A \}.$

Definition 2.8:[9] An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

(i) intuitionistic fuzzy regular open set (IFROS in short) if A = int (cl(A)).

(ii) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)).

Definition 2.9:[9] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized closed set (IFGCS in short) if $cl((A) \subset U$ whenever $A \subset U$ and U is an IFOS in X.

Definition 2.10:[7] Let A be an IFS of an IFTS (X, τ) . Then the alpha closure of A (α cl(A) in short) is defined as α cl(A) = $\cap \{K \mid K \text{ is an IF}\alpha CS \text{ in } X \text{ and } A \subseteq K \}$.

Definition 2.11:[7] Let A be an IFS of an IFTS (X, τ). Then the alpha interior of A (α int(A) in short) is defined as α int(A) = $\cup \{ K | K \text{ is an IF}\alpha OS \text{ in } X \text{ and } K \subseteq A \}.$

Definition 2.12:[7] Let A be an IFS in (X, τ) , then

(i) $\alpha \operatorname{cl}(A) = A \cup \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$

(ii) $\operatorname{aint}(A) = A \cap \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$

Definition 2.13:[7] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy alpha generalized closed set (IFGCS in short) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in X. **Definition 2.14:**[2] Let A be an IFS of an IFTS (X, τ) . The pre interior of A (pint(A) in short) is defined by the union of all fuzzy pre-open sets of X which are contained in A. The intersection of all fuzzy pre-closed sets containing A is called

the pre-closure of A and is denoted by (pcl(A) in short)pint $(A) = \bigcup \{ G | G \text{ is an IFPOS in X and } G \subset A \}$

print(A) = \bigcirc { G / G is an if FOS in A and $\bigcirc \bigcirc A$ } pcl(A) = \bigcirc { K / K is an IFPCS in X and A $\bigcirc \frown K$ }.

Result 2.15: [8] If A is an IFS in X, then $pcl(A) = A \cup cl(int(A))$.

III. INTUITIONISTIC FUZZY Π Generalized Pre Closed Set

Definition 3.1: An IFS A is said to be an intuitionistic fuzzy π -generalized pre-closed set (IF π GPCS in short) in (X, τ) if pcl(A) \subseteq U whenever A \subseteq U and U is an IF π OS in X. The family of all IF π GPCSs of an IFTS (X, τ) is denoted by IF π GPC(X).

Example 3.2: Let $X = \{a, b\}$ and let $\tau = \{0, , T, 1\}$ be an IFT on X, where $T = \langle x, (0.3, 0.1), (0.7, 0.6) \rangle$. Then the IFS $A = \langle x, (0.2, 0.1), (0.8, 0.7) \rangle$ is an IF π GPCS in X.

Theorem 3.3:

- (i) Every IFCS is an IF π GPCS but not conversely.
- (ii) Every IF α CS is an IF π GPCS but not conversely.
- (iii) Every IFGCS is an IF π GPCS but not conversely.
- (iv) Every IFRCS is an IF π GPCS but not conversely.
- (v) Every IFPCS is an IF π GPCS but not conversely.

(vi) Every IF α GCS is an IF π GPCS but not conversely

Proof (i): Let A be an IFCS in X and let $A \subseteq U$ and U is an IF π OS in (X, τ). Since pcl(A) \subseteq cl(A) and A is an IFCS in X, pcl(A) \subseteq cl(A) = A \subseteq U. Therefore A is an IF π GPCS in X.

Proof (ii): Let A be an IF α CS in X and let A \subseteq U and U is IF π OS in (X, τ). By hypothesis, cl(int(cl(A))) \subseteq A. Since A \subseteq cl(A), cl(int (A)) \subseteq cl(int(cl(A) \subseteq A. Hence pcl(A) \subseteq A \subseteq U. Therefore, A is an IF π GPCS in X.

Proof (iii): Let A be an IFGCS in X and let $A \subseteq U$ and U is an IF π OS in (X, τ). Since pcl(A) \subseteq cl(A) and by hypothesis, pcl(A) \subseteq U. Therefore, A is an IF π GPCS in X.

Proof(iv): Let A be an IFRCS in X. By definition 2.9, A = cl(int(A)). This implies that cl(A) = cl(int(A)). Therefore cl(A) = A. That is A is an IFCS in X. By theorem 3.3, A is an IF π GPCS in X.

Proof(v): Let A be an IFPCS in X and let $A \subseteq U$ and U is an IF π OS in (X, τ). By definition 2.5, cl(int(A) \subseteq A. This implies that pcl(A) = A \cup cl(int(A) \subseteq A. Therefore pcl(A) \subseteq U. Hence, A is an IF π GPCS in X.

