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Abstract— Clustering is the process of grouping similar data into 

clusters and dissimilar data into different clusters. Density-based 

clustering is a useful clustering approach such as DBSCAN and 

OPTICS. The increasing volume of data and varying size of data sets 

lead the clustering process challenging. So that we propose a 

parallel framework of clustering with advanced approach called 

MapReduce. We develop a new algorithm DBCURE which is 

modified from DBSCAN. Next we propose a newly developed parallel 

algorithm called DBCURE-MR that is DBCURE algorithm is 

parallelized with MapReduce framework. This proposed method finds 

clusters in parallel manner efficiently. 

 

Keywords— MapReduce, DBCURE, density based clustering, 

parallelization algorithm. 

I. INTRODUCTION  

The growing trend of scientific applications is being expected 

to deal with big data. [6] For such data concentrated 

applications, the MapReduce structure in recent times has 

engrossed a lot of concern. MapReduce is a programming 

model that allows uncomplicated development of scalable 

parallel applications to process big data on bulky clusters of 

service machines.  MapReduce or its open-source counterpart 

Hadoop is a influential tool for building such applications.  In 

recent times several data mining algorithms have been 

parallelized with MapReduce. 
 

 
Fig. 1. Five dimensions of big data. 

 

Data clustering is an important data mining technology 

that plays a crucial role in copious scientific applications. 

Clustering is a process of aggregating data points such that the 

points within a single collection have similar characteristics, 

whereas the points in different collection are disparate. It plays 

a vital role in numerous applications such as pattern 

recognition, information retrieval, social networks, image 

processing, molecular biology, medical imaging and 

multimedia. There are a variety of clustering algorithms such 

as clustering in partitional basis, in hierarchical basis and 

based on density and fuzzy clustering etc. These clustering 

algorithms are classified in accordance with the creation of 

clusters of objects. Determining good clusters is one of the 

main goals of clustering algorithms. 

DBSCAN is an valuable density-based clustering method 

which was first proposed in 1996. While comparing with other 

clustering algorithms, DBSCAN holds several attractive 

chattels. First, it divides data into clusters with random shapes. 

For example, it can find clusters entirely bounded by another 

cluster. Second, DBSCAN will not consider about the number 

of the clusters as a priori. Third, it is insensate to the order of 

the points in the dataset. As a result, DBSCAN has achieved 

great success. Conversely, DBSCAN performing efficiently in 

real-world applications is challenging as a consequence of two 

reasons. First, the sizes of the datasets are growing promptly 

so that they cannot be held on a single machine to any further 

extent and varying shapes of the datasets cannot be handled by 

DBSCAN. Second, DBSCAN come at a much higher 

computation complexity compared with other clustering 

methods.  In this paper we address these issues by proposing a 

serial density based clustering algorithm namely DBCURE-

Density Based ClUsteRing algorithm for largE data that 

handle the datasets of variable densities and from that we 

build up a proficient parallel algorithm DBCURE-MR using 

MapReduce. 

 
Fig. 2. Types of parallel clustering algorithms. 

 

MapReduce is a popular parallel programming platform 

based on shared-nothing architecture. It received great 
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accomplishment due to its simplicity, scalability and fault 

tolerance. Precisely MapReduce provides users with readily 

usable programming interfaces while hiding the disorganized 

details for parallelism.  Moreover MapReduce rifts the jobs 

into small tasks and materialize the intermediate results close 

by. It can scales up with thousands of commodity nodes where 

node failure is normal.  With experimental results we prove 

that DBCURE as well as DBCURE-MR discerns the clusters 

of varying densities well and DBCURE-MR steps up well 

with MapReduce framework. 

II. LITERATURE REVIEW  

DBSCAN [1] is a density based clustering that could 

produce arbitrary number of clusters in despite of the 

distribution of spatial data, whereas the K-means is a centroid 

based algorithm that possibly will find estimated clusters of a 

definite number. [8] In a density based clustering method on 

distributed systems was proposed by utilizing a distributed 

spatial index call dR* tree and thus it is difficult to be adopted 

in the MapReduce framework. To alleviate the sensitivity to 

density parameters OPTICS was proposed in [9], and it 

performs clustering with changing the radius Ɛ to find clusters 

with varying densities. However it cannot be parallelized 

easily using MapReduce since the points should be merged 

serially to determine where to separate the clusters. [1] 

MapReduce is a programming paradigm for data intensive 

applications. Due to its simplicity, MapReduce can effectively 

handle failures and thereby can be scaled to thousands of 

nodes. [1, 10] Parallelization of DBSCAN using MapReduce 

was proposed in [10]. 

