The Geometrical solution, of the Regular n-Polygons and the Unsolved Ancient Greek Special Problems.

Markos Georgallides
${ }^{1}$ Larnaca (Expelled from Famagusta town occupied by the Barbaric Turks Aug-1974), Cyprus
Civil-Structural Engineer (NATUA), Athens
* Markos Georgallides : Email address : georgallides.marcos@cytanet.com.cy :

To cite this article:

Markos Georgallides : The ancient - Greek Special Problems, The Regular n-Polygons

Abstract

The Special Problems of E-geometry [47] consist the, Mould Quantization, of Euclidean Geometry in it , to become \rightarrow Monad, through mould of Space-Anti-space in itself, which is the Material Dipole in monad Structure \rightarrow Linearly, through mould of Parallel Theorem [44-45], which are the equal distances between points of parallel and line \rightarrow In Plane, through mould of Squaring the circle [46] , where two equal and perpendicular monads consist a Plane acquiring the common Plane - meter $, \pi, \rightarrow$ and in Space (volume), through mould of the Duplication of the Cube [46] , where any two Unequal perpendicular monads acquire the common Space-meter $\mathfrak{3}^{\sqrt{2}} 2$, to be twice each other.$[44-47]$ The Unification of Space and Energy becomes through [STPL] Geometrical Mould Mechanism, the minimum Energy-Quanta, In monads \rightarrow Particles, Anti-particles, Bosons, Gravity-Force, Gravity -Field, Photons, Dark Matter, and Dark-Energy , consisting the Material Dipoles in inner monad Structures [39-41]. Euclid's elements consist of assuming a small set of intuitively appealing axioms, proving many other propositions. Because nobody until [9] succeeded to prove the parallel postulate by means of pure geometric logic , many self consistent non - Euclidean geometries have been discovered, based on Definitions, Axioms or Postulates, in order that non of them contradicts any of the other postulates. It was proved in [39] that the only Space-Energy geometry is Euclidean, agreeing with the Physical reality, on AB Segment which is Electromagnetic field of the Quantized on $\overline{\mathrm{AB}}$ Energy Space Vector, on the contrary to the General relativity of Space-time which is based on the rays of the non-Euclidean geometries. Euclidean geometry elucidated the definitions of geometrycontent, i.e. $\{[$ for Point, Segment , Straight Line , Plane, Volume, Space [S], Anti-space [AS], Sub-space [SS] , Cave, The Space - Anti-Space Mechanism of the Six-Triple-Points -Line, that produces and transfers Points of Spaces, Anti-Spaces and Sub-Spaces in Gravity field [MFMF], Particles]\} and describes the Space-Energy vacuum beyond Plank's length level [Gravity`s Length \(3,969.10^{-6} 62 \mathrm{~m}\)] , reaching the absolute Point \(\equiv\) \(L_{v}=e^{i} \cdot\left(\frac{N \pi}{2}\right) b=10-N=-\infty=0 m\), which is nothing and the Absolute Primary Neutral space PNS .[43-46] . In Mechanics , the Gravity-cave Energy Volume quantity [wr] is doubled and is Quantized in Planck`s-cave Space quantity $(\mathrm{h} / 2 \pi)=$ The Spin $=2 .[\mathrm{wr}]^{3} \rightarrow$ i.e. Energy Space quantity , wr , is Quantized, doubled, and becomes the Space quantity $\mathbf{h} / \boldsymbol{\pi}$ following Euclidean Space-mould of Duplication of the cube, in Sphere volume $\mathrm{V}=(4 \pi / 3)$. $[\mathrm{wr}]^{3}$ following the Squaring of the circle, π, and in Sub-Space-Sphere volume $\sqrt{3}^{\sqrt{2}} \mathbf{2}$, and the Trisecting of the angle .

International Research Journal of Advanced Engineering and Science

ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry
Keywords : The Unsolved ancient-Greek Problems, The Nature of the Special E-Problems . The solution of All Odd-Regular - Polygons .

CONTENT

A.. Preliminaries

Definition of Quantization . : Page 3

B.. The Problems .

1.. THE SQUARING OF THE CIRCLE : Page 4
1.1. The Process of the Squaring : Page 5.
2.. THE DUPLICATION OF THE CUBE : Page 14
2.1. The Process of the Duplication : Page 15
3.. THE TRISECTION OF ANY ANGLE : Page 24
3.1. The Process of the Trisection : Page 30
4.. THE PARALLEL THEOREM : Page 33
4.4. The Process of the Parallel : Page 34
4.6. Conclusions : Page 37
5.. THE REGULAR POLYGONE IN THE CIRCLE : Page 42
5.1. The Algebraic Solution : Page 43
5.2. The Geometrical Solution : Page 50
a.. The Even and Odd Polygons : Page 50
b.. The Theory of Means : Page 52
6.. MARKOS - METHOD FOR REGULAR - POLYGONES : Page 53
6.1. The Geometrical Construction : Page 56
6.2. The Construction of All Polygons . : Page 58
6.3. The Geometrical Method (in Greek , in English). : Page 61-74
6.4. The Pentagon-Heptagon- Ninegone : Page66-[69-79]-70
6.5. The Endekagone - Dekatriagone
6.6. The Geometrical Proof
: Page
71-72
: Page
80

This article is the completion of the prior [44] and [45-47]. With pure Geometrical logic is presented the Algebraic and Geometric Solution, and the Construction of all the n-Regular Polygons of this very interested problem. A new method for the Alternate Interior angles, The Geometrical-Inversion , is now presented as this issues of the Right - Angles .
The short procession in Mechanics, presupposes a pure geometric knowledge on coupler points. The concept of, The Relation, Mould, of Angles and Lengths, is even today the main problem in science, Mechanics and Physics .Although the Mould existed in the Theory of Logarithm and in the Theory of Means this New Geometrical -Method is the Master key of Geometry and in Algebra and consequently to the Relation between Geometry and Nature, for their in between applications . The Programming of the Methods is very simple and very interesting for Computer-Programmers . In the next article [63] is prepared the Unification of Energy-monads, Black Holes, with GeometryMonads, Black Matter , through the Material-Geometry - monads and Geometrical-Inversion .

The Unsolved Ancient - Greek Problems of E-geometry and the Regular - Polygons

1.. Definition of Quantization.

Quantization is the concept (the Process) that any, Physical Quantity \rightarrow [PQ] of the objective reality (Matter, Energy or Both) is mapping the Continuous Analogous, the points, to only certain Discrete values. Quantization of Energy is done in Space-tanks, on the material points, tiny volumes and on points consisting the Equilibrium, all the Opposite Twin, of Space Anti-space. [61]
In Geometry [PQ] are the Points, the nothing, only, transformed into Segments, Lines, Surfaces , Volumes and to any other Coordinate System such as ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) , ($\mathrm{i}, \mathrm{j}, \mathrm{k})$ and which are all quantized.
Quantization of E-geometry is the way of Points to become as \rightarrow (Segments, Anti-segments $=$ Monads $=$ Anti-monads), (Segments, Parallel-segments = Equal monads), (Equal Segments and Perpendicularsegments $=$ Plane Vectors $),($ Un-equal Segments twice - Perpendicular - segments $=$ The Space Vectors $=$ Quaternion).[46]
In Philosophy [PQ] are the concepts of Matter and of Spirit or Materialism and Idealism.
a).. Anaximander, claimed that non of the elements could be, Arche and proposed, apeiron, an infinitive substance from which all things are born and to which all will return.
b).. Archimedes, is very clear regarding the definitions, that they say nothing as to whether the things defined exist or not, but they only require to be understood. Existence is only postulated in the case where [PQ] are the Points to Segments (magnitudes $=$ quantization process). In geometry we assume Point, Segment, Line, Surface and Volume, without proving their existence, and the existence of everything else has to be proved.
The Euclid`s similar figures correspond to Eudoxus` theory of proportion .
c).. Zenon, claimed that, Belief in the existence of many things rather than, only one thing, leads to absurd conclusions and for, Point and its constituents will be without magnitude. Considering Points in space are a distinct place even if there are an infinity of points, defines the Presented in [44] idea of Material Point .
d).. Materialism or and Physicalism , is a form of philosophical monism and holds that matter (without defining what this substance is) is the fundamental substance in nature and that all phenomena, including mental phenomes and consciousness, are identical with material interactions by incorporating notions of Physics such as spacetime, physical energies and forces, dark matter and so on .
e).. Idealism , such as those of Hegel, ipso facto, is an argument against materialism (the mindindependent properties can in turn be reduced to the subjective percepts) as such the existence of matter can only be assumed from the apparent (perceived) stability of perceptions with no evidence in direct experience.
Matter and Energy are necessary to explain the physical world but incapable of explaining mind and so results, dualism. The Reason determined in itself and its relation to the world creates the very old question as, what is the ultimate purpose of the world?.
f).. Hegel's conceive for mind, Idea, defines that , mind is Arche and it is retuned to [PQ] the subjective percepts, while Materialism holds just the opposite .
In Physics [PQ] are The, Electrical charge, Energy, Light, Angular momentum , Matter which are all quantized on the microscopic level. They do not seem quantized in the macroscopic scale because the size of the steps between each possible value is so small .
a).. De Broglie found that , light and matter at subatomic level display characteristics of both waves and particles which move at specific speeds called Energy-levels .
b).. Max Planck found that, Energy and frequency of the Electromagnetic radiation is quantized as relation $\mathrm{E}=\mathrm{h} . \mathrm{f}$.
In Mechanics, Kinematics describes the motion while, Dynamics causes the motion.
c).. Bohr model for Electrons in free-Atoms is the Scaled Energy levels, for Standing-Waves is the constancy of Angular momentum , for Centripetal-Force in electron orbit, is the constancy of Electric Potential, for the Electron orbit radii, is the Energy level structure with the Associated electron wavelengths.
d).. Hesiod Hypothesis [PQ] is Chaos , i.e. the Primary Point from which is quantized to Primary Anti-

International Research Journal of Advanced Engineering and Science
ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry
Point . [From Chaos came forth Erebus, the Space Anti-space, and Black Night, The [STPL] Mechanism, but of Night were born Aether, The rest Gravity dipole Field connected by the Gravity Force, and Day, Particles Anti-particles, whom she conceived and Bare, The Equilibrium of Particles Anti-particles, in Spaces Anti-spaces, from union in love with Erebus]. [43-46]
e).. Markos model for Physical Quantity $\rightarrow[\mathrm{PQ}]$ is the Energy - Monad produced from Chaos , which is the Zero - point $0=\varnothing=\{\bigoplus+\Theta\}=$ The Material-point $=$ The Quantum $=$ The Positive Space and the Negative Anti-Space , between Opposites = The equilibrium of opposite directions $\rightarrow \leftarrow$. [58-61]

The Special Greek Problems .

1.. The Squaring of the Circle .
 The Plane Procedure Method . [45-46]

The property, of Resemblance Ratio to be equal to 2 on a Square, is transferred simultaneously by the equality of the two areas, when square is equal to the circle,where that square is twice of the inscribed.

This property becomes from the linear expansion in three spaces of the inscribed $\left(\mathrm{O}, \mathrm{OG}_{\mathrm{e}}\right)$ to the circumscribed (O, OM) circle , in a circle (O, OA) as in . F.1-(1) .
1..The Extrema method of Squaring the circle F. 1

(1)
(2)
(3)
F. $1 \rightarrow$ The steps for Squaring any circle $[\mathrm{O}, \mathrm{OA}]$ or $(\mathrm{E}, \mathrm{EA}=\mathrm{EC}=\mathrm{EO})$ on diameter CA through the The Expanding of the Inscribed circle $\mathrm{O}, \mathrm{OG}_{\mathrm{e}} \rightarrow$ to the circle O, OA and to the circumscribed O,OM and the Four Polar O, A, C, P, Procedure method:
In (1) is Expanding Inscribed circle $\mathrm{O}, \mathrm{OG}_{\mathrm{e}} \rightarrow$ to circle O, OA and to circumscribed O, OM. In (2) The Inscribed square CBAO is Expanding to square CMNH and to circumscribed CAC`P In (3) The Inscribed square CBAO and its Idol CB`PO, Rotate through the pole C, Expand through Pole O on OB line, and Translate through pole P on PN chord. Extrema Edge point B_{e} of circle $\mathrm{O}, \mathrm{OB}_{\mathrm{e}}$ Rotate to A_{e} point, forming extrema square $\mathrm{CMNH}=\mathrm{NH}^{2}=\pi \cdot \mathrm{EA}^{2}$.