Proof(vi): Let A be an IF α GCS in X and let A \subseteq U and U is an IF π OS in (X, τ). By definition 2.14,

 $A \cup cl(int(cl(A))) \subseteq U$. This implies that $cl(int(cl(A))) \subseteq U$ and $cl(int(A) \subseteq U$. Therefore $pcl(A) = A \cup cl(int((A)) \subseteq U$. Hence, A is an IF π GPCS in X.

Example(i): Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$. Then the IFS $A = \langle x, (0.2, 0.2), (0.8, 0.7) \rangle$ is an IF π GPCS in X but not an IFCS in X.

Example(ii): Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.1, 0.2), (0.5, 0.6) \rangle$. Then the IFS $A = \langle x, (0.2, 0.3), (0.6, 0.5) \rangle$. is an IF π GPCS in X but not an IF α CS in X, since cl(int(cl(A) = $\langle x, (0.5, 0.6), (0.1, 0.2) \rangle$

Example(iii): Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.2, 0.3), (0.4, 0.6) \rangle$. Then the IFS A = $\langle x, (0.1, 0.2), (0.7, 0.8) \rangle$. is an IF π GPCS but not an IFGCS in X, since A $\subseteq T$ but cl(A) = $\langle x, (0.4, 0.6), (0.2, 0.2), (0.2, 0.2) \rangle$

0.3) ⟩ ⊄_□ T.

Example(iv): Let $X = \{a, b\}$ and let $\tau = \{0, 7, 1, \}$ be an IFT on X, where $T = \langle x, (0.1, 0.1), (0.8, 0.9) \rangle$. Then the IFS $A = \langle x, (0.1, 0.2), (0.7, 0.8) \rangle$ is an IF π GPCS but not an IFRCS in X, since cl(int(A) = $\langle x, (0.8, 0.9), (0.1, 0.1) \rangle \neq A$.

Example(v): Let $X = \{a, b\}$ and let $\tau = \{0, 7, 1, 1\}$ be an IFT on X, where $T = \langle x, (0.2, 0.3), (0.6, 0.7) \rangle$. Then the IFS $A = \langle x, (0.3, 0.4), (0.5, 0.6) \rangle$ is an IF π GPCS but not an

IFPCS in X, since $cl(int(A) = \langle x, (0.6, 0.7), (0.2, 0.3) \rangle \not\subset A$.

Example(vi): Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.5, 0.6), (0.5, 0.4) \rangle$. Then the IFS A = $\langle x, (04, 0.5), (0.6, 0.5) \rangle$ is an IF π GPCS but not an IF α GCS in X, since α cl(A) = 1, $\not\subset$ T.

ISSN (Online): 2455-9024

Proposition 3.4: IFSCS and $IF\pi GPCS$ are independent to each other.

Example 3.5:Let X = {*a,b*} and let $\tau = \{0, T_1, T_2, T_3, T_4, 1_{\Sigma}\}$ be an IFT on X, where $T_1 = \langle x, (0.1, 0.3), (0.4, 0.3) \rangle$, $T_2 = \langle x, (0, 0.2), (0.2, 0.3) \rangle$, $T_3 = \langle x, (0, 0.2), (0.3, 0.3) \rangle$, $T_4 = \langle x, (0.1, 0.3), (0.2, 0.3) \rangle$. Then the IFS A = $\langle x, (0.1, 0.3), (0.2, 0.3) \rangle$ is an IFSCS but not an IF π GPCS in X, since A \subseteq T but pcl(A) = $\langle x, (0.2, 0.3), (0.1, 0.3), (0.2, 0.3) \rangle$

0.3) > ⊄ 🗖 T.

Example 3.6: Let $X = \{a, b\}$ and let $\tau = \{0, T_1, T_2, T_3, T_4, 1_{\Sigma}\}$ be an IFT on X, where $T_1 = \langle x, (0, 0.2), (0.1, 0.2), T_2 = \langle x, (0.1, 0.4), (0.4, 0.3) \rangle, T_3 = \langle x, (0.2, 0.4), (0.4, 0.5) \rangle, T_4 = \langle x, (0, 0.1), (0.5, 0.5) \rangle$. Then the IFS A = $\langle x, (0.1, 0.2), (0.4, 0.5) \rangle$ is an IFGSCS but not an IF π GPCS in X, since A \subseteq T but pcl(A) = $\langle x, (0.1, 0.2), (0.2, 0.4) \rangle$

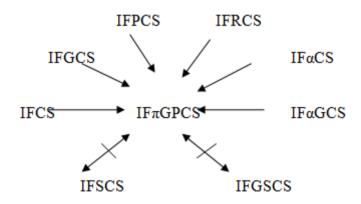
⊄_₪ Т.

