
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

215

Dr. S. Hari Ganesh and K. Shanmugavadivu, “A robust density-based clustering approach using DBCURE –MapReduce techniques,”

International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 215-219, 2017.

A Robust Density-Based Clustering Approach Using

DBCURE –MapReduce Techniques

Dr. S. Hari Ganesh
1
, K. Shanmugavadivu

2

1
Assistant Professor, H. H. The Rajah’s College, Pudukkottai- 622001
2
Research Scholar, H. H. The Rajah’s College, Pudukkottai- 622001

Email address:
1
hariganesh17[AT]gmail.com,

2
shanmugaa2786[AT]gmail.com

Abstract— Clustering is the process of grouping similar data into

clusters and dissimilar data into different clusters. Density-based

clustering is a useful clustering approach such as DBSCAN and

OPTICS. The increasing volume of data and varying size of data sets

lead the clustering process challenging. So that we propose a

parallel framework of clustering with advanced approach called

MapReduce. We develop a new algorithm DBCURE which is

modified from DBSCAN. Next we propose a newly developed parallel

algorithm called DBCURE-MR that is DBCURE algorithm is

parallelized with MapReduce framework. This proposed method finds

clusters in parallel manner efficiently.

Keywords— MapReduce, DBCURE, density based clustering,

parallelization algorithm.

I. INTRODUCTION

The growing trend of scientific applications is being expected

to deal with big data. [6] For such data concentrated

applications, the MapReduce structure in recent times has

engrossed a lot of concern. MapReduce is a programming

model that allows uncomplicated development of scalable

parallel applications to process big data on bulky clusters of

service machines. MapReduce or its open-source counterpart

Hadoop is a influential tool for building such applications. In

recent times several data mining algorithms have been

parallelized with MapReduce.

Fig. 1. Five dimensions of big data.

Data clustering is an important data mining technology

that plays a crucial role in copious scientific applications.

Clustering is a process of aggregating data points such that the

points within a single collection have similar characteristics,

whereas the points in different collection are disparate. It plays

a vital role in numerous applications such as pattern

recognition, information retrieval, social networks, image

processing, molecular biology, medical imaging and

multimedia. There are a variety of clustering algorithms such

as clustering in partitional basis, in hierarchical basis and

based on density and fuzzy clustering etc. These clustering

algorithms are classified in accordance with the creation of

clusters of objects. Determining good clusters is one of the

main goals of clustering algorithms.

DBSCAN is an valuable density-based clustering method

which was first proposed in 1996. While comparing with other

clustering algorithms, DBSCAN holds several attractive

chattels. First, it divides data into clusters with random shapes.

For example, it can find clusters entirely bounded by another

cluster. Second, DBSCAN will not consider about the number

of the clusters as a priori. Third, it is insensate to the order of

the points in the dataset. As a result, DBSCAN has achieved

great success. Conversely, DBSCAN performing efficiently in

real-world applications is challenging as a consequence of two

reasons. First, the sizes of the datasets are growing promptly

so that they cannot be held on a single machine to any further

extent and varying shapes of the datasets cannot be handled by

DBSCAN. Second, DBSCAN come at a much higher

computation complexity compared with other clustering

methods. In this paper we address these issues by proposing a

serial density based clustering algorithm namely DBCURE-

Density Based ClUsteRing algorithm for largE data that

handle the datasets of variable densities and from that we

build up a proficient parallel algorithm DBCURE-MR using

MapReduce.

Fig. 2. Types of parallel clustering algorithms.

MapReduce is a popular parallel programming platform

based on shared-nothing architecture. It received great

mailto:hariganesh17[AT]gmail.com

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

216

Dr. S. Hari Ganesh and K. Shanmugavadivu, “A robust density-based clustering approach using DBCURE –MapReduce techniques,”

International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 215-219, 2017.

accomplishment due to its simplicity, scalability and fault

tolerance. Precisely MapReduce provides users with readily

usable programming interfaces while hiding the disorganized

details for parallelism. Moreover MapReduce rifts the jobs

into small tasks and materialize the intermediate results close

by. It can scales up with thousands of commodity nodes where

node failure is normal. With experimental results we prove

that DBCURE as well as DBCURE-MR discerns the clusters

of varying densities well and DBCURE-MR steps up well

with MapReduce framework.