III. RESULTS AND DISCUSSIONS  

In this section we focus on finding the efficient parallel 

clustering algorithm on big data having varying densities. 

MapReduce Overview 

MapReduce Programming Model MapReduce is a 

software framework that is a basis computational model of 

current cloud computing platform. Its key task is to handle 

substantial amount of data. Because of its simplicity, 

MapReduce can effectually deal with machine failures and 

certainly expand the number of system nodes.  

In the MapReduce programming model [2] data is 

perceived as a series of key-value pairs like, the sequential 

process of MapReduce subsists of three stages: Map, Shuffle, 

and Reduce. User only writes map and reduce functions. In the 

Map phase, a map task corresponds to a node in the cluster, by 

means of the other word, multiple map tasks are be running in 

parallel at the same time in a cluster. Every map call is given a 

key-value pair (key1, val1) and generates a list of (key2, val2) 

pairs. The output of the map calls is reassigned to the reduce 

nodes (shuffle phase). All the intermediate records with the 

same intermediate key (key2) are sent to the same reducer 

node. At each reduce node, the received intermediate records 

are sorted and clustered (all the midway records with the same 

key form a single group). Each group is processed in a single 

reduce call. The data processing can be summarized as 

follows: 

Map(key1,val1)                list(key2, val2) 

Reduce(key2,list(val2))          list(key3, val3) 
 

 
Fig. 3. Workflow of MapReduce. 

 

 
Fig. 4. Architecture of MapReduce. 

DBCURE: A Clustering Algorithm 

Alike DBSCAN algorithm our DBCURE also recurrently 

implements two step procedure.  In Step 1, it chooses a kernel 

that is an arbitrary core point, which is an unvisited point in 

dataset D. Then it insert the kernel or core point into the set S 

which is collection of unvisited core points. Next in step 2, it 

finds all the data points which are density reachable to the core 

points in set S. Then it takes a point from set S and adds its τ-

neighborhood into set S. By repeatedly adding this 

neighborhood of every core point p € S into S until S becomes 

empty we can form a cluster. From that we can prove the 

discovered clustering result obtained by DBCURE satisfies the 

definition of density based clustering by a proof. 

Definition: Density-reachable 

“A point p is density-reachable from a point q with respect 

to Eps and MinPts if there is a chain of points b1…,bn, b1=q, 

bn=p such that bi+1 is directly density reachable from bi.” [1] 

Figure 5 [1] shows an illustration of a density-reachable point 
 

 
Fig. 5. Point p is density-reachable from point q and not vice versa. 
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DBCURE-MR: A parallel density based clustering algorithm 

using MapReduce 

The contour of DBCURE-MR is having the following steps: 

Step1: Estimation of neighborhood covariance matrices: In 

this step we estimate the neighborhood co-variance matrix for 

every core point in set S. 

Step2: Computation of ellipsoidal τ-neighborhoods: This step 

discovers all pairs of point, each of which is within both of 

their τ-neighborhoods, by performing similarity joins. 

Step3: Discovery of core clusters: For a core point p, the set of 

p and its directly density-reachable points is called a core 

cluster.  So we obtain the list of ellipsoidal τ-neighborhood 

points for each core point in dataset D. 

Step4: Merging of core clusters: Finally the core clusters 

which are partaking the common core points are grouped 

repeatedly to generate the ultimate cluster 
 

 Algorithm Output 

Step1 

COVMATX1-

COVMATX2-
 

 

Statistics to estimate 

Covariance matrix. 

Neighborhood 
covariance matrix for 

every point. 

Step2 

  MAXMBR-MR

τ-NEIGHBOR-MR

 
 

Maximum width in the 

MBR of (∑,τ)-ellipses 
of all points 

All pairs of points 

each of which includes 
the other one in its τ-

neighborhood 

 

Step3 

 

Every core cluster 

 

Step4 

 

Final clustering Result 

Fig. 6. An overview of DBCURE-MR workflow. 