The Unsolved Ancient - Greek Problems of E-geometry and the Regular - Polygons .

The Plane Procedure method :

It is consisted of two equal and perpendicular vectors CA, CP, the Mechanism, where CA=CP and $\mathrm{CA} \perp \mathrm{CP}$, such, so that the Work produced is zero and this because each area is zero, with the three conjugate Poles A, C, P related to central O, with the three Pole-lines CA , CP , AP and the three perpendicular Anti -Pole-lines OB, OB`, OC, and is Converting the Rectilinear motion in (1), on the Mechanism, to Four - Polar Expanding rotational motion. The formulated Five Conjugate circles with diameters \(\rightarrow \mathrm{CA}=\mathrm{OB}, \mathrm{CP}=\mathrm{OB}^{`}, \mathrm{~EB}_{\mathrm{e}}=\mathrm{OB}\), $\mathrm{PC}=\mathrm{OB}^{`}, \mathrm{P}_{0} \mathrm{G}_{1}=\mathrm{P}_{0} \mathrm{G}^{`}{ }_{1}=\mathrm{CA}$ and also the circumscribed circle on them \leftarrow define
A System of infinite Changable Squares from \rightarrow the Inscribed CBAO to \rightarrow CMNH and to \rightarrow the Circumscribed CAC `P, through the Four - Poles of rotation.

The Geometrical construction : F. 2

1.. Let E be the center, and CA is the diameter of any circle ($\mathrm{E}, \mathrm{EA}=\mathrm{EC}$).
2.. Draw $\mathrm{CP}=\mathrm{CA}$ perpendicular at point C and also the equal diameter circle ($\mathrm{P}^{`}, \mathrm{P}^{`} \mathrm{C}=\mathrm{P}^{`} \mathrm{O}$).
3.. From mid-point O of hypotynuse AP as center, Draw the circle ($O, O A=O P=O C$) and complete squares, OCBA, OCB`P. On perpendicular diameters \(\mathrm{OB}, \mathrm{OB}\) ` and from points B, B draw the circles, $(\mathrm{B}, \mathrm{BE}=\mathrm{Be})$, ($\mathrm{B}^{`}, \mathrm{~B}^{`} \mathrm{P}^{`}$) intersecting $(\mathrm{O}, \mathrm{OA})=(\mathrm{O}, \mathrm{OP})$ circle at double points $\left[\mathrm{G}, \mathrm{G}_{1}\right],\left[\mathrm{G}^{`}, \mathrm{G}_{1}^{\prime}\right]$ respectively, and $\mathrm{OB}, \mathrm{OB}^{`}$ produced at points $\mathrm{B}_{\mathrm{e}}, \mathrm{B}_{\mathrm{e}}$, respectively.
4.. Draw on the symmetrical to OC axis, lines GG_{1} and GG_{1}^{\prime} intersecting OC axis at point P_{o}.
5.. Draw the edge circle $\left(\mathrm{O}, \mathrm{OB}_{\mathrm{e}}\right)$ intersecting CA produced at point Ae and draw PA_{e} line intersecting the circles, (O, OA), ($\mathrm{P}^{`}, \mathrm{P}^{`} \mathrm{P}$) at points $\mathrm{N}-\mathrm{H}$, respectively.
6.. Draw line NA produced intersecting the circle (E, EA) at point M and draw Segments CM, CH and complete quatrilateral CMNH , calling it the Space $=$ the System . Draw line CM`and line M`P produced intersecting circle (O,OA) at point $\mathrm{N}^{`}$ and line AN ` intersecting circle (E, EA) at point \(\mathrm{H}^{\prime}\), and complete quatrilateral \(\mathrm{CM}^{\prime} \mathrm{N}^{\prime} \mathrm{H}^{\prime}\), calling it The Anti-space \(=I d o l=\) Anti - System. \(\mathrm{P}_{1}\) 7.. Draw the circle (\(\left.P_{1}, P_{1} E\right)\) of diameter PE intersecting OA at point \(I_{g}\), and (E,EA) circle at point \(I_{b}\) A.. Show that quadrilaterals CMNH, CM`N`H` are Squares .
B.. Show that it is an Extrema Mechanism, on Four Poles where, The Two dimensional Space (the Plane) is Quantized to a System of infinite Squares $\rightarrow \mathrm{CBAO} \rightarrow \mathrm{CMNH} \rightarrow$ CAC'P, and to $\mathbf{C M N H}$ square of side $\mathbf{C M}=\mathbf{H N}$, where holds $\mathrm{CM}^{2}=\mathrm{CH}^{2}=\pi . \mathrm{EA}^{2}=\pi . \mathrm{EO}^{2}$
C. Show that, in circle ($\mathrm{E}, \mathrm{EA}=\mathrm{EC}=\mathrm{EO}=\mathrm{EB}$) the Inscribed square CBAO , the square CMNH which is equal to the circle, and the Circumscribed square CAC`P , Obey, Rotation of Squares through pole \mathbf{P}, Translation of circle (E, EO) on OB Diagonal , and Expansion in CA Segment.

International Research Journal of Advanced Engineering and Science
ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry

F. $2 \rightarrow$ The steps for Squaring the circle (E, EA = EC) on diameter CA through Plane Procedure Mechanism
1.. Draw on any Orthogonal - System $\mathrm{OA} \perp \mathrm{OC}$, the circle $(\mathrm{O}, \mathrm{OA}=\mathrm{OC})$ such that intersects the system at points $\mathrm{P}, \mathrm{C}^{`}$ respectively.
2.. Draw ($\mathrm{E}, \mathrm{EA}=\mathrm{EC}$) circle on CA hypotynousa, intersecting OE line at point B , and from point B draw the circle ($\mathrm{B}, \mathrm{BE}=\mathrm{BB}_{\mathrm{e}}$) and draw on CP hypotynousa circle ($\mathrm{P}^{`}, \mathrm{P}{ }^{`} \mathrm{C}=\mathrm{P}^{`} \mathrm{P}$)
3.. Draw circle $\left(\mathrm{O}, \mathrm{OB}_{\mathrm{e}}\right)$ intersecting CA line produced at points at point A_{e}, and Draw $\mathrm{A}_{\mathrm{e}} \mathrm{P}$ intersecting (O, OA) circle at point N , and ($\mathrm{P}^{`}, \mathrm{P}^{`} \mathrm{P}$) circle at point H .
4.. Draw NA produced at point M on (E , EA) circle, and join chord MC on circle.
5.. Square CMNH is equal to the circle (E, EA) and issues $\rightarrow \pi . \mathrm{CE}^{2}=\mathrm{CM} . \mathrm{CH}$

F.2-A \rightarrow A Presentation of the Quadrature Method on Dr. Geo-Machine Macro - constructions. The Inscribed Square CBAO, with Pole-line AOP, rotates through Pole P , to the \rightarrow Circle - Square CMNH with Pole-line NHP, and to the \rightarrow Circumscribed Square CAC`P , with Pole - line \(\mathrm{C}^{`} \mathrm{PP} \equiv \mathrm{C}\) - , of the circle $\mathrm{E}, \mathrm{EO}=\mathrm{EC}$.
The limiting Position of circle ($\mathbf{E}, \mathbf{E B})$ to $\left(\mathbf{B}, \mathbf{B E}=\mathbf{B B}_{\mathbf{e}}\right)$ defines B_{e} point, and $\mathrm{OB}_{\mathrm{e}}=0 \mathrm{~A}_{\mathrm{e}}$ radius, such that CMNH Square be equal to $\pi . \mathrm{OA}^{2}$.
The Initial relation Position $\mathrm{CE}^{2}=\mathrm{EB} \cdot \mathrm{EO}=\mathrm{EO}^{2}=\frac{(\mathrm{CA})^{2}}{4}$ becomes $\rightarrow \frac{(\mathrm{CN})^{2}}{4}=\pi \cdot \frac{(\mathrm{CA})^{2}}{4}$, for all Squares $\mathrm{C}_{\mathrm{m}} \mathrm{N}_{\mathrm{z}} \mathrm{H}_{\mathrm{z}}$ on circles of Expanding radius OG_{e} to OB , to OB_{e} and to OZ . This has a Special-reason for square CE^{2} to become equal to number π.

The Unsolved Ancient - Greek Problems of E-geometry and the Regular - Polygons .

Analysis:

In (1) - F. 2 , Radius EA $=E C$ and the unique circle $(E, E A)$ of Segment AC, where AC, CA is The monad the Anti-monad.
In (2) - F.2, Since circles (E , EA) , ($\mathrm{P}^{`}, \mathrm{P}^{`} \mathrm{P}$) are symmetrical to OC axis (line) then are equal (conjugate) and since they are Perpendicular so \rightarrow No work is executed for any motion \leftarrow.
In (3) Points A , C, P and O are the constant Poles of Rotation, and OB , OB`, OC - C A , CP , AP the Six, Pole and Anti-Pole, lines, of sliding points \(\mathrm{Z}, \mathrm{Z}^{`}\), and $\mathrm{A}_{\mathrm{Z}}, \mathrm{A}^{\prime}{ }_{\mathrm{z}}$, while CA, CP are the constant Pole - lines $\left\{\mathrm{PA}, \mathrm{PA}_{\mathrm{e}}, \mathrm{PA}_{\mathrm{Z}}, \mathrm{PC} `\right.$, of Rotation through pole P .
In (4) Circles (E, EO) , ($\mathrm{P}^{`}, \mathrm{P}^{`} \mathrm{O}$) on diameters $\mathrm{OB}, \mathrm{OB}^{`}$ follow, My Theorem of the three circles on any Diameters on a circle , where the pair of points G, G_{1} and $G^{\prime}, \mathrm{G}_{1}^{\prime}$ consist a Fix and Constant system of lines GG_{1} and $\mathrm{G}^{`} \mathrm{G}_{1}$. When Points Z, Z` coincide with the Fix points B, B` and thus forming the inscribed Square CBAO or CZAO, (this is because point Z is at point A).
The PA, Pole-line, rotates through pole P where $\mathrm{G}_{\mathrm{e}}, \mathrm{B}_{\mathrm{e}}$, are the Edge points of the sliding poles on this Rectilinear-Rotating System .
In (5) When point Point $Z \equiv B, Z^{\prime} \equiv B^{`}$ on lines $O B, O^{`}$, then points A_{z}, A_{z}^{\prime}, are the Sliding points while CA , CP , are the constant Pole - lines $\left\{\mathrm{PA}, \mathrm{PA}_{\mathrm{z}}, \mathrm{PA}_{\mathrm{e}}, \mathrm{PC}\right\}$, of Rotation through pole P .
Sliding points $\mathrm{Z}, \mathrm{Z}^{`}, \mathrm{~A}_{\mathrm{z}}, \mathrm{A}_{\mathrm{z}}^{\prime}$, are forming Squares $\mathrm{CMNH}, \mathrm{CM}^{\wedge} \mathrm{N}^{`} \mathrm{H}^{`}$, and this as in Proof [A-B] below, where $\mathrm{PN}, \mathrm{AN}^{`}$ are the Pole-lines rotating through poles P, A, and diamesus HM passes through O . The circles (E, EO), ($\mathrm{P}^{`}, \mathrm{P}^{`} \mathrm{O}$) on diameters $\mathrm{OB}, \mathrm{OB}^{`}$, blue color, follow also , my Theorem of the Diameters on a circle which follows .
In (6), Sliding poles Z , Z ` being at Edge point \(\mathrm{G}_{\mathrm{e}} \equiv \mathrm{Z}\) formulates CBAO Inscribed square, at Edge point \(\mathrm{B}_{\mathrm{e}}, \mathrm{B}_{\mathrm{e}} \equiv \mathrm{Z}\) formulates CMNH equal square to that of circle and, at Edge point \(\mathrm{B} \infty\), formulates CAC'P square, which is the Circumscribed square. In (7), are holding \(\rightarrow\) CBAO the Inscribed square, CMNH , The equal to the \((\mathrm{E}, \mathrm{EO}=\mathrm{P} \bigcirc \mathrm{O})\) Circle-square, and CAC`P the Circumscribed square.