II. LITERATURE REVIEW

DBSCAN [1] is a density based clustering that could

produce arbitrary number of clusters in despite of the

distribution of spatial data, whereas the K-means is a centroid

based algorithm that possibly will find estimated clusters of a

definite number. [8] In a density based clustering method on

distributed systems was proposed by utilizing a distributed

spatial index call dR* tree and thus it is difficult to be adopted

in the MapReduce framework. To alleviate the sensitivity to

density parameters OPTICS was proposed in [9], and it

performs clustering with changing the radius Ɛ to find clusters

with varying densities. However it cannot be parallelized

easily using MapReduce since the points should be merged

serially to determine where to separate the clusters. [1]

MapReduce is a programming paradigm for data intensive

applications. Due to its simplicity, MapReduce can effectively

handle failures and thereby can be scaled to thousands of

nodes. [1, 10] Parallelization of DBSCAN using MapReduce

was proposed in [10].

III. RESULTS AND DISCUSSIONS

In this section we focus on finding the efficient parallel

clustering algorithm on big data having varying densities.

MapReduce Overview

MapReduce Programming Model MapReduce is a

software framework that is a basis computational model of

current cloud computing platform. Its key task is to handle

substantial amount of data. Because of its simplicity,

MapReduce can effectually deal with machine failures and

certainly expand the number of system nodes.

In the MapReduce programming model [2] data is

perceived as a series of key-value pairs like, the sequential

process of MapReduce subsists of three stages: Map, Shuffle,

and Reduce. User only writes map and reduce functions. In the

Map phase, a map task corresponds to a node in the cluster, by

means of the other word, multiple map tasks are be running in

parallel at the same time in a cluster. Every map call is given a

key-value pair (key1, val1) and generates a list of (key2, val2)

pairs. The output of the map calls is reassigned to the reduce

nodes (shuffle phase). All the intermediate records with the

same intermediate key (key2) are sent to the same reducer

node. At each reduce node, the received intermediate records

are sorted and clustered (all the midway records with the same

key form a single group). Each group is processed in a single

reduce call. The data processing can be summarized as

follows:

Map(key1,val1) list(key2, val2)

Reduce(key2,list(val2)) list(key3, val3)

Fig. 3. Workflow of MapReduce.

Fig. 4. Architecture of MapReduce.

DBCURE: A Clustering Algorithm

Alike DBSCAN algorithm our DBCURE also recurrently

implements two step procedure. In Step 1, it chooses a kernel

that is an arbitrary core point, which is an unvisited point in

dataset D. Then it insert the kernel or core point into the set S

which is collection of unvisited core points. Next in step 2, it

finds all the data points which are density reachable to the core

points in set S. Then it takes a point from set S and adds its τ-

neighborhood into set S. By repeatedly adding this

neighborhood of every core point p € S into S until S becomes

empty we can form a cluster. From that we can prove the

discovered clustering result obtained by DBCURE satisfies the

definition of density based clustering by a proof.

Definition: Density-reachable

“A point p is density-reachable from a point q with respect

to Eps and MinPts if there is a chain of points b1…,bn, b1=q,

bn=p such that bi+1 is directly density reachable from bi.” [1]

Figure 5 [1] shows an illustration of a density-reachable point

Fig. 5. Point p is density-reachable from point q and not vice versa.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

217

Dr. S. Hari Ganesh and K. Shanmugavadivu, “A robust density-based clustering approach using DBCURE –MapReduce techniques,”

International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 215-219, 2017.

DBCURE-MR: A parallel density based clustering algorithm

using MapReduce

The contour of DBCURE-MR is having the following steps:

Step1: Estimation of neighborhood covariance matrices: In

this step we estimate the neighborhood co-variance matrix for

every core point in set S.