Covariance Matrix: COVMATX-MR: 

To compute covariance matrix rapidly we have to 

fragment the given cluster space into number of grids by 

segregating each extents of same length in T intervals. And 

then we compute neighborhood covariance matrix for each 

individual grids and the map function of COVMATX generate 

key-value pairs (a, xi) for each points xi in dataset 

Dsimultaneously using COVMATX-MR algorithm. 

Computing Ellipsoidal τ-neighborhoods for every points: τ-

NEIGHBOR-MR  

Afterwards we develop a new MapReduce algorithm τ-

NEIGHBOR-MR algorithm.  That discovers core points with 

their τ-neighborhoods. We can perform similarity join to find 

τ-neighborhood in an effectual manner by manipulating the Ɛ-

tree which is used in previous research work.  Every single 

pair of points having the distance at most Ɛ, will be splitted 

into identical rectangular grid with the width of Ɛ. Then we 

can estimate the distances for every pairs of points with one 

grid and its adjacent grid cells. Yet to find an ellipsoidal τ-

neighborhood for each points we cannot divide the grid space 

in a uniform with in every situation. Therefore we compute 

MBRs for ∑i , which means the sum of τ-ellipses of all points 

and then we find the maximum  width in each dimension of all 

MBRs to use it as width of grids in Ɛ-tree. At this time we can 

surely said that every ellipsoidal τ-neighborhood of a point is 

continually in its own grid cell or its neighboring grid cells. 
 

 
Fig. 7. DBCURE-MR processing. 

FINDKERNEL-MR: A MapReduce Algorithm to find a core 

point: 

We next create an algorithm using MapReduce called 

FINDKERNEL-MR. That discovers the core clusters. As per 

definition of core point a point xiis said to be core whose τ-

neighborhood size is atleast δ and the output will be the point 

xi and its τ-neighbor point. If it is not a core means it will give 

nothing as an output. The pair of core point and its neighbor 

point will form core cluster. 

In this algorithm it takes the output of τ-NEIGHBOR-MR 

that means the neighbor point pairs (xi, xj) as an input and the 

output produced by map function in every stage is grouped in 

shuffling phase. And then a table will be produced with the list 

of point xi and its τ-neighborhood produced in τ-NEIGHBOR-

MR algorithm.  In next phase namely reduce phase, reduce 

function is invoked for every pair of point and its τ-

neighborhood (xi, Nτ(xi)).  When Nτ (xi) +1 >= δ, xi is said to 

be a core point and the reduce function outputs (xi, Nτ (xi)).  

When Nτ (xi)+1< δ, xi is said to be border point, so the reduce 

function outputs nothing. The result of FINDKERNEL-MR 

algorithm is the list of points and its τ-neighborhoods called as 

core cluster table. 

MERGE-CLUST-MR: To produce resulting cluster by 

grouping every individual clusters: 

This proposed work this algorithm merges clusters 

simultaneously with the help of MapReduce.   

MERGE_CLUST-MR: We first conceptually split the points in 

M into multiple equi-sized partitions, M1… MK. We choose 

the number of partitions K to be at most the number of 

machines used for reduce functions. Let Si denote the set data 

structure whose nodes consist of the points in Mi only. The 

pointers to the parents in Si may point to the nodes in different 

Sjs (with j≠i). We decide the number of partitions K so that 

FINDKERNAL-MR 

MERGE-CLUST-MR 
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every pair of Si and Sj together fit into the main memory of a 

single reduce function. We also partition the core cluster table 

R, output by FINDKERNEL-MR, into disjoint partitions, 

R1,…,RK such that every 〈p, Nτ(p)〉 in Ri satisfies p € Mi. In 

each Ri, whenever we see a core point x and its neighbor core 

point v with v € Mi, the clusters of two core points are merged 

in Si. However, when there is a core point x and its neighbor 

point v € Mj (i≠j), we output the key-value pair 〈x, y〉 to 

consider merging y to the cluster of x later, since we do not 

know whether v is a core point or not yet by looking at Ri 

only. We let P be such 〈x, y〉 s generated as output. MERGE-

CLUST-PARTIAL performs the task of merging core clusters 

using MapReduce for every partition Mi in parallel. 