F.3. \rightarrow Markos Theorem, on any $O B$ diameter on a circle .

Theorem: [F.1-(2)], F. 3
On each diameter OEB of any circle ($\mathbf{E}, \mathbf{E} \mathbf{B}$) we draw,
1.. the circumscribed circle ($\mathrm{O}, \mathrm{OA}=\mathrm{OE} . \sqrt{ } 2$) at the edge point O as center,
2.. the inscribed circle $(\mathrm{E}, \mathrm{OE} / \sqrt{ } 2=\mathrm{OA} / 2=\mathrm{EG})$ at the mid-point E as center,
3.. the circle $\left(\mathrm{B}, \mathrm{BE}=\mathrm{B}, \mathrm{B}_{\mathrm{e}}\right)=(\mathrm{E}, \mathrm{EO})$ at the edge point B as center,

Then the three circles pass through the common points $\mathrm{G}, \mathrm{G}_{1}$, and the symmetrical to OB point G_{1} forming an axis perpendicular to OB , which has the Properties of the circles, where the tangent from point B to the circle $(\mathrm{O}, \mathrm{OA}=\mathrm{OC})$ is constant and equal to $2 . \mathrm{EB}^{2}$, and has to do with , Resemblance Ratio equal to 2 . Circle is squared on this Geometric Procedure by Rotation ,Expantion and Translation.
The Common-Proofs [A-B-C] :
In F.1-(2), F.2-(5),
Angle $<\mathrm{CHP}=90^{\circ}$ because is inscribed on the diameter CP of the circle ($\mathrm{P}^{\prime}, \mathrm{P}^{\prime} \mathrm{P}$).
The supplementary angle $<\mathrm{CHN}=180-90=90^{\circ}$. Angle $<\mathrm{PNA}=\mathrm{PNM}=90^{\circ}$ because is inscribed on the diameter AP of the circle (O, OA) and Angle $<\mathrm{CMA}=90^{\circ}$ because is inscribed on the diameter $C A$ of the circle $(E, E A=E C)$.
The upper three angles of the quadrilateral CHMN are of a sum of $90+90+90=270$, and from the total of 360°, the angle $<\mathrm{MCH}=360-270=90^{\circ}$, Therefore shape $C M N H$ is rightangled and exists $\mathrm{CM} \perp \mathrm{CH}$.
Since also $\mathrm{CM} \perp \mathrm{CH}$ and $\mathrm{CA} \perp \mathrm{CP}$ therefore angle $<\mathrm{MCA}=\mathrm{HCP}$.
The rightangled triangles $\mathrm{CAM}, \mathrm{CPH}$ are equal because have hypotynousa $\mathrm{CA}=\mathrm{CP}$ and also angles $<\mathrm{CMA}=\mathrm{CHP}=90^{\circ},<\mathrm{MCA}=\mathrm{HCP}$, therefore side $\mathbf{C H}=\mathbf{C M}$, and Because $\mathbf{C H}=\mathbf{C M}$, the rechtangle CMNH is Square . The same for Square CM`N`H` . (o.c. \(\delta\)),(q.e.d). This is the General proof of the squares on this Mechanism without any assumptions . From the equal triangles \(\mathrm{COH}, \mathrm{CBM}\) angle \(<\mathrm{CHO}=\mathrm{CHM}=45^{\circ}\) because lie on CO chord, and so points H,O,M lie on line HM i.e. On CA line, Any segment \(\mathbf{P A} \rightarrow \mathbf{P A}_{\mathbf{z}} \rightarrow \mathbf{P A}_{\mathbf{e}} \rightarrow \mathbf{P C}=\mathbf{C A}\), drawn from Pole, \(\mathbf{P}\), beginning from A to \(\infty\), is intersecting the circumscribed (\(\mathrm{O}, \mathrm{OA}\)) circle, and the circle \(\left(\mathrm{P}^{`}, \mathrm{P}^{`} \mathrm{P}=P^{`} C=E O=E C\right.\)) at the points N, H, and Formulates Squares CBAO, $\mathrm{CMNH}, \mathrm{CM}_{\mathrm{z}} \mathrm{N}_{\mathrm{z}} \mathrm{H}_{\mathrm{z}}, \mathrm{CAC}$ P respectively, which are, The Inscribed, In-between, Circumscribed Squares, of circle (O, OE) $=(\mathrm{E}, \mathrm{EO}=\mathrm{EB})=(\mathrm{P}, \mathrm{P} \bigcirc$) . Since angles $<\mathrm{CA}_{\mathrm{z}} \mathrm{P}, \mathrm{HCP}$ have their sides $\mathrm{CA}_{\mathrm{z}} \perp \mathrm{CP}, \mathrm{A}_{\mathrm{z}} \mathrm{P} \perp \mathrm{CH}_{\mathrm{z}}$ perpendicular each other, then are equal so angle $<\mathrm{PA}_{\mathrm{z}} \mathrm{C}=\mathrm{PCH}_{\mathrm{z}}$, and so point A_{z}, is common to circle O, OZ, Pole-line CA , and Poleaxis PN , where the perpendicular to CM .
Since PE is diameter on ($\mathrm{P}_{1}, \mathrm{P}_{1} \mathrm{P}$) circle, therefore triangle E. $\mathrm{I}_{\mathrm{g}} . \mathrm{P}$ is right-angled and segment , E_{g}, perpendicular to OA and equal to $\mathrm{OE} / \sqrt{ } 2=\mathrm{OA} / 2$, the radius of the Inscribed circle. Since also point, I_{g}, lies on PA , therefore moves on ($\mathrm{P}_{1}, \mathrm{P}_{1} \mathrm{P}$) circle and point A on CA Pole-line, and so point B is on the same circle as A_{z}, while point B moves on circle $E, E B$.
B.. Proof (1) : F.2-(5) , F.2-A
(1) Any Point \mathbf{Z}, which moves on diameter $O B$ produced, Beginning from Edge-point $\mathbf{G}_{\mathbf{e}}$ of the first circle, Passing from center \mathbf{B} of the second circle, Passing from Edge-point $\mathbf{B}_{\mathbf{e}}$ of the third circle, and Ending to infinite ∞, \rightarrow Creates on the three circles $(\mathrm{O}, \mathrm{OA}),(\mathrm{E}, \mathrm{EO}),(\mathrm{B}, \mathrm{BE})$, with their centers on the diameter OB , the Changeable moving Squares
a)..The Inscribed $\mathbf{C B A O}$, when point $Z \equiv \mathrm{G}_{\mathrm{e}}$ and center point O ,
b)..The In-between $\quad \mathbf{C M}_{\mathbf{z}} \mathbf{N}_{\mathbf{z}} \mathbf{H}_{\mathbf{z}}$ when point $\mathrm{Z} \equiv \mathrm{B}$ and center point E ,
c)..The Extrema CMNH, when point $Z \equiv B_{e}$ and center point B,
d)..The Circumscribed CAC'P . when point $Z \equiv B_{\infty}$ and center point ∞,
(2). Through the four constant Poles A,C,P - O of the Plane Procedure Mechanism, Squares Rotate through P, the Sides and Diamesus Slide on OB as Squares, Anti-Squares. Point \mathbf{Z} moving from Edge points G_{e} (forming Inscribed square CBAO) , to in-between points $\mathrm{G}_{\mathrm{e}}-\mathrm{B}_{\mathrm{e}}$ (forming squares $\mathrm{CM}_{\mathrm{z}} \mathrm{N}_{\mathrm{z}} \mathrm{H}_{\mathrm{z}}$), to Extrema point B_{e} (forming square CMNH equal to the circle), and to $\mathrm{B}_{\mathrm{e}}-\infty$.
(3). Point I_{g}, belongs to the Inscribed circle (E, EO) and is Rotating, expanding, Inscribed Edge poind on ($\mathrm{P}_{1}, \mathrm{P}_{1} \mathrm{P}$) circle to $\mathrm{I}_{\mathrm{g}}, \mathrm{I}_{\mathrm{b}}, \mathrm{I}_{\mathrm{e}}$ and to $\rightarrow \mathrm{P}$ point .

The other two , Sliding, Edge moving points

B ,A slide on OB , CA , Pole-lines respectively .In Initial square COAB and rightangled triangle COB the side CE squared is $\mathrm{CE}^{2}=\mathrm{EB} \cdot \mathrm{EO}=[\sqrt{ } 2 \mathrm{CB} / 2] .[\sqrt{ } 2 \mathrm{CB} / 2]=\mathrm{CB}^{2} / 2$. In Edge square CMNH and rightangled triangle CHM the side $\mathrm{CN} / 2$ squared is $\mathrm{CE}_{\mathrm{e}}{ }^{2}=\mathrm{E}_{\mathrm{e}} \mathrm{M} . \mathrm{E}_{\mathrm{e}} \mathrm{H} .=[\sqrt{ } 2 \mathrm{CM} / 2] .[\sqrt{ } 2 \mathrm{CM} / 2]=\mathrm{CM}^{2} / 2$. In Infinite square CAC ${ }^{`}$ and rightangled triangle CPA the side $\mathrm{CC}^{`} / 2=\mathrm{CO}$ squared is $\mathrm{CO}^{2}=\mathrm{OA} . \mathrm{OP}=$ $[\sqrt{ } 2 \mathrm{CA} / 2] \cdot[\sqrt{ } 2 \mathrm{CA} / 2]=\mathrm{CA}^{2} / 2$.From above relations and since $\mathrm{CE}=\mathrm{OE}, \mathrm{CE}_{\mathrm{e}}=(\mathrm{HM} / 2), \mathrm{CO}=\mathrm{CC} / 2$ then ,
$\mathrm{OE}^{2}=\mathrm{CB}^{2} / 2=2 \cdot \mathrm{CE}^{2} / 2=[2 / 2] . \mathrm{CE}^{2}=\mathrm{k} . \mathrm{CE}^{2}$, where $\mathrm{k}=[2 / 2]=1$
$\mathrm{CE}_{\mathrm{e}}{ }^{2}=\mathrm{CM}^{2} / 2=\mathrm{k} .\left(\mathrm{CB}^{2} / 2\right)$ where $\mathrm{k}=\mathrm{CM}^{2} / \mathrm{CB}^{2}=\mathrm{CM}^{2} / 2 \mathrm{CE}^{2}$
$\mathrm{CO}^{2}=\mathrm{CA}^{2} / 2=2 \cdot\left[\mathrm{CB}^{2} / 2\right]=2 \cdot \mathrm{CE}^{2}=\mathrm{k} . \mathrm{CE}^{2}$, where $\mathrm{k}=[2 / 2 / 2]=2$
A - Proof (2) : F.2-(5),F.2-A
Since $B C \perp C O$, the tangent from point B to the circle $(O, O A)$ is equal to :
$\mathbf{B C}^{2}=\mathrm{BO}^{2}-\mathrm{OC}^{2}=(2 . \mathrm{EB})^{2}-(\mathrm{EB} \cdot \sqrt{ } 2)^{2}=2 \cdot \mathrm{~EB}^{2}=(2 \cdot \mathrm{~EB}) \cdot \mathrm{EB}=(\mathbf{2} \cdot \mathbf{B G}) . \mathbf{B G}$ and since $2 \cdot \mathrm{BG}=$
BG_{1} then $\mathbf{B C} \mathbf{C}^{2}=\mathbf{B G} . \mathbf{B} \mathbf{G}_{\mathbf{1}}$, where point G_{1} lies on the circumscribed circle, and this means that BG produced intersects circle $(O, O A)$ at a point G_{1} twice as much as $B G$. Since E is the mid-point of $B O$ and also G midpoint of $B G_{1}$, so EG is the diamesus of the two sides $B O, B G_{1}$ of the triangle $B O G_{1}$ and equal to $1 / 2$ of radius $O G_{1}=O C$, the base, and since the radius of the inscribed circle is half $(1 / 2)$ of the circumscribed radius then the circle ($\mathbf{E}, \mathbf{E B} / \sqrt{2}=\mathbf{O A} / 2$) passes through point \mathbf{G}. Because BC is perpendicular to the radius OC of the circumscribed circle, so $\boldsymbol{B C}$ is tangent and equal to $\mathrm{BC}^{2}=2 . \mathrm{EB}^{2}$, i.e. the above relation.
Proofs F.(2): (5-6) :