Step2: Computation of ellipsoidal τ-neighborhoods: This step

discovers all pairs of point, each of which is within both of

their τ-neighborhoods, by performing similarity joins.

Step3: Discovery of core clusters: For a core point p, the set of

p and its directly density-reachable points is called a core

cluster. So we obtain the list of ellipsoidal τ-neighborhood

points for each core point in dataset D.

Step4: Merging of core clusters: Finally the core clusters

which are partaking the common core points are grouped

repeatedly to generate the ultimate cluster

 Algorithm Output

Step1

COVMATX1-

COVMATX2-

Statistics to estimate

Covariance matrix.

Neighborhood
covariance matrix for

every point.

Step2

 MAXMBR-MR

τ-NEIGHBOR-MR

Maximum width in the

MBR of (∑,τ)-ellipses
of all points

All pairs of points

each of which includes
the other one in its τ-

neighborhood

Step3

Every core cluster

Step4

Final clustering Result

Fig. 6. An overview of DBCURE-MR workflow.

Covariance Matrix: COVMATX-MR:

To compute covariance matrix rapidly we have to

fragment the given cluster space into number of grids by

segregating each extents of same length in T intervals. And

then we compute neighborhood covariance matrix for each

individual grids and the map function of COVMATX generate

key-value pairs (a, xi) for each points xi in dataset

Dsimultaneously using COVMATX-MR algorithm.

Computing Ellipsoidal τ-neighborhoods for every points: τ-

NEIGHBOR-MR

Afterwards we develop a new MapReduce algorithm τ-

NEIGHBOR-MR algorithm. That discovers core points with

their τ-neighborhoods. We can perform similarity join to find

τ-neighborhood in an effectual manner by manipulating the Ɛ-

tree which is used in previous research work. Every single

pair of points having the distance at most Ɛ, will be splitted

into identical rectangular grid with the width of Ɛ. Then we

can estimate the distances for every pairs of points with one

grid and its adjacent grid cells. Yet to find an ellipsoidal τ-

neighborhood for each points we cannot divide the grid space

in a uniform with in every situation. Therefore we compute

MBRs for ∑i , which means the sum of τ-ellipses of all points

and then we find the maximum width in each dimension of all

MBRs to use it as width of grids in Ɛ-tree. At this time we can

surely said that every ellipsoidal τ-neighborhood of a point is

continually in its own grid cell or its neighboring grid cells.

Fig. 7. DBCURE-MR processing.

FINDKERNEL-MR: A MapReduce Algorithm to find a core

point:

We next create an algorithm using MapReduce called

FINDKERNEL-MR. That discovers the core clusters. As per

definition of core point a point xiis said to be core whose τ-

neighborhood size is atleast δ and the output will be the point

xi and its τ-neighbor point. If it is not a core means it will give

nothing as an output. The pair of core point and its neighbor

point will form core cluster.

In this algorithm it takes the output of τ-NEIGHBOR-MR

that means the neighbor point pairs (xi, xj) as an input and the

output produced by map function in every stage is grouped in

shuffling phase. And then a table will be produced with the list

of point xi and its τ-neighborhood produced in τ-NEIGHBOR-

MR algorithm. In next phase namely reduce phase, reduce

function is invoked for every pair of point and its τ-

neighborhood (xi, Nτ(xi)). When Nτ (xi) +1 >= δ, xi is said to

be a core point and the reduce function outputs (xi, Nτ (xi)).

When Nτ (xi)+1< δ, xi is said to be border point, so the reduce

function outputs nothing. The result of FINDKERNEL-MR

algorithm is the list of points and its τ-neighborhoods called as

core cluster table.

MERGE-CLUST-MR: To produce resulting cluster by

grouping every individual clusters:

This proposed work this algorithm merges clusters

simultaneously with the help of MapReduce.