After MERGE-CLUST-PARTIAL produces as output Sis 

and P, we iteratively select each Si as apivot and do the 

following by invoking MERGE-CLUST-ALL: For every pair 

of Si and Sj with j≠i, if there exists 〈q, p〉 in the output P, we 

merge the cluster of a point p in Sj to the cluster of a point q in 

Si if needed. Note that we merge the cluster of a point p in Sj 

to the cluster of a point q in Si, and not vice versa, whenever 

we need to merge them. However, if any ancestor node which 

does not belong to Sj is encountered while traversing the path 

from p to the root (i.e., representative) node, since we cannot 

update such ancestor nodes in the current execution of 

MERGE-CLUST-ALL, we output 〈q, cp〉 where cp is the first 

encountered ancestor node from p belonging to Sk (k≠j). 

Such output of all 〈q, cp〉 s will be processed together as the 

post-processing step by MERGE-CLUST-FINAL in a single 

machine. 

Given a core cluster table R, we first invoke MERGE-

CLUST-PARTIAL in order to obtain K disjoint-set data 

structures S1,…, SK and the set of point pairs P, which consists 

of the pairs(x, y) such that x and y are from different partitions 

Mi and Mj(i≠j), and the clusters of x and y should be possibly 

combined in later steps. Then, for loop in executes MERGE-

CLUST-ALLK times repeatedly. At the i-th iteration, Si is 

broadcast to every reduce function before calling MERGE-

CLUST-ALL. Finally, MERGE-CLUST-FINAL is called.  

MERGE-CLUST-PARTIAL: For each core cluster 〈x, Nτ(x)〉 in 

R where x € Mi, a map function is called and emits the key- 

value pair 〈i, (x, Nτ(x))〉, to partition the core cluster table R 

into disjoint partitions R1,…,RK such that every 〈p, Nτ(p)〉 in 

Ri satisfies p €Mi. 

Afterwards the key-value pairs are congregated by keys in 

the shuffling phase of the MapReduce framework, fo reach 

distinct key i, a reduce function is called with Ri as input and 

merges the core clusters by updating the set data structure Si, 

which initially consists of single point clusters only. At the 

time of merging the core clusters in Ri, if a core point x € Mi 

and its neighbor point y € Mj with j≠i have to be unioned, 

since we do not know whether v is a core point or not in this 

reduce function with key i locally, we output the key-value 

pair 〈x, y〉 to consider later whether we merge v into the 

cluster of x or not. If MERGE-CLUST- PARTIAL is done, we 

write the data structure Si on the distributed file system. 

MERGE-CLUST-ALL: After MERGE-CLUST-PARTIAL 

produces Sis and P, MERGE-CLUST-MR iteratively selects 

each Si as a pivot and invokes MERGE-CLUST-ALL to 

merge the clusters in every Sj (j≠i) to the clusters in Si. At the 

i-th iteration of the for loop in MERGE-CLUST-MR, Si is 

broadcast to every reduce function before the execution of 

MERGE-CLUST-ALL. For each key-value pair 〈x, y〉 output 

by MERGE-CLUST-PARTIAL, a map function is called. If 

x€ Mi and y € Mj, the key-value pair 〈j, (x, y)〉 is emitted so 

that the reduce function invoked with key j can merge the 

cluster of y to that of x by updating Si and Sj. Then, for each 

distinct key j, a reduce function is invoked, but it also receives 

two disjoint-set data structures Si and Sj where Si is broadcast 

by the main function of MERGE-CLUST-MR and Sj is read 

from the distributed file system. If y is a core point, we merge 

the cluster of y to that of x in Si by using the function 

UNION-TO(v, cx, Sj) which sets the representative node of y's 

cluster in Sj to point to cx which denotes the node representing 

x's cluster. If y is not visited yet, since y is a border point 

which should be merged into the cluster of x, not only the 

cluster of y is merged to that of x but also the status of y is set 

to BORDER. If MERGE-CLUST-ALL in each iteration is 

done, we write the data structure Si on the distributed file 

system. While there duce function with key j merges the 

cluster of x € Mi to that of y € Mj, If any ancestor node is 

encountered while traversing the path from x to the root (i.e., 

representative) node, since we cannot update such ancestor 

nodes in the current execution of MERGE-CLUST-ALL, we 

output 〈y; cx〉 where cx is the first encountered ancestor node 

belongs to Sk (k≠j) from x. Werefer to such output of all 〈y, 

cx〉s in the i-th iteration of the for loop in MERGE-CLUST-

MR as Fi and we let F = F1U⋯UFK . All Sis and F will be 

processed together as the post processing step by MERGE-

CLUST-FINAL. 