Following again prior $A-B$ common proof,

Angle $<\mathrm{CHP}=90^{\circ}$ because is inscribed on the diameter CP of the circle ($\mathrm{P}^{\prime}, \mathrm{P}^{\prime} \mathrm{P}$) . The supplementary angle $<\mathrm{CHN}=180-90=90^{\circ}$. Angle $<\mathrm{PNA}=\mathrm{PNM}=90^{\circ}$ because is inscribed on the diameter AP of the circle (O, OA) and Angle $<\mathrm{CMA}=90^{\circ}$ because is inscribed on the diameter CA of the circle ($\mathrm{E}, \mathrm{EA}=\mathrm{EC}$). The upper three angles of the quadrilateral CHMN are of a sum of $90+90+90=270$, and from the total of 360°, the angle $<\mathrm{MCH}=360-270=90^{\circ}$, therefore shape CMNH is rightangled and exists $\mathrm{CM} \perp \mathrm{CH}$.
Since also $\mathrm{CM} \perp \mathrm{CH}$ and $\mathrm{CA} \perp \mathrm{CP}$ therefore angle $<\mathrm{MCA}=\mathrm{HCP}$.
The rightangled triangles $\mathrm{CAM}, \mathrm{CPH}$ are equal because have hypotynousa $\mathrm{CA}=\mathrm{CP}$ and also angles $<\mathrm{CMA}=\mathrm{CHP}=90^{\circ}$, $\angle \mathrm{MCA}=\mathrm{HCP}$ and side $\mathrm{CH}=\mathrm{CM}$ therefore, rechtangle CMNH is Square on CA,CP Mechanism, through the three constant Poles C,A,P of rotation. The same for square $\mathrm{CM}^{\prime} \mathrm{N}^{\prime} \mathrm{H}^{\prime}$. From the equal triangles $\mathrm{COH}, \mathrm{CBM}$ angle $<\mathrm{CHO}=\mathrm{CHM}=45^{\circ}$ then points $\mathrm{H}, \mathrm{O}, \mathrm{M}$ lie on line HM .i.e. Diagonal HM of squares CMNH on Mechanism passes through central Pole O.

The two equal and perpendicular vectors CA , CP, which is the Plane Mechanism, of these Changable Squares through the two constant Poles \mathbf{C}, \mathbf{P} of rotation, is converting the Circular motion to Four - Polar Rotational motion, and as linear motion through points \mathbf{O}, \mathbf{A}.
Transferring the above property to [$\mathrm{F} .2-(5)$] then when point Z moves on OB line \rightarrow Point A_{Z} moves on CA and $\rightarrow \mathrm{PA}_{Z}$ Segment rotates through point P, defining on circle ($\left.P_{1}, P_{1} P=P_{1} E\right)$, the Idol , [the points I_{Z} on circles $\mathrm{O}, \mathrm{OA}=$ The Circumscribed $\mathrm{P}^{`} \mathrm{P} ` \mathrm{O}=$ The Circle $]$, and points H,N such that shapes \rightarrow CHNM are all Squares between the Inscribed and Circumscribed circle . i.e.

Archimedes trial , The Central - Expansion of the Inscribed to the Circumscribed circle , is altered to the equivalent as , Polar and Axial motion on this Plane Mechanism .

The areas of above circles are \rightarrow
Area of Inscribed $\quad=\frac{1}{2} \pi \cdot \mathrm{OE}^{2}=\frac{1}{2} \quad \pi \cdot \frac{\mathrm{CB}^{2}}{2}=\pi \cdot \frac{\mathrm{CB}^{2}}{4}=\left[\frac{k \pi}{4}\right] . \mathrm{CB}^{2}$
Area of Circle $\quad=1 \pi \cdot \mathrm{OE}^{2}=1 \pi \cdot \frac{\mathrm{CM}^{2}}{2}=\mathrm{k} \pi \cdot \frac{\mathrm{CB}^{2}}{4}=\left[\frac{k \pi}{4}\right] . \mathrm{CB}^{2}$
Area of Circumscribed $=2 \pi \cdot \mathrm{OE}^{2}=2 \quad \pi \cdot \frac{\mathrm{CA}^{2}}{2}=2 \mathrm{k} \pi \cdot \frac{\mathrm{CB}^{2}}{4}=\left[\frac{k \pi}{2}\right] . \mathrm{CB}^{2}$
and those of corresponding squares, then one square of Plane Mechanism is equal to the circle , but which one ??.

\rightarrow That square which is formed in Extrema Case of The Plane Mechanism :

The radius of the inscribed circle is $\mathrm{AB} / 2$ and equal to the perpendicular distance between center E and OA, so any circle of EP diameter passes through the edge-point $\left(\mathrm{I}_{\mathrm{g}}\right)$, and point $\left(\mathrm{I}_{\mathrm{b}}\right)$ is the Edge common point of the two circles. G_{e},
The Common Edge -Point of the three circles is (I_{e}) belongs to the Edge point Be of circle ($\mathrm{B}, \mathrm{BE}=\mathrm{BB}_{\mathrm{e}}$), so exists ,

Case : [1] [2] [3] [4]
Point $\quad \mathbf{Z}$ at $\rightarrow \quad \mathrm{G}_{\mathrm{e}} \quad \mathrm{B} \quad \mathrm{B}_{\mathrm{e}} \quad \mathrm{B}_{\infty}$
Point $\quad \mathbf{A}$ at $\rightarrow \quad \mathrm{A} \quad \mathrm{A}(\mathrm{I}) \quad \mathrm{A}_{\mathrm{e}} \quad \mathrm{A}_{\infty}$
$\begin{array}{ccccc}\text { Point } \quad \text { Ig at } \rightarrow & \mathrm{I}_{\mathrm{g}} & \mathrm{I}_{\mathrm{Z}}=\mathrm{I}_{\mathrm{b}} & \mathrm{I}_{\mathrm{e}} & \mathrm{P} \\ & \downarrow & \downarrow & \downarrow & \downarrow\end{array}$
Square $\quad \mathrm{CBAO}, \quad \mathrm{CM}_{\mathrm{i}} \mathrm{N}_{\mathrm{i}} \mathrm{H}_{\mathrm{i}}, \mathrm{CMNH}, \mathrm{CAC}$ P
i.e. Square CMNH of case [3] is equal to the circle, and $\mathbf{C M}^{2}=\mathbf{C H}^{2}=\boldsymbol{\pi} \cdot \mathbf{E A}^{2}=\boldsymbol{\pi} \cdot \mathbf{E O}^{2}$

On the three Circles (E, EO) , $\left(\mathrm{P}_{1}, \mathrm{P}_{1}, \mathrm{P}\right),(\mathrm{O}, \mathrm{OZ})$ and Lines OB, CA exists $\rightarrow \mathrm{F} .2-(5)$
a)..Circle $\left(\mathrm{O}, \mathrm{OZ}=\mathrm{OG}_{e}\right)$ is Expanding to $\rightarrow\left(\mathrm{O}, \mathrm{OZ}=\mathrm{OB}_{\mathrm{e}}\right)$ Circumscribed circle, for the Inscribed CBAO square,
b).. Point A , to $\rightarrow\left(\mathrm{A}-\mathrm{A}_{\mathrm{Z}}\right)$ is The Expanding Pole-line $\mathrm{A}-\mathrm{A}_{\mathrm{Z}}$ for the In-between $\mathrm{CM}_{\mathrm{Z}} \mathrm{N}_{\mathrm{Z}} \mathrm{H}_{\mathrm{Z}}$ square,
c).. Circle ($\mathrm{P}_{1}, \mathrm{P}_{1} \mathrm{I}_{\mathrm{g}}$) is Expanding to $\rightarrow\left(\mathrm{P}_{1}, \mathrm{P}_{1} \mathrm{I}_{\mathrm{b}}\right)$ Inscribed circle $\left(\mathrm{E}, \mathrm{E} . \mathrm{I}_{\mathrm{g}}\right)$ to I_{b} and I_{e} point.
d).. Circle ($O, O B \rightarrow O B_{\infty}$, Pole-lines $\left(A-A A_{e} \rightarrow A_{\infty}\right.$) and ($P-P I_{e}=P P \rightarrow P$), for CAC`P square , Point N on (O,OA), belongs to Circumscribed circle Point \(\mathrm{I}_{\mathrm{e}}\), on circle with diameter, PE , belongs to the Inscribed circle (\(\mathrm{E}, \mathrm{EI}_{\mathrm{g}}=\mathrm{EG}\)) Point H , on (\(\mathrm{P}^{`}, \mathrm{P} \mathrm{O}\)), belongs to the Circle.
i.e. It was found a Mechanism where the Linearly Expanding Squares \rightarrow CBAO-CMNH$\mathbf{C A C} \mathbf{P}$, and circles $\rightarrow\left(\mathrm{P}_{1}, \mathrm{P}_{1} \mathbf{E}\right)-(\mathbf{B}, \mathbf{B E})-(\mathbf{O}, \mathbf{O A})$, which are between the Inscribed and Circumscribed ones, are Polarly - Expanded as Four-Polar Squares.
The problem is in two dimensions determining an edge square between the inscribed and the circumscribed circle. A quick measure for radius $\mathrm{r}=2694 \mathrm{~m}$ gives side of square 4775 m and $\pi=3,1416048 \rightarrow 11 / 10 / 2015$

> The Segments $\mathbf{C M}=\mathbf{C M}$ `, is the Plane Procedure Quantization of radius $\mathbf{E C}=\mathbf{E O}=\mathbf{C P}$ in Euclidean Geometry, through this Mould, the Mechanism.