Proposition 3.7: IFGSCS and $IF\pi GPCS$ are independent to each other.

Example 3.8: Let $X = \{a, b\}$ and let $\tau = \{0, T, 1\}$ be an IFT on X, where $T = \langle x, (0.2, 0.4), (0.6, 0.5) \rangle$. Then the IFS A = $\langle x, (0.2, 0.3), (0.6, 0.5) \rangle$ is an IF π GPCS but not an IFGSCS in

X since $scl(A) \not\subset T$.

The following implications are true.



In this diagram $A \longrightarrow B$ means that A implies B but not conversely and A $\longleftrightarrow B$ means A and B are independent of each other. None of them is reversible.

Remark 3.9: The union of any two $IF\pi GPCS$ is not an $IF\pi GPCS$.

Example 3.10: Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.2, 0.3), (0.4, 0.5) \rangle$. Then the IFSs $A = \langle x, (0, 0.1), (0.4, 0.6) \rangle$, $B = \langle x, (0.3, 0.3), (0.4, 0.5) \rangle$ are IF π GPCSs but $A \cup B$ is not IF π GPCS in X.

IV. INTUITIONISTIC FUZZY II-GENERALIZED PRE-OPEN Sets

In this section we introduce intuitionistic fuzzy π generalized pre open sets and studied some of its properties.

Definition 4.1: An IFS A is said to be an intuitionistic fuzzy π -generalized pre-open set (IF π GPOS in short) in (X, τ) if the complement A^c is an IF π GPCS in X. The family of all IF π GPOSs of an IFTS (X, τ) is denoted by IF π GPO(X).

Example 4.2: Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.3, 0.1), (0.7, 0.6) \rangle$. Then the IFS $A = \langle x, (0.8, 0.7), (0.2, 0.1) \rangle$ is an IF π GPOS in X.

Theorem 4.2: For any IFTS (X, τ) , we have the following:

- (i) Every IFOS is an IF π GPOS.
- (ii) Every IFSOS is an IF π GPOS.
- (iii) Every IF α OS is an IF π GPOS.
- (iv) Every IFPOS is an $IF\pi GPOS$.
- But the converses are not true.

Proof: Straight forward. The converse of the above statements need not be true, which can be seen by the following examples.

Example 4.3: Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$. Then the IFS $A = \langle x, (0.8, 0.7), (0.2, 0.2) \rangle$ is an IF π GPOS in X but not an IFOS in X.

Example 4.4: Let X = {*a*,*b*} and let $\tau = \{0, T_1, T_2, T_3, 1_{\star}\}$ be an IFT on X, where $T_1 = \langle x, (0.1, 0.3), (0.3, 0.5) \rangle$, $T_2 = \langle x, (0.1, 0.2), (0.4, 0.5) \rangle$, $T_3 = \langle x, (0.3, 0.4), (0.3, 0.5) \rangle$. Then the IFS A = $\langle x, (0.4, 0.5), (0.1, 0.2) \rangle$ is an IF π GPoS but not an IFSOS in X.

Example 4.5: Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.1, 0.2), (0.5, 0.6) \rangle$. Then the IFS $A = \langle x, (0.6, 0.5), (0.2, 0.3) \rangle$. is an IF π GPOS in X but not an IF α OS in X.

Example 4.6: Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.2, 0.3), (0.6, 0.7) \rangle$. Then the IFS $A = \langle x, (0.5, 0.6), (0.3, 0.4) \rangle$ is an IF π GPOS but not an IFPOS in X.

Theorem 4.8: Let (X, τ) be an IFTS. If $A \in IF\pi GPOS$ then $V \subseteq int(cl(A)$ whenever $V \subseteq A$ and V is IFCS in X.

Proof: Let $A \in IF\pi GPOS$. Then A^c is an $IF\pi GPCS$ in X. Therefore $pcl(A^c) \subseteq U$ whenever $A^c \subseteq U$ and U is IFOS in X. That is $cl(int(A^c)) \subseteq U$. This implies $U^c \subseteq int(cl(A))$ whenever $U^c \subseteq A$ and U^c is IFCS in X. Replace $U^c = V$, we get $V \subseteq int(cl(A))$ whenever $V \subseteq A$ and V is IFCS in X.