MERGE-CLUST-FINAL: We next merge the clusters, which 

could not be combined by MERGE-CLUST-ALL, by using 

MERGE-CLUST-FINAL. We call the serial function 

MERGE-CLUST- FINAL. Note that all Sis and F produced by 

MERGE-CLUST-ALL are stored in the distributed file 

system. Each pair(x,y) in F implies that the cluster of y needs 

to be merged into the cluster represented by the node x.  

We first perform set-union operations based on(x, y) in F 

to simplify the updates to all Sis. For example, assume that (x, 

y) and(y, z) exist in F. If there is a node pointing to z in a Si, 

we have to update the node to point to x rather than y. Thus, 

before updating any Si, we perform set-union operations based 

on (x, y) in F and generate a disjoint-set data structure Sf in 

whose nodes consist of the distinct points appearing in F. 

Then, while reading Si from disk one by one, for every node z 

in Si, we consult Sf in on whether to update the node or not. 

Suppose a node z points to the node y. If y exists in Sf in and 

the root node of y is x in Sf in, MERGE-CLUST-FINAL 

updates the node z to point to x. Moreover, if the status of 

each node in Si is still UNVISITED, we set its status to 

OUTLIER. 

IV. EVALUATION  

We conduct all the experiments of this algorithm on a 25 

node cluster, each node consists of Intel(R) Pentium (R) CPU 
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A1018@ 2.10 GHz and 2GB RAM. The operating system 

used in the nodes is Windows 7. All nodes are hosted in a 

single track.  All algorithms were implemented using JavaC 

Compiler of version 1.5. And we used ApacheHadoop 2.6.0 

framework for MapReduce implementation. For the 

comparison of our experiments we use several algorithms to 

evaluate the performance of those algorithms with different 

inputs and the results are presented as follows. 
 

TABLE I. Summary of datasets. 

Dataset Points Size Percentage of all 

Set 1 0.4 Billions 1.77 GB 76.8% 

Set 2 0.89 Billions 2.09 GB 80% 

Set 3 2.1 Billions 3.91 GB 91% 

Set 4 1.7 Billions 1.42 GB 66.1% 

 

The above table defines the different size of data sets used 

for evaluation of different algorithms and the performance of 

all algorithms while dealing with various data set structure is 

noted to prove that DBCURE-MR as best among them. 
 

TABLE II. Average time taken on each phase. 

Dataset Map phase Shuffle phase Reduce phase 

 Load 1 Load 2 Load 1 Load 2 Load 1 Load 2 

Set 1 16 27 102 413 350 158 

Set 2 23 33 170 228 421 94 

Set 3 43 10 120 324 399 157 

Set 4 32 20 231 195 980 878 

 

To reveal the speed of this algorithm we experiments the 

different workloads on different phases. 

Comparison figures: 

i) Experimentation on time in varying no. of nodes 
 

 
 

ii) Experimentation on Speed: 
 

 
 

Performance with real life data: 

As per above figure our DBCURE-MR shows good speed 

up with real life datasets. 

V. CONCLUSION  

In this paper, we study the problem in density based 

clustering in parallelization with MapReduce framework. As 

we study about traditional DBSCAN which is difficult in 

parallelization of clustering varying density data sets. Next we 

tryout this problem by OPTICS algorithm which overcomes 

the weakness of DBSCAN. However OPTICS is hard to 

parallelize. Thus, we developed a new variant from DBSCAN 

called DBCURE, which have the advantage to work in parallel 

with MapReduce, Hadoop and can be work well with varying 

density datasets. We next develop the parallel version of 

DBCURE called DBCURE-MR which gives the correctness 

proof for efficiency and accuracy. By the experimental results, 

we showed that our DBCURE-MR finds the good clusters 

efficiently even it is large in volume and having different 

densities and scales up well with MapReduce framework. 
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