The Plane Procedure Method is called so, because it is in two dimensions $\rightarrow \mathrm{CA} \perp \mathbf{C P}$, as this happens also in, Cube mould , for the three dimensions of the spaces, which is a Geometrical machine for constructing Squares and Anti-Squares and that one equal to the circle .
This is the Plane Quantization of, E - Geometry, i.e. The Area of square CMNH is equal to that of one of the five conjugate circles, or $\mathrm{CM}^{2}=\pi . \mathrm{CE}^{2}$, and System with number π tobe a constant. Remarks :

Since Monads $\mathrm{AC}=\mathrm{ds}=0 \rightarrow \infty$ are simultaneously (actual infinity) and (potential infinity) in Complex number form, this defines that the infinity exists also between all points which are not coinciding, and ds comprises any two edge points with imaginary part, for where this property differs between the infinite points between edges. This property of monads shows the link between Space and Energy which Energy is between the points and Space on points.
In plane and on solids, energy is spread as the Electromagnetic field in surface .
The position and the distance of points, can be calculated between the points and so to
perform independent Operations (Divergence, Gradient, Curl, Laplacian) on points .
This is the Vector relation of Monads, ds = CA , or , as Complex Numbers in their general form $\mathbf{w}=\mathbf{a}+\mathbf{b} \mathbf{i} \mathbf{i}=$ discrete and continuous), and which is the Dual Nature of Segments $=$ monads in Plane, tobe discrete and continuous). Their monad - meter in Plane, and in two dimensions is CM, the analogous length, in the above Mechanism of the Squaring the circle with monad the diameter of the circle. Monad is $\mathbf{d s}=\mathrm{CA}=\mathrm{OB}$, the diameter of the circle (E ,EA) with CBAO Square, on the Expanding by Transportation and Rotation Mechanism which is \rightarrow \{Circumscribed circle (O,OA) Inscribed circle $\left(\mathrm{E}, \mathrm{EG}=\mathrm{EI}_{\mathrm{g}}\right)$ - Circle $\left.(\mathrm{B}, \mathrm{BE})\right\} \leftarrow$ In extended moving System $\rightarrow\{\mathrm{OB}$ Pole-line -CA Pole-line - Circle $\left.\left(\mathrm{P}_{1}, \mathrm{P}_{1} \mathrm{~B}=\mathrm{P}_{1} . \mathrm{I}_{\mathrm{g}}\right)\right\}$, and is quantized to CMNH square.
The Plane Ratio square of Segments - CE , CM - is constant and Linear, and for any Segment CN / 2 on circle in Square CMNH exists another one CE such that,

$$
\rightarrow \mathbf{E C}^{2} /(\mathbf{C N} / 2)^{2}=\mathrm{k}=\text { constant } \leftarrow
$$

i.e. the Square Analogy of the Heights in any rectangle triangle COB is linear to Extrema Semi segments ($\mathrm{CN} / 2$) or to ($\mathrm{CA} / 2$), or the mapping of the continuous analog segment CE to the discrete segment (CN/2).

The Physical notion of Quadrature :

The exact Numeric Magnitude of number , π, may be found only by numeric calculations.[44] All magnitudes exist on the <Plane Formation Mechanism of the first dimentional unit AB > as geometrical elements consisting, the Steady Formulation, (The Plane System of the Isosceles Right-angle triangle ACP with the three Circles on the sides) and the moving and Changeable Formulation of the twin, System-Image, (This Plane Perpendicular System of Squares, Antisquares is such that, the Work produced in a between closed area to be equal to zero). Starting from this logic of correlation upon Unit, we can control Resemblance Ratio and construct all Regular Polygons on the unit Circle as this is shown in the case of squares . On this System of these three circles F. 3 (The Plane Procedure Mechanism which is a Constant System) is created also, a continues and, a not continues Symmetrical Formation, the changeable System of the Regular Polygons, and the Image (Changeable System of Regular anti-Polygons) the Idol , as much this in Space and also in Time, and was proved that in this Constant System , the Rectilinear motion of the Changeable Formation is Transformed into a twin and Symmetrically axial-centrifugal Pole rotation (this is the motion on System) .
The conservation of the Total Impulse and Momentum, as well as the conservation of the Total Energy in this Constant System with all properties included, exists in this Empty Space of the undimensional point Units of mechanism.
All the forgoing referred can be shown (maybe presented) with a Ruler and a Compass, or can be seen, live, on any Personal Computer. The method is presented on Dr.Geo machine .

By extending Euclid logic of Units on the Unit circle to unknown and now proved Geometrical unit elements, thus the settled age-old question for the unsolved problems is now approached and continuously standing solved. All Mathematical interpretation and the relative Philosophical reflections based on the theory of the non-solvability must properly revised.

Application in Physics :

From math theory of Elasticity, Cauchy equations of Stresses in three dimensions are ,
$\frac{\partial \sigma \mathrm{x}}{\partial \mathrm{x}}+\frac{\partial \tau \mathrm{yx}}{\partial \mathrm{y}}+\frac{\partial \tau \mathrm{zx}}{\partial \mathrm{z}}+\mathrm{X}=0 \quad \frac{\partial \tau \mathrm{xy}}{\partial \mathrm{x}}+\frac{\partial \sigma \mathrm{y}}{\partial \mathrm{y}}+\frac{\partial \tau \mathrm{xy}}{\partial \mathrm{z}}+\mathrm{Y}=0 \frac{\partial \tau \mathrm{xz}}{\partial \mathrm{x}}+\frac{\partial \tau \mathrm{yz}}{\partial \mathrm{y}}+\frac{\partial \sigma \mathrm{z}}{\partial \mathrm{z}}+\mathrm{Z}=0 \quad$ where are,
$\sigma \mathrm{x}, \sigma \mathrm{y}, \sigma \mathrm{z}=$ Principal stresses in $\mathrm{x}, \mathrm{y}, \mathrm{z}$ axis, $\tau \mathrm{xy}, \tau \mathrm{xz}, \tau \mathrm{yz}=$ shear-stresses in $\mathrm{xy}, \mathrm{xz}, \mathrm{yz}$ Plane, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}=$ The components of external forces and of Strain, $\frac{\partial^{2} \mathrm{u}}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0, \frac{\partial}{\partial \mathrm{x}} \frac{\partial \mathrm{v}}{\partial \mathrm{y}}=0, \frac{\partial}{\partial \mathrm{x}} \frac{\partial \mathrm{w}}{\partial \mathrm{z}}=0$ where $\mathrm{u}=\mathrm{u}(\mathrm{y}, \mathrm{z}) \rightarrow$ are Deformation components, the displacements , in y, z axis .
$\mathrm{v}=\mathrm{cxz}=$ the Rotation on z , axis
$\mathrm{w}=-\mathrm{c} \mathbf{x}$ y Anti-rotation in y axis .
Applying above equations on an orthogonal section of a solid, then exist the differential equations of equilibrium, and for the boundary conditions is found that, the Stress function is satisfying equations

$$
\begin{equation*}
\frac{\partial \tau \mathrm{yx}}{\partial \mathrm{y}}+\frac{\partial \tau \mathrm{zx}}{\partial \mathrm{z}}=\frac{\partial \gamma \mathrm{yx}}{\partial \mathrm{y}}+\frac{\partial \gamma \mathrm{zx}}{\partial \mathrm{z}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{y}^{2}}+\frac{\partial}{\partial \mathrm{x}} \frac{\partial \mathrm{v}}{\partial \mathrm{y}}+\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{z}^{2}}+\frac{\partial}{\partial \mathrm{x}} \frac{\partial \mathrm{w}}{\partial \mathrm{z}}=0 \tag{1}
\end{equation*}
$$

and the boundary conditions on solid`s surface, $\frac{\partial u}{\partial y} d z-\frac{\partial u}{\partial z} \cdot d y+y . d y+z . d z=0$
where, $\gamma \mathrm{xy}, \gamma \mathrm{xz}, \gamma \mathrm{yz}=$ the slip components where is, $\gamma \mathrm{xy}=\frac{\partial \mathrm{u}}{\partial \mathrm{y}}+\frac{\partial \mathrm{v}}{\partial \mathrm{x}}$.
Equations show that the resultant shear-stress at the boundary is directed along the tangent to the boundary and that, the Stress function $u=u(y z)$ must be constant along the boundary of the cross section . i.e. each cross section on \mathbf{x}, axis is rotated as a disk in its plane, from which points follow relation $u=$ $\mathrm{u}(\mathrm{yz})$ and since stress function are constant, then from equation (2) $\mathrm{y} . \mathrm{dy}+\mathrm{z} . \mathrm{dz}=0$ or $\mathrm{y}^{2}+\mathrm{z}^{2}=$ constant, meaning that, a Cross-section under Stress stays Plane only in circle circumference, or a Plane Space, under Energy Stress, remains Flat only when the Plane becomes a circle, i.e. follows the Plane Mould which is the squaring of the circle.

The same is seen in Laplace`s equation $\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \equiv \nabla^{2} u=0$ which is termed a harmonic function.
Placing $\nabla^{2} u=0$ in both parts of the equation of the circle, becomes Identity and $\nabla^{2} u .\left(y^{2}+z^{2}\right)=\nabla^{2} u .(c)$,
or any Monad = Quaternion, consisted of the real part the Plane Space, and under Energy Stress the imaginary part, remains in Flat only when the Plane becomes a circle, i.e. the Energy-Space discrete continuum follows extrema E-geometry Mould , π, which is the squaring of the circle.
If Potential Energy is zero then vector $\bar{\tau}$ is on the surface indicating the conjugate function. [49].
In Electricity, when an electric current flows through a conductor, then a transverse circular Electromagnetic field is produced around itself following the vector - cross - product Plane mould,π. Because, the nth-degree-equations are the vertices of the n-polygon in circle so, π, is their mould.

2.. The Duplication of the Cube ,

Or the Problem of the two Mean Proportionals, The Delian Problem.

The Extrema method for the
Duplication of the cube ? [44-45]
This problem is in three dimensions as this first was set by Archytas proposed by determining a certain point as the intersection of three surfaces, a right cone, a cylinder, a tore or anchoring with inner diameter nil. Because of the three master-meters where there is holding the Ratio of two or three geometrical magnitudes, is such that they have a linear relation (continuous analogy) in all Spaces, the solution of this problem, as well as that of squaring the circle, is linearly transformed .
The solution is based on the known two locus of a linear motion of a point.
The geometrical construction Step - By - Step in F-4 :
The Presentation of the method on Dr-Geo machine for macro constructions in F.4-A.

(1)
(2)
(3)
(4)
(5)
F.4.. \rightarrow The Mechanical Extrema Constant Poles Z, K, P of rotation in any circumcircle of triangle ZKoB
1.. Draw on any Orthogonal - System $K_{o} Z \perp K_{o} B$, Segment $K_{o} Z=2 . K_{o} B$ and on $B Z$ as hypotynousa the circle ($\mathrm{O}, \mathrm{OB}=\mathrm{OZ}$).
2.. Draw on $K_{0} Z$ produced $K_{0} A_{o}=K_{o} B$ and form the square $B C_{0} D_{0} A_{0}$, .
3. Draw the circles $\left(K_{o}, K_{o} Z\right),(B, B Z)$ which are intersected at points Z, A_{e}, and $D_{o} C_{o}$ produced at point $Z^{`}$, and $D_{o} A_{o}$ produced at point P.
4.. Draw on ZP as diameter the circle ($\mathrm{K}, \mathrm{KZ}=\mathrm{KP}$) intersecting $\mathrm{K}_{\mathrm{o}} \mathrm{D}_{\mathrm{o}}$ produced at point D and join DZ, DP intersecting the circle (O, OZ) and line $\mathrm{K}_{\mathrm{o}} \mathrm{A}_{\mathrm{o}}$ produced at point A .
5.. On Rectangle BCDA , the Cube of Segment $K_{0} D$ is twice the Cube of Segment KoA and, exists $K_{o} D^{3}=2 . K_{o} A^{3}$