Theorem 4.9: Let (X, τ) be an IFTS. Then for every $A \in IF\pi GPO(X)$ and for every $B \in IFS(X)$, $pint(A) \subseteq B \subseteq A$ implies $B \in IF\pi GPO(X)$.

Proof: By hypothesis, $A^c \subseteq B^c \subseteq (pint(A))^c$. Let $B^c \subseteq U$ and U be an IFOS. Since $A^c \subseteq B^c$, $A^c \subseteq U$. But A^c is an IF π GPCS, $pcl(A^c) \subseteq U$. Also $B^c \subseteq (pint(A))^c = pcl(A^c)$ (By Theorem). Therefore, $pcl(B^c) \subseteq pcl(A^c) \subseteq U$. Hence B^c is an IF π GPCS, which implies B is an IF π GPOS of X.

Remark 4.10: The intersection of any two IF π GPOS is not an IF π GPOS in general.

Example 4.11: Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.2, 0.3), (0.4, 0.5) \rangle$. Then the IFSs $A = \langle x, (0.4, 0.6), (0, 0.1) \rangle$, $B = \langle x, (0.4, 0.5), (0.3, 0.3) \rangle$ are IF π GPOSs but $A \cap B$ is not IF π GPOS in X.

Theorem 4.12: An IFS A of an IFTS (X, τ) is an IF π GPOS iff $F \subseteq pint(A)$ whenever F is an IFCS and $F \subseteq A$.

Proof: Necessity: Suppose A is an IF π GPOS in X. Let F be an IFCS and F \subseteq A. Then F^c is an IFOS in X such that A^c \subseteq F^c. Since A^c is an IF π GPCS, we have pcl(A^c) \subseteq F^c. Hence (pint(A))^c \subseteq F^c. Therefore F \subseteq pint(A).

Sufficiency: Let A be an IFS of X and let $F \subseteq pint(A)$ whenever F is an IFCS and $F \subseteq A$. Then $A^c \subseteq F^c$ and F^c is an IFOS. By hypothesis, $(pint(A))^c \subseteq F^c$. Which implies $pcl(A^c) \subseteq F^c$. Therefore A^c is an IF π GPCS of X. Hence A is an IF π GPOS of X.

Corollary 4.13: An IFS A of an IFTS (X, τ) is an IF π GPOS iff $F \subseteq int(cl(A))$ whenever F is an IFCS and $F \subseteq A$.

Proof: Necessity: Suppose A is an IF π GPOS in X. Let F be an IFCS and F \subseteq A. Then F^c is an IFOS in X such that A^c \subseteq F^c. Since A^c is an IF π GPCS, we have pcl(A^c) \subseteq F^c. Therefore cl(int(A^c)) \subseteq F^c. Hence (int(cl(A)))^c \subseteq F^c. This implies $F \subseteq$ int(cl(A)).

Sufficiency: Let A be an IFS of X and let $F \subseteq int(cl(A))$ whenever F is an IFCS and $F \subseteq A$. Then $A^c \subseteq F^c$ and F^c is an IFOS. By hypothesis, $(int(cl(A)))^c \subseteq F^c$. Hence $cl(int(A^c)) \subseteq F^c$, which implies $pcl(A^c) \subseteq F^c$. Hence A is an IF π GPOS of X.

Theorem 4.14: For an IFS A, A is an IFOS and an $IF\pi GPCS$ in X iff A is an IFROS in X.

Proof: Necessity: Let A be IFOS and an IF π GPCS in X. Then pcl(A) \subseteq A. This implies cl(int(A)) \subseteq A. Since A is an IFOS, it is an IFPOS. Hence A \subseteq int(cl(A)). Therefore A = int(cl(A)). Hence A is an IFROS in X.

Sufficiency: Let A be an IFROS in X. Therefore A = int(cl(A)). Let A \subseteq U and U is an IFOS on X. Thisimplies pcl(A) \subseteq A. Hence A is an IF π GPCS in X.

V. APPLICATIONS OF INTUITIONISTIC FUZZY Π GENERALIZED PRE CLOSED SETS

Definition 5.1: An IFTS (X, τ) is said to be an intuitionistic fuzzy $_{\pi p}T_{1/2}$ (IF $_{\pi p}T_{1/2}$ in short) space if every IF π GPCS in X is an IFCS in X.

Definition 5.2: An IFTS (X, τ) is said to be an intuitionistic fuzzy $_{\pi gp}T_{1/2}$ (IF $_{\pi gp}T_{1/2}$ in short) space if every IF π GPCS in X is an IFPCS in X.