MERGE_CLUST-MR: We first conceptually split the points in

M into multiple equi-sized partitions, M1… MK. We choose

the number of partitions K to be at most the number of

machines used for reduce functions. Let Si denote the set data

structure whose nodes consist of the points in Mi only. The

pointers to the parents in Si may point to the nodes in different

Sjs (with j≠i). We decide the number of partitions K so that

FINDKERNAL-MR

MERGE-CLUST-MR

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

218

Dr. S. Hari Ganesh and K. Shanmugavadivu, “A robust density-based clustering approach using DBCURE –MapReduce techniques,”

International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 215-219, 2017.

every pair of Si and Sj together fit into the main memory of a

single reduce function. We also partition the core cluster table

R, output by FINDKERNEL-MR, into disjoint partitions,

R1,…,RK such that every 〈p, Nτ(p)〉 in Ri satisfies p € Mi. In

each Ri, whenever we see a core point x and its neighbor core

point v with v € Mi, the clusters of two core points are merged

in Si. However, when there is a core point x and its neighbor

point v € Mj (i≠j), we output the key-value pair 〈x, y〉 to

consider merging y to the cluster of x later, since we do not

know whether v is a core point or not yet by looking at Ri

only. We let P be such 〈x, y〉 s generated as output. MERGE-

CLUST-PARTIAL performs the task of merging core clusters

using MapReduce for every partition Mi in parallel.

After MERGE-CLUST-PARTIAL produces as output Sis

and P, we iteratively select each Si as apivot and do the

following by invoking MERGE-CLUST-ALL: For every pair

of Si and Sj with j≠i, if there exists 〈q, p〉 in the output P, we

merge the cluster of a point p in Sj to the cluster of a point q in

Si if needed. Note that we merge the cluster of a point p in Sj

to the cluster of a point q in Si, and not vice versa, whenever

we need to merge them. However, if any ancestor node which

does not belong to Sj is encountered while traversing the path

from p to the root (i.e., representative) node, since we cannot

update such ancestor nodes in the current execution of

MERGE-CLUST-ALL, we output 〈q, cp〉 where cp is the first

encountered ancestor node from p belonging to Sk (k≠j).

Such output of all 〈q, cp〉 s will be processed together as the

post-processing step by MERGE-CLUST-FINAL in a single

machine.

Given a core cluster table R, we first invoke MERGE-

CLUST-PARTIAL in order to obtain K disjoint-set data

structures S1,…, SK and the set of point pairs P, which consists

of the pairs(x, y) such that x and y are from different partitions

Mi and Mj(i≠j), and the clusters of x and y should be possibly

combined in later steps. Then, for loop in executes MERGE-

CLUST-ALLK times repeatedly. At the i-th iteration, Si is

broadcast to every reduce function before calling MERGE-

CLUST-ALL. Finally, MERGE-CLUST-FINAL is called.

MERGE-CLUST-PARTIAL: For each core cluster 〈x, Nτ(x)〉 in

R where x € Mi, a map function is called and emits the key-

value pair 〈i, (x, Nτ(x))〉, to partition the core cluster table R

into disjoint partitions R1,…,RK such that every 〈p, Nτ(p)〉 in

Ri satisfies p €Mi.

Afterwards the key-value pairs are congregated by keys in

the shuffling phase of the MapReduce framework, fo reach

distinct key i, a reduce function is called with Ri as input and

merges the core clusters by updating the set data structure Si,

which initially consists of single point clusters only. At the

time of merging the core clusters in Ri, if a core point x € Mi

and its neighbor point y € Mj with j≠i have to be unioned,

since we do not know whether v is a core point or not in this

reduce function with key i locally, we output the key-value

pair 〈x, y〉 to consider later whether we merge v into the

cluster of x or not. If MERGE-CLUST- PARTIAL is done, we

write the data structure Si on the distributed file system.