F4-A. \rightarrow A Presentation of the Dublication Method on Dr.Geo - Machine Macro - constructions
$B C_{0} D_{0} A_{0}$, Is the initial Basic Quadrilateral ,square, on $K_{0} Z, K_{0} B$ Extrema - lines mechanism . BCDA is the In-between Quadrilateral, on (K,KZ) Extrema-circle, and on $K_{0} Z-K_{0} B$ Extrema lines of common poles Z, P, mechanism. The Initial Quadrilateral $\mathrm{BC}_{0} \mathrm{D}_{\mathrm{o}} \mathrm{A}_{\mathrm{o}}$, with Pole-lines $\mathrm{D}_{\mathrm{o}} \mathrm{A}_{\mathrm{o}} \mathrm{P}-\mathrm{D}_{\mathrm{o}} \mathrm{C}_{\mathrm{o}} \mathrm{Z}^{\prime}$, rotates through Pole P and the moveable Pole Z ` on Z Z arc, to the \rightarrow Extreme Quadrilateral BCDA through Pole-lines DAP - DCZ with point D_{o}, sliding on $\mathrm{BK}_{\mathrm{o}} \mathrm{D}_{\mathrm{o}}$ Pole-line. The Final Position of the Rotation - Translation is Quadrilateral BCDA where $\mathrm{K}_{0} \mathrm{D}^{3}=2 . \mathrm{K}_{\mathrm{o}} \mathrm{A}^{3}$
2.1. The Processus of The Duplication of Cube: F.4, F4-A

The Unsolved Ancient - Greek Problems of E-geometry and the Regular - Polygons .
1..Draw Line segment $K_{0} Z$ tobe perpendicular to its half segment $K_{0} B$ or as $K_{0} Z=2 . K_{0} B \perp K_{0} B$ and the circle $(\mathrm{O}, \mathrm{BZ} / 2)$ of diameter BZ . Line -segment ZK_{0} produced to $\mathrm{K}_{0} \mathrm{~A}_{\mathrm{o}}=\mathrm{K}_{\mathrm{o}} \mathrm{B}$ (or and $\left.K_{0} X_{0} \neq K_{0} B\right)$ is forming the Isosceles right-angled triangle $A_{0} K_{0} B$.
2.. Draw segments $B C_{o}, A_{0} D_{o}$ equal to $B A_{o}$ and be perpendicular to $A_{0} B$ such that points C_{o}, D_{o} meet the circle ($\mathrm{K}_{\mathrm{o}}, \mathrm{K}_{0} \mathrm{~B}$) in points $\mathrm{C}_{\mathrm{o}}, \mathrm{D}_{\mathrm{o}}$, respectively, and thus forming the inscribed square $B C_{0} D_{0} A_{0}$. Draw circle ($K_{o}, K_{0} Z$) intersecting line $D_{0} C_{o}$ produced at point Z `and draw the circle (\(\mathrm{B}, \mathrm{BZ}\)) intersecting diameter Z` B , produced at point P (the constant Pole).
3.. Draw line ZP intersecting (O, OZ) circle at point K , and draw the circle (K, KZ) intersecting line $B D_{o}$ produced at point D. Draw line $D Z$ intersecting $(O, O Z)$ circle at point C and Complete Rectangle CBAD on the diamesus BD .
Show that this is an Extrema Mechanism on where,
The Three dimensional Space KoA \rightarrow is Quantized to $\mathrm{K}_{\mathrm{o}} \mathrm{D}$ as $\rightarrow \mathrm{K}_{0} \mathrm{D}^{3}=2 . \mathrm{K}_{\mathrm{o}} \mathrm{A}^{3}$.
Analysis :
In (1) - F.4, $\mathrm{K}_{0} \mathrm{Z}=2 . \mathrm{K}_{0} \mathrm{~B}$ and $\mathrm{K}_{\mathrm{o}} \mathrm{A}_{\mathrm{o}}=\mathrm{K}_{0} \mathrm{~B}, \mathrm{~K}_{0} \mathrm{~B} \perp \mathrm{~K}_{0} \mathrm{Z}$ and $\mathrm{K}_{0} \mathrm{Z} / \mathrm{K}_{0} \mathrm{~B}=2$.
In (2) Circle ($\mathrm{B}, \mathrm{BZ)}$ with radius twice of circle ($\mathrm{O}, \mathrm{OZ)}$ is the extrema case where circles with radius $\mathrm{KZ}=\mathrm{KP}$ are formulated and are the locus of all moving circles on arc BK as in $\mathrm{F} 4-(2)$, F. 5
In (3) Inscribed square $B C_{0} D_{0} A_{0}$. passes through middle point of $K_{0} Z$ so $C_{0} K_{o}=C_{o} Z$ and since angle $<\mathrm{ZC}_{0} \mathrm{O}=90^{\circ}$, then segment $\mathrm{OC}_{\mathrm{o}} / / \mathrm{BK}_{\mathrm{o}}$ and $\mathrm{BK}_{\mathrm{o}}=2 . \mathrm{OC}_{\mathrm{o}}$.

Since radius OB of circle $(\mathrm{O}, \mathrm{OB}=\mathrm{OZ}$) is $1 / 2$ of radius OZ of circle $(\mathrm{B}, \mathrm{BZ}=2 . \mathrm{BO})$ then, \mathbf{D}, is is Extrema case where circle ($\mathrm{O}, \mathrm{OZ)}$) is the locus of the centers of all circles $\left(\mathrm{K}_{\mathrm{o}}, \mathrm{K}_{\mathrm{o}} \mathrm{Z}\right),(\mathrm{B}, \mathrm{BZ})$ moving on arc, $\mathrm{K}_{\mathrm{o}} \mathrm{B}$, as this was proved in F.5.
All circles centered on this locus are common to circle $\left(\mathrm{K}_{0}, \mathrm{~K}_{\mathrm{o}} \mathrm{Z}\right)$ and (B, BZ) separately.
The only case of being together is the common point of these circles which is their common point P , where then \rightarrow centered circle exists on the Extrema edge, ZP diameter.
In (4), F4-(4) Initial square $\mathrm{A}_{\mathrm{o}} \mathrm{BC}_{0} \mathrm{D}_{\mathrm{o}}$, Expands and Rotates through point B, while segment $\mathrm{D}_{\mathrm{o}} \mathrm{C}_{\mathrm{o}}$ limits to DC, where extrema point Z` moves to Z. Simultaneously, the circle of radius \(K_{0} Z\) moves to circle of radius \(B Z\) on the locus of \(1 / 2\) chord \(K_{0} B\). Since angle \(<Z^{`} D_{o} A_{o} P\) is always 90° so , exists on the diameter $Z^{\prime} \mathrm{P}$ of circle ($\mathrm{B}, \mathrm{BZ} `$) and is the limit point of chord $\mathrm{D}_{0} \mathrm{~A}_{\mathrm{o}}$ of the rotated square $B C_{0} D_{0} A_{0}$, and not surpassing the common point Z.
Rectangle $\mathrm{BA}_{0} \mathrm{D}_{\mathrm{o}} \mathrm{C}_{\mathrm{o}}$ in angle $<\mathrm{PD}_{\mathrm{o}} \mathrm{Z}^{-}$is expanded to Rectangle BADC in angle $<\mathrm{PDZ}$ by existing on the two limit circles ($B, B Z=B P)$ and $\left(K_{o}, K_{o} Z\right)$ and point D_{o} by sliding to D.
On arc $\mathrm{K}_{\mathrm{o}} \mathrm{B}$ of these limits is centered circle on $\mathbf{Z P}$ diameter, i.e. Extrema happens to \rightarrow
the common Pole of rotation through a constant circle centered on $\mathbf{K}_{\mathbf{0}} \mathbf{B}$ arc , and since point Do is the intersection of circle ($\mathrm{K}_{\mathrm{o}}, \mathrm{K}_{0} \mathrm{~B}=\mathrm{K}_{0} \mathrm{D}_{\mathrm{o}}$) which limit to D , therefore the intersection of the common circle $(K, K Z=K P)$ and line $K_{0} D_{o}$ denotes that extrema point, where the expanding line $D_{o} C_{0} Z^{\prime}$ with leverarm $\mathrm{D}_{0} \mathrm{~A}_{0} \mathrm{P}$ is rotating through Pole P, and limits to line DCZ , and Point P is the common Pole of all circles on arc , $\mathrm{K}_{\mathrm{o}} \mathrm{B}$, for the Expanding and simultaneously Rotating Rectangles.
In (5) rectangle BCDA formulates the two right-angled perpendicular triangles
$\mathrm{ADZ}, \mathrm{ADB}$ which solve the problem.

The Unsolved Ancient - Greek Problems of E-geometry and the Regular - Polygons .
Segments $K_{o} D, K_{o} A_{o}=K_{o} B$ are the two Quantized magnitudes in Space (volume) such that Euclidean Geometry Quantization becomes through the Mould of Doubling of the Cube . [This is the Space Quantization of E-Geometry i.e. The cube of Segment $K_{o} D$ is the double magnitude of $K_{o} A$ cube, or monad $K_{o} D^{3}=2$ times the monad $K_{o} A^{3}$]. About Poles in [5].
The Proof : F.4. (3)-(4)-(5).
1.. Since $K_{0} Z=2 . K_{0} B$ then $\left(K_{0} Z / K_{0} B\right)=2$, and since angle $<Z K_{0} B=90^{\circ}$ then $B Z$ is the diameter of circle $(\mathrm{O}, \mathrm{OZ})$ and angle $<\mathrm{ZK}_{0} \mathrm{~B}=90^{\circ}$ on diameter ZB
2.. Since angle $<\mathrm{ZK}_{0} \mathrm{~A}_{0}=180^{\circ}$ and angle $<\mathrm{ZK}_{0} \mathrm{~B}=90^{\circ}$ therefore angle $<\mathrm{BK}_{0} \mathrm{~A}_{0}=90^{\circ}$ also .
3.. Since $B K_{0} \perp Z K_{o}$ then K_{o} is the midpoint of chord on circle ($K_{0}, K_{0} B$) which passes through Rectangle (square) B $\mathrm{A}_{0} \mathrm{D}_{0} \mathrm{C}_{0}$. Since angle $<\mathrm{ZDP}=90^{\circ}$ (because exists on diameter ZP) and since also angle $<\mathrm{BCZ}=90^{\circ}$ (because exists on diameter $Z B$) therefore triangle BCD is right-angled and BD is the diameter .
Since Expanding Rectangles $\mathrm{B}_{0} \mathrm{D}_{0} \mathrm{C}_{0}$, BADC rotate through Pole, \mathbf{P}, then points A_{o}, A
lie on circles with $\mathrm{BD}_{\mathrm{o}}, \mathrm{BD}$ diameter, therefore point D is common to BD_{o} line and ($\mathrm{K}, \mathrm{KZ}=\mathrm{KP}$) circle, and BCDA is Rectangle. F.4-(2) i.e. Rectangle BCDA possess $A K_{o} \perp B D$ and $D C Z$ a line passing through point Z .
4.. From right angle triangles $\mathrm{ADZ}, \mathrm{ADB}$ we have,

On triangle $\Delta \mathrm{ADZ} \rightarrow \mathrm{KD}^{2}=\mathrm{KA} . \mathrm{KZ}$
On triangle $\Delta \mathrm{ADB} \rightarrow \mathrm{KA}^{2}=\mathrm{KD} . \mathrm{KB}$
and by division (a) / (b) then \rightarrow
$K^{2}=\mathrm{KA} . \mathrm{KZ} \quad \mathrm{KD}^{2} \quad$ KA.KZ $\quad \mathrm{KD}^{3} \quad \mathrm{KZ}$
----------------- = |------|=|---------| or |-----|=|-----| = 2
$\mathrm{KA}^{2}=$ KD.KB KA^{2} KD.KB KA^{3} KB
i.e. $\rightarrow K_{0} D^{3}=2 . K_{0} A^{3}$, which is the Duplication of the Cube .