Theorem 5.3: Every $IF_{\pi p}T_{1/2}$ space is an $IF_{\pi gp}T_{1/2}$ but the converse is not true.

Proof: Let X be an $IF_{\pi p}T_{1/2}$ space and A be an $IF\pi GPCS$ in X. By hypothesis, A is an IFCS in X. Since, every IFCS is an IFPCS, A is an IFPCS in X. Hence X is an $IF_{\pi gp}T_{1/2}$ space.

Example 5.4: Let $X = \{a, b\}$ and let $\tau = \{0, T, 1, \}$ be an IFT on X, where $T = \langle x, (0.2, 0.3), (0.8, 0.7) \rangle$. Then, (X, τ) is an IF_{π gp} T_{1/2} space. But it is not an IF_{π gp} T_{1/2} space, since the IFS A = $\langle x, (0.2, 0.2), (0.8, 0.7) \rangle$ is an IF π GPCS but not an IFCS in X.

Theorem 5.5: Let $(X,\,\tau)$ be an IFTS and X is an $IF_{\pi p}T_{1/2}$ space, then

- (a) Any union of IF π GPCS is an IF π GPCS.
- (b) Any intersection of $IF\pi GPOS$ is an $IF\pi GPOS$.

Proof: (a) Let $\{A_i\}_{i\in J}$ is a collection of IF π GPCSs in an IF $_{\pi p}T_{1/2}$ space (X, τ). Therefore, every IF π GPCS is an IFCS. But the union of IFS is an IFCS. Hence the union of IF π GPCS is an IF π GPCS in X. (b) It can be proved by taking complement in (a).

Theorem 5.6: An IFTS X is an $IF_{\pi gp} T_{1/2}$ space iff IFGPO(X) = IFPO(X).

Proof: Necessity: Let A be an IF π GPOS inX, then A^c is an IF π GPCSs in X. By hypothesis A^c is an IFPCS in X. Therefore, A is an IFPOS in X. Hence IFGPO(X) = IFPO(X).

Sufficiency: Let A be an IF π GPCS in X. Then A^c is an IF π GPOSs in X. By hypothesis A^c is an IFPOS in X. Therefore, A is an IFPCS in X. Hence X is an IF $_{\pi gp}$ T_{1/2} space.

REFERENCES

- K. T. Atanassov, "Intuitoinistic fuzzy sets," *Fuzzy Sets and Systems*, vol. 20, issue 1, pp. 87-96, 1986.
- [2] A. S. Bin Shahna, "On fuzzy strong semicontinuity and fuzzy precontinuity," *Fuzzy Sets and Systems*, vol. 44, issue 2, pp. 303-308, 1991.
- [3] C. L. Chang, "Fuzzy topological spaces," Journal of Mathematical Analysis and Applications, vol. 24, issue 1, pp. 182-190, 1968.
- [4] D. Coker, "An introduction to fuzzy topological space," Fuzzy Sets and Systems, vol. 88, issue 1, pp. 81-89, 1997.
- [5] T. Fukutake, R. K. Saraf, M. Caldas, and M. Mishra, "Mapping via Fgpclosed sets," *Bull. of Fukuoka Univ. of Edu.*, vol. 52, Part II, pp. 11-20, 2003.

Dr. K. Ramesh, S. Chitra, and B. Shanmugapriya, "IF#GP closed sets in intuitionistic fuzzy topological spaces," *International Research Journal of Advanced Engineering and Science*, Volume 2, Issue 4, pp. 82-86, 2017.

- [6] H. Gurcay, D. Coker, and A. Haydar, "On fuzzy continuity in intuitionistic fuzzy topological spaces," *Jour. of Fuzzy Math.*, vol. 5, pp. 365-378, 1997.
- [7] K. Sakthivel, "Intuitionistic fuzzy alpha generalized continuous mappings and intuitoinistic alpha generalized irresolute mappings," *Applied Mathematical Sciences*, vol. 4, no. 37, pp. 1831-1842, 2010.
- [8] T. Shyla Isac Mary and P. Thangavelu, "ON regular pre-semiclosed sets in topological spaces," *KBM Journal of Mathematical Sciences & Computer Applications*, vol. 1, issue 1, pp. 9-17, 2010.
- [9] S. S. Thakur and Rekha Chaturvedi, "Regular generalized closed sets in intuitionistic fuzzytopological spaces," Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Mathematica, vol. 16, pp. 257-272, 2006.
- [10] L. A. Zadeh, "Fuzzy sets," *Information and Control*, vol. 8, issue 3, pp. 338-353, 1965.