MERGE-CLUST-ALL: After MERGE-CLUST-PARTIAL

produces Sis and P, MERGE-CLUST-MR iteratively selects

each Si as a pivot and invokes MERGE-CLUST-ALL to

merge the clusters in every Sj (j≠i) to the clusters in Si. At the

i-th iteration of the for loop in MERGE-CLUST-MR, Si is

broadcast to every reduce function before the execution of

MERGE-CLUST-ALL. For each key-value pair 〈x, y〉 output

by MERGE-CLUST-PARTIAL, a map function is called. If

x€ Mi and y € Mj, the key-value pair 〈j, (x, y)〉 is emitted so

that the reduce function invoked with key j can merge the

cluster of y to that of x by updating Si and Sj. Then, for each

distinct key j, a reduce function is invoked, but it also receives

two disjoint-set data structures Si and Sj where Si is broadcast

by the main function of MERGE-CLUST-MR and Sj is read

from the distributed file system. If y is a core point, we merge

the cluster of y to that of x in Si by using the function

UNION-TO(v, cx, Sj) which sets the representative node of y's

cluster in Sj to point to cx which denotes the node representing

x's cluster. If y is not visited yet, since y is a border point

which should be merged into the cluster of x, not only the

cluster of y is merged to that of x but also the status of y is set

to BORDER. If MERGE-CLUST-ALL in each iteration is

done, we write the data structure Si on the distributed file

system. While there duce function with key j merges the

cluster of x € Mi to that of y € Mj, If any ancestor node is

encountered while traversing the path from x to the root (i.e.,

representative) node, since we cannot update such ancestor

nodes in the current execution of MERGE-CLUST-ALL, we

output 〈y; cx〉 where cx is the first encountered ancestor node

belongs to Sk (k≠j) from x. Werefer to such output of all 〈y,

cx〉s in the i-th iteration of the for loop in MERGE-CLUST-

MR as Fi and we let F = F1U⋯UFK . All Sis and F will be

processed together as the post processing step by MERGE-

CLUST-FINAL.

MERGE-CLUST-FINAL: We next merge the clusters, which

could not be combined by MERGE-CLUST-ALL, by using

MERGE-CLUST-FINAL. We call the serial function

MERGE-CLUST- FINAL. Note that all Sis and F produced by

MERGE-CLUST-ALL are stored in the distributed file

system. Each pair(x,y) in F implies that the cluster of y needs

to be merged into the cluster represented by the node x.

We first perform set-union operations based on(x, y) in F

to simplify the updates to all Sis. For example, assume that (x,

y) and(y, z) exist in F. If there is a node pointing to z in a Si,

we have to update the node to point to x rather than y. Thus,

before updating any Si, we perform set-union operations based

on (x, y) in F and generate a disjoint-set data structure Sf in

whose nodes consist of the distinct points appearing in F.

Then, while reading Si from disk one by one, for every node z

in Si, we consult Sf in on whether to update the node or not.

Suppose a node z points to the node y. If y exists in Sf in and

the root node of y is x in Sf in, MERGE-CLUST-FINAL

updates the node z to point to x. Moreover, if the status of

each node in Si is still UNVISITED, we set its status to

OUTLIER.

IV. EVALUATION

We conduct all the experiments of this algorithm on a 25

node cluster, each node consists of Intel(R) Pentium (R) CPU

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

219

Dr. S. Hari Ganesh and K. Shanmugavadivu, “A robust density-based clustering approach using DBCURE –MapReduce techniques,”

International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 215-219, 2017.

A1018@ 2.10 GHz and 2GB RAM. The operating system

used in the nodes is Windows 7. All nodes are hosted in a

single track. All algorithms were implemented using JavaC

Compiler of version 1.5. And we used ApacheHadoop 2.6.0

framework for MapReduce implementation. For the

comparison of our experiments we use several algorithms to

evaluate the performance of those algorithms with different

inputs and the results are presented as follows.

TABLE I. Summary of datasets.

Dataset Points Size Percentage of all

Set 1 0.4 Billions 1.77 GB 76.8%

Set 2 0.89 Billions 2.09 GB 80%

Set 3 2.1 Billions 3.91 GB 91%

Set 4 1.7 Billions 1.42 GB 66.1%

The above table defines the different size of data sets used

for evaluation of different algorithms and the performance of

all algorithms while dealing with various data set structure is

noted to prove that DBCURE-MR as best among them.

TABLE II. Average time taken on each phase.