In terms of Mechanics, Spaces Mould happen through, Mould of Doubling the Cube, where for any monad ds $=\mathrm{K}_{0} \mathrm{~A}$ analogous to $\mathrm{K}_{0} \mathrm{~A}_{0}$, the Volume or The cube of segment $\mathrm{K}_{0} \mathrm{D}$ is double the volume of $\mathrm{K}_{\mathrm{o}} \mathrm{A}$ cube, or monad $\mathrm{K} \mathrm{D}^{\mathbf{3}}=2 . \mathrm{K}_{0} \mathrm{~A}^{3}$. This is one of the basic Geometrical Euclidean Geometry Moulds, which create the METERS of monads \rightarrow where Linear is the Segment MA ${ }_{1}$, Plane is the square CMNH equal to the circle and in Space, is volume $K_{0} \mathrm{D}^{\mathbf{3}}=\mathrm{K} \mathrm{D}^{3}$ in all Spaces, Anti-spaces and Sub-spaces of monads $=$ Segments \leftarrow i.e

The Expanding square $\mathrm{B}_{\mathrm{o}} \mathrm{D}_{\mathrm{o}} \mathrm{C}_{\mathrm{o}}$ is Quantized to BADC Rectangle by Translation to point Z ’, and by Rotation, through point P (the Pole of rotation) to point Z .

The Constructing relation between segments $\mathrm{K}_{\mathrm{o}} \mathrm{X}, \mathrm{K}_{\mathrm{o}} \mathrm{A}$ is $\rightarrow\left(\mathrm{K}_{\mathrm{o}} \mathrm{X}\right)^{2}=\left(\mathrm{K}_{\mathrm{o}} \mathrm{A}\right)^{2} .\left(\mathrm{XX}_{1} / \mathrm{AD}\right)$ such that $\mathrm{X}_{1} / / \mathrm{AD}$, as in Fig.6 (4), F7.(3). All comments are left to the readers, 30 / 8 / 2015.

[^0]The Unsolved Ancient - Greek Problems of E-geometry
F.5. \rightarrow For any point \mathbf{A} on, and \mathbf{P} Out-On-In circle $[\mathrm{O}, \mathrm{OA}]$ and $\mathrm{O}^{`} \mathrm{P}=\mathrm{O}^{`} \mathrm{O}$, exists $\mathrm{O}^{\prime} \mathrm{M}=\mathrm{OA} / 2$.[16]
2.2 The Quantization of E-Geometry, \{ Points, Segments, Lines, Planes, and the Volumes \}, to its moulds F-6.

Quantization of E-geometry is the Way of Points to become as a \rightarrow (Segments, Anti-segments $=$ Monads = Anti-monads) , (Segments, Parallel-segments = Equal monads), (Equal Segments and Perpendicular - segments = Plane Vectors) , (Non-equal Segments and twice-Perpendicular-segments = The Space Vectors $=$ Quaternion $)$, by defining the mould of quantization .

The three Ways of quantization are \rightarrow for Monads $=$ The Material points, the Mould is the Cycloidal Curl Electromagnetic field, for Lines the Mould is that of Parallel Theorem with the least constant distance, for Plane the Mould is the Squaring of the circle , π, and, for Space is the Mould of the Duplication of cube $\sqrt[3]{ } \sqrt{ }$. All methods in , F- 6 below .
In [61] The Glue-Bond pair of opposites $[\Theta \oplus]$, creates rotation with angular velocity $\mathrm{w}=\mathrm{v} / \mathrm{r}$, and velocity $\mathrm{v}=\mathrm{w} \cdot \mathrm{r}=\frac{2 \pi}{T}=2 \pi \mathrm{r} . \mathrm{f}=\left[\frac{\sigma}{2}\right] \cdot(1+\sqrt{5})$, frequency $\mathrm{f}=\frac{(1+\sqrt{5}]) \cdot \sigma}{4 \pi \mathrm{r}}$, Period $\mathrm{T}=\frac{4 \pi \mathrm{r}}{\sigma(1+\sqrt{5})}$ where $\pm \sigma$ are the two Centripetal F_{p} and Centrifugal F_{f} forces .
Odd and Even number of opposites, on a Regular Polygon, defines the Quality of Energy- monad .

$$
\begin{aligned}
& \mathrm{ds}=\mathrm{MA1}=\mathrm{M}^{`} \mathrm{~B} 1 \\
& \mathrm{dq}=\mathrm{MM}^{`} / / \mathrm{AB}
\end{aligned}
$$

$\mathrm{ds}=\mathrm{KA}$, Volume $=\mathrm{KA}^{s}$
$\mathrm{dq}=\mathrm{KD}^{\mathrm{s}}=2 . \mathrm{KA}^{3}$
Monad - Antimonad

MONAD QUANTIZATION

> Linear Space - Antispace
> LINEAR QUANTIZATION
(1)
(2)
(3)
(4)
F.6. \rightarrow Quantization for Point E, for Linear $\mathrm{ds}=\mathrm{MA}_{1}$, for Plane, π, Space (volume) ${ }^{3} \sqrt{ } 2$.

Moulds for E-geometry Quantization are, of monad EA to Anti-monad EC-of AB line to Parallel line MM- of AE Radius to the CM side of Square of KA Segment to KD Cube Segment .

The numeric METERS of Quantization of any material monad $\mathrm{ds}=\mathrm{AB}$ are as \rightarrow
In any point A, happens through Mould in itself (The material point as a $\rightarrow \pm$ dipole) in [43]
In monad ds $=\mathbf{A C}$, happens through Mould in itself for two points (The material dipole in inner monad Structure as the Electromagnetic Cycloidal field which equilibrium in dipole by the AntiCycloidal field as in [43]).
For monad $d s=E A$ the quantized and Anti-monad is $d q=E C= \pm E A$

The Unsolved Ancient - Greek Problems of E-geometry and the Regular - Polygons .
Remark 1: The two opposite signs of monads EA, EC represent the two Symmetrical equilibrium monads of Space-Antispace, the Geometrical dipole AC on points A,C which consist space AC as in F6-(1)
Linearly, happens through Mould of Parallel Theorem, where for any point M not on $d s= \pm A B$, the Segment $\mathbf{M A}_{1}=$ Segment $\mathbf{M B}_{1}=$ Constant . F6-(1-2)

Remark 2: The two opposite signs of monads represent the two Symmetrical monads in the Geometrical machine of the equal and Parallel monads [$\mathrm{MM} / / \mathrm{AB}$ where $\mathrm{MA}_{1} \perp \mathrm{AB}$, $\mathrm{M}^{`} \mathrm{~B}_{1} \perp \mathrm{AB}$ and $\left.\mathrm{MA}_{1}=\mathrm{M}^{`} \mathrm{~B}_{1}\right]$ which are $\rightarrow \quad$ The Monad $\mathrm{MA}_{1}-$ Antimonad $\mathrm{M}^{`} \mathrm{~B}_{1}$, or \rightarrow The Inner monad MA1 Structure -The Inner Anti monad structure $\mathrm{MB}_{1}=-\mathrm{MA}_{1}=\mathrm{Idle}$, and $\left\{\right.$ The Space $=$ line $\mathbf{A B}$, Anti-space $=$ the Parallel line $\mathbf{M M}^{`}=$ constant $\}$.
The Parallel Axiom is no-more Axiom because this has been proved as a Theorem [9-32-38-44].
Plainly, happens through Mould of Squaring of the circle, where for any monad ds=CA=CP, the Area of square CMNH is equal to that of one of the five conjugate circles and $\pi=$ constant, or as $\mathrm{CM}^{2}=\pi . \mathrm{CE}^{2}$.
On monad $d s=E A=E C$, the Area $=\pi \cdot E C^{2}$ and the quantized Anti-monad $d q=C M^{2}=$ $\pm \boldsymbol{\pi} . \boldsymbol{E C} \boldsymbol{C}^{2}$ and this because are perpendicular and produce Zero Work. F6-(3)
Remark 3 :
The two opposite signs represent the two Symmetrical squares in Geometrical machine of the equal and perpendicular monads as, $[\mathrm{CA} \perp \mathrm{CP}$, and $C A=C P]$, which are \rightarrow The Square $C M N H$ - Antisquare $C M^{\prime} N^{`} H^{\prime}$, or \rightarrow The Space - Idol $=$ Anti-Space .
In Mechanics this propety of monads is very useful in Work area, where two perpendicular vectors produce Zero Work. $\quad\{$ Space $=$ square CMNH , Anti-space $=$ Anti-square CM`N'H` $\}$.
In three dimensional Space, happens through Mould Doubling of the Cube, where for any monad ds $=K A$, the Volume or, The cube of a segment KD is the double the volume of KA cube, or monad $\mathrm{KD}^{3}=2 . \mathrm{KA}^{3}$.
On monad ds $=\boldsymbol{K A}$ the Volume $=K A^{3}$ and the quantized Anti-monad, $d q=\mathbf{K D}^{\mathbf{3}}= \pm \mathbf{2} . \mathrm{KA}^{\mathbf{3}} . \mathrm{F} 6$-(4) Remark 4 :
The two opposite signs represent the two Symmetrical Volumes in Geometrical machine of triangles $[\triangle \mathrm{ADZ} \perp \triangle \mathrm{ADB}]$, which are \rightarrow The cube of a segment $K D$ is the double the volume of $K A$ cube - The Anti-cube of a segment $K D^{`}$ is the double the Anti-volume of $K^{`} A^{`}$ cube, Monad $d s=K A$, the Volume $=K A^{3}$ and the quantized Anti-monad $d q=K D^{3}= \pm 2 . K A^{3}$.
$\left\{\right.$ The Space $=$ the cube KA 3, The Anti-Space $=$ the Anti - Cube KD $\left.{ }^{3}\right\}$.
In Mechanics this property of Material monads is very useful in the Interactions of the Electromagnetic Systems where Work of two perpendicular vectors is Zero .
$\{$ Space $=$ Volume of KA, Anti-space $=$ Anti-Volume of KD, and this in applied to Dark-matter, Dark - Energy in Physics \}. [43]

Radiation of Energy is enclosed in a cavity of the tiny energy volume λ, (which is the cycloidal wavelength of monad) with perfect and absolute reflecting boundaries where this cavity may become infinite in every direction and thus getting in maxima cases (the edge limits) the properties of radiation in free space.

[^1]KoA \perp KoD XX1// AD
$\mathrm{KoX} / \mathrm{KoA}=\mathrm{KoX1} / \mathrm{KoD}$
KoA/KoX = AD / XX1

THALIS MOULD FOR THE LINEAR AND PARALLEL RATIO EXTREMA
$\mathrm{KoA} \perp \mathrm{KoX} \mathbf{X X 1} / / \mathrm{AD}$
$\mathrm{OA}=\mathbf{O X}=\mathbf{O K o} \quad \mathrm{OX} \perp \mathbf{A D} \perp \mathbf{X X} 1$
$(\mathrm{KoA})^{2} /(\mathrm{KoX})^{2}=\mathrm{AD} / \mathrm{XX} 1$ KoD / KoX1

EUCLID MOULD FOR THE PLANE PARALLEL RATIO EXTREMA IN Markos SEMI - STPL Line

```
KoX & KoB KoX/KoA=KoX1/KoD = XX1/AD
KoX }\mp@subsup{}{}{2}/\mp@subsup{\textrm{KoA}}{}{2}=\mp@subsup{\textrm{KoX1}}{}{2}/\mp@subsup{\textrm{KoD}}{}{2}=\mathbf{XX1 2}/\mp@subsup{\textrm{AD}}{}{2
(KoD) }\mp@subsup{}{}{3}/(\textrm{KoA}\mp@subsup{)}{}{3}=\mp@subsup{\textrm{KOX1}}{}{3}/\textrm{KoX}\mp@subsup{}{}{3}=\textrm{KoZ}/\textrm{KoB}=
```


MARKOS MOULD FOR THE SPACE PARALLEL RATIO EXTREMA IN THE DUPLICATION OF THE CUBE
(1)
(2)
F.7. \rightarrow The Thales , Euclid, Markos Mould, for the Linear - Plane - Space , Extrema Ratio Meters

The electromagnetic vibrations in this volume is analogous to vibrations of an Elastic body (Photoelastic stresses in an elastic material [18]) in this tiny volume, and thus Fringes are a superposition of these standing (stationary) vibrations.[41]

```
Above are analytically shown, the Moulds (The three basic Geometrical Machines ) of Euclidean Geometry which create the METERS of monads i.e.
Linearly is the Segment MA \(_{1}\), In Plane the square CMNH, and in Space is volume KD \({ }^{3}\) in all Spaces, Anti-spaces and Sub-spaces .
This is the Euclidean Geometry Quantization in points to its constituents, i.e. the
```

1.. METER of Point A is the Material Point A , the ,
2.. METER of line is the discrete Segment $\mathbf{d s}=\mathrm{AB}=$ monad $=$ constant , the
3.. METER of Plane is that of circle, number π, on Segment $=$ monad, which is the Square equal to the area of the circle, and the
4.. METER of Volume is that of Cube $\sqrt[3]{ } 2$, of any Segment $=$ monad, which is the Double Cube of Segment and Thus is the measuring of the Spaces, Anti-spaces and Sub-spaces in this cosmos .
5.. In Physics , METER of Mass is the Reaction of Matter, anything material, against Motion, the contrast Inertia of matter against kinetic effects, and it is a number only without any other Physical meaning . [39-40]
The meter of mass during a Parallel -Translation is a constant magnitude for every Body, while for Moment of Inertia during a Rotational - motion is not, except it is referred to the same axis of the Body. markos 11/9/2015.