Dataset Map phase Shuffle phase Reduce phase

 Load 1 Load 2 Load 1 Load 2 Load 1 Load 2

Set 1 16 27 102 413 350 158

Set 2 23 33 170 228 421 94

Set 3 43 10 120 324 399 157

Set 4 32 20 231 195 980 878

To reveal the speed of this algorithm we experiments the

different workloads on different phases.

Comparison figures:

i) Experimentation on time in varying no. of nodes

ii) Experimentation on Speed:

Performance with real life data:

As per above figure our DBCURE-MR shows good speed

up with real life datasets.

V. CONCLUSION

In this paper, we study the problem in density based

clustering in parallelization with MapReduce framework. As

we study about traditional DBSCAN which is difficult in

parallelization of clustering varying density data sets. Next we

tryout this problem by OPTICS algorithm which overcomes

the weakness of DBSCAN. However OPTICS is hard to

parallelize. Thus, we developed a new variant from DBSCAN

called DBCURE, which have the advantage to work in parallel

with MapReduce, Hadoop and can be work well with varying

density datasets. We next develop the parallel version of

DBCURE called DBCURE-MR which gives the correctness

proof for efficiency and accuracy. By the experimental results,

we showed that our DBCURE-MR finds the good clusters

efficiently even it is large in volume and having different

densities and scales up well with MapReduce framework.

REFERENCES

[1] Y. He, H. Tan, W. Luo, H. Mao Di Ma, S. Feng, and J. Fan, “MR-

DBSCAN: An efficient parallel density-based clustering algorithm using

MapReduce,” IEEE 17th International Conference on Parallel and
Distributed Systems, 2011.

[2] R. Gulati and Dr. R. Rani, “Efficient parallel DBSCAN algorithms for

bigdata using MapReduce,” Computer Science and Engineering
Department, Thappar university, 2016.

[3] X. Fu, S. Hu, and Y. Wang, “Research of parallel DBSCAN clustering

algorithm based on MapReduce,” International Journal of Database
Theory and Application, vol. 7, no. 3, pp. 41-48, 2014.

[4] S. Tabhane and Prof. R. A. Fadnavis “Large data computing using

clustering algorithms based on Hadoop,” International Journal of
Engineering Research and General Science, vol. 3, issue 2, pp. 1056-

1063, 2015.

[5] H. Backlund (henba892), A. Hedblom (andh893), N. Neijman
(nikne866), “DBSCAN: A Density-Based Spatial Clustering of

Application with Noise,” Linköpings Universitet – ITN, 2011.

[6] Y. Kim, K. Shim, M.-S. Kim, J. S. Lee, “DBCURE-MR: An efficient
density based clustering algorithm for large data using MapReduce,”

Information Systems, vol. 42, pp. 15-35, 2014.

[7] Y. He, H. Tan, W. Luo, S. Feng, and J. Fan, “MR- DBSCAN: a scalable
MapReduce based DBSCAN algorithm for heavily skewed data,”

Frontiers of Computer Science, vol. 8, issue 1, pp. 83-99, 2014.

[8] X. Xu, J. Jäger, and H.-P. Kriegel “A fast parallel clustering algorithm
for spatial databases,” Data Mining and Knowledge Discovery, vol. 3,

issue 3, pp. 263-290, 1999.

[9] M Ankerst, M. M. Breunig, H. P. Kriegel and J. Sander, “OPTICS:
Ordering points to identify the clustering structure,” Proc. ACM

SIGMOD’99 Int. Conf. on Management of Data, Philadelphia PA, 1999.

[10] L. Li and Y. Xi “Research on clustering algorithm and its parallelization
strategy,” International Conference on Computational and Information

Sciences (ICCIS), 2011.

[11] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density based
algorithm for discovering clusters in large spatial databases with noise,”

KDD'96 Proceedings of the Second International Conference on

Knowledge Discovery and Data Mining, pp. 226-231, 1996.
[12] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Second

Edition, 2006.
[13] K. Shim, R. Srikant, and R. Agarwal, “High dimensional similarity

joins,” IEEE Transactions on Knowledge and Data Engineering, vol. 14,

issue 1, pp. 156-171, 2002.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6085643