The Unsolved Ancient - Greek Problems of E-geometry and the Regular - Polygons .

2.3 The Three Master-Meters in One,

for E-geometry Quantization, F-7

Master - meter is the linear relation of the Ratio , (continuous analogy) of geometrical magnitudes, of all Spaces and Anti-spaces in any monad.This is so because of the, extrema-ratio-meters.
Saying master-meters, we mean That the Ratio of two or three geometrical magnitudes, is such that they have a linear relation (continuous analogy) in all Spaces, in one in two in three dimensions, as this happens to the Compatible Coordinate Systems as these are the Rectangular [$\mathrm{x}, \mathrm{y}, \mathrm{z}$], [$\mathrm{i}, \mathrm{j}, \mathrm{k}]$, the Cylindrical and Spherical-Polar. The position and the distance of points can be then calculated between the points, and thus to perform independent Operations (Divergence, Gradient, Curl, Laplacian) on points only.This property issues on material points and monads .

This is permitted because, Space is quaternion and is composed of Stationary quantities, the position $\overline{\mathrm{r}}(\mathrm{t})$ and the kinematic quantities, the velocity $\rightarrow \overline{\mathrm{v}}=\mathrm{dr} / \mathrm{dt}$ and acceleration $\rightarrow \overline{\mathrm{a}}=\mathrm{d} \overline{\mathrm{v}} / \mathrm{dt}=\mathrm{d}^{2} \mathrm{r} / \mathrm{dt}^{2}$. Kinematic quantities are also the tiny Energy volume caves (cycloid is length, $\boldsymbol{\lambda}$, the Space of velocity $\overline{\mathrm{v}}$, and $\overline{\mathrm{a}}$ consist in gravity's field the infinite Energy dipole Tanks in where energy is conserved). In this way all operations on edge points are possible and applicable .

Remarks :

In F7-(1), The Linear Ratio, for Vectors, begins from the same Common point K_{0}, of the two concurring and Non-equal, Concentrical and Co-parallel Direction monads $\mathrm{K}_{0} \mathrm{X}-\mathrm{K}_{0} \mathrm{~A}$ and becomes $\mathrm{K}_{0} \mathrm{X}_{1}-\mathrm{K}_{0} \mathrm{D}$.

In F7-(2), The Linear Ratio, for Plane, begins from the same Common point K_{0}, of the two Non-equal, Concentrical and Co-perpendicular Direction monads.

Proof :

Segment $K_{0} A \perp K_{0} X$ because triangle $A K_{0} X$ is rightangled triangle and $K_{0} Z \perp A X$. Radius $\mathrm{OK}_{0}=\mathrm{OA}=\mathrm{OX}$. Since $\mathrm{DA}, \mathrm{X}_{1} \mathrm{X}$ are also perpendicular to AX , therefore $\mathrm{K}_{0} \mathrm{Z} / / \mathrm{X}_{1} \mathrm{X} / / \mathrm{DA}$. According to Thales theorem ratio $(\mathrm{ZA} / \mathrm{ZX})=\left(\mathrm{K}_{0} \mathrm{D} / \mathrm{K}_{0} \mathrm{X}_{1}\right)$ and since tangent $\mathrm{DA}=\mathrm{DK}_{0}$ and $\mathrm{X}_{1} \mathrm{~K}_{0}=$ $X_{1} X$ then $A Z / Z X=D A / X X_{1}$. From Pythagorean theorem $($ Lemma 6$) \rightarrow K_{0} A^{2} / K_{0} X^{2}=(A Z / Z X)=$ $\left(D A / X X_{1}\right)=\left(K_{0} D / K_{0} X_{1}\right) \quad$ i.e.
The ratio of the two squares $\mathrm{K}_{\mathrm{O}} \mathrm{A}^{2}, \mathrm{~K}_{0} \mathrm{X}^{2}$ are proportional to line segments $\mathrm{K}_{0} \mathrm{D}, \mathrm{K}_{0} \mathrm{X}_{1}$) . (o.c. δ).
In F7-(3), The Linear Ratio, for Volume, begins from the same Common point K_{O}, of the two
Non-equal, Concentrical and Co-perpendicular Direction monads.
In (1) \rightarrow Segment $K_{0} A \perp K_{0} D$, Ratio $K_{0} X / K_{0} A=K_{0} X_{1} / K_{0} D$, and Linearly (in one dimension) the Ratio of $\mathrm{K}_{0} \mathrm{~A} / \mathrm{K}_{\mathrm{O}} \mathrm{X}=\mathrm{AD} / \mathrm{X} \mathrm{X}_{1}$, i.e. in Thales linear mould [$\mathrm{X} \mathrm{X}_{1} / / \mathrm{AD}$],

Linear Ratio of Segments X_{1}, AD is, constant and Linear, and it is the Master key Analogy of the two Segments, monads.
In (2) \rightarrow Segment $K_{O} A \perp K_{O} X, O K_{O}=O A=O X$ and since OX_{1}, OD are diameters of the two circles then $\mathrm{K}_{0} \mathrm{D}=\mathrm{AD}, \mathrm{K}_{\mathrm{O}} \mathrm{X}_{1}=\mathrm{X}_{1}$, and Linearly (in one dimension) the Ratio of $\mathrm{K}_{\mathrm{O}} \mathrm{A} / \mathrm{K}_{\mathrm{O}} \mathrm{X}$
$=\mathrm{AD} / \mathrm{X}_{1}$, in Plane (in two dimensions) the Ratio $\left[\mathrm{K}_{\mathrm{O}} \mathrm{A}\right]^{2} /\left[\mathrm{K}_{0} \mathrm{X}\right]^{2}=\mathrm{AD} / \mathrm{XX}_{1}$, i.e.
in Euclid`s Plane mould $\left[\mathrm{K}_{\mathrm{O}} \mathrm{A} \perp \mathrm{K}_{\mathrm{O}} \mathrm{X}\right.$],
The Plane Ratio square of Segments $-\mathrm{K}_{0} \mathbf{A}, \mathrm{~K}_{\mathbf{0}} \mathrm{X}$ - is constant and Linear, and for any Segment $\mathrm{K}_{0} \mathrm{X}$ on circle $\left(\mathbf{O}, 0 \mathrm{~K}_{0}\right)$ exists another one $\mathrm{K}_{0} \mathrm{~A}$ such that,

$$
\rightarrow K_{0} A^{2} / K_{0} \mathbf{X}^{2}=\mathbf{A D} / \mathbf{X} \mathbf{X}_{1}=K_{0} \mathbf{D} / K_{0} \mathbf{X}_{1} \leftarrow
$$

i.e. the Square Analogy of the sides in any rectangle triangle $\mathrm{A}_{\mathrm{K}_{0}} \mathrm{X}$ is linear to Extrema Semi-segments AD, X_{1} or to $\mathrm{K}_{0} \mathrm{D}, \mathrm{K}_{0} \mathbf{X}_{1}$ monads, or
the mapping of the continuous analog segment $\mathrm{K}_{0} \mathrm{X}$ to the discrete segment $\mathrm{K}_{0} \mathrm{~A}$.
In (3) \rightarrow Segment $\mathrm{K}_{0} \mathrm{~B} \perp \mathrm{~K}_{0} \mathrm{X}, \mathrm{O} \mathrm{K}_{\mathrm{O}}=\mathrm{OB}=\mathrm{OZ}$ and since $\mathrm{XX} \mathrm{X}_{1} / / \mathrm{AD}$, then $\mathrm{K}_{\mathrm{O}} \mathrm{A} / \mathrm{K}_{0} \mathrm{D}=\mathrm{K}_{0} \mathrm{X} /$ $\mathrm{K}_{\mathrm{O}} \mathrm{X}_{1}=\mathrm{AD} / \mathrm{XX}_{1}$, and Linearly (in one dimension) the Ratio of $\mathrm{K}_{\mathrm{O}} \mathrm{A} / \mathrm{K}_{\mathrm{O}} \mathrm{X}=\mathrm{AD} / \mathrm{X}_{1}$ and in Space (Volume) (in three dimensions) the Ratio $\left[\mathrm{K}_{\mathrm{O}} \mathrm{A}\right]^{3} /\left[\mathrm{K}_{\mathrm{O}} \mathrm{D}\right]^{3}=\left[\mathrm{K}_{\mathrm{O}} \mathrm{X} / \mathrm{K}_{\mathrm{O}} \mathrm{X}_{1}\right]^{3}=1 / 2$.
i.e. in Euclid`s Plane mould [$\mathrm{K}_{\mathrm{O}} \mathrm{A} / / \mathrm{K}_{\mathrm{O}} \mathrm{X}, \mathrm{K}_{0} \mathrm{D} / / \mathrm{K}_{\mathrm{O}} \mathrm{X}_{1}$], Volume Ratio of volume Segments
$-K_{0} \mathrm{~A}, \mathrm{~K}_{0} \mathrm{D}$-, is constant and Linear, and for any Segment $\mathrm{K}_{0} \mathrm{X}$ exists another one $\mathrm{K}_{0} \mathrm{X}_{1}$ such that $\rightarrow\left(\mathrm{K}_{0} \mathrm{X}_{1}\right)^{3} /\left(\mathrm{K}_{0} \mathrm{X}\right)^{3}=2 \leftarrow$ i.e. the Duplication of the cube.

In F-7, The three dimensional Space [$\mathrm{K}_{\mathrm{O}} \mathrm{A} \perp \mathrm{K}_{\mathrm{O}} \mathrm{D} \perp \mathrm{K}_{\mathrm{O}} \mathrm{X} . .$.], where $\mathrm{X} \mathrm{X}_{1} / / \mathrm{AD}$, The two dimensional Space [$K_{0} A \perp K_{0} X$], where $X X_{1} / / A D$, The one dimensional Space [$\mathrm{X}_{1} / / \mathrm{AD}$], where $\mathrm{X}_{1} / / \mathrm{AD}$, is constant and Linearly Quantized in each dimension.
i.e. All dimensions of Monads coexist linearly in Segments - monads and separately (they are the units of the three dimensional axis $\mathbf{x}, \mathbf{y}, \mathbf{z}-\mathbf{i}, \mathbf{j}, \mathrm{k}-)$ and consequently in all Volumes, Planes, Lines, Segments, and Points of Euclidean geometry, which are all the one point only and which is nothing. For more in [49-51] . 25/9/2015
At the beginning of the article it was referred to Geometers scarcity from which instigated to republish this article and to locate the weakness of prooving these Axioms which created the Non - Euclid geometries and which deviated GR in Space-time confinement. Now is more referred,
a). There is not any Paradoxes of the infinite because is clearly defined what is a Point and what is a Segment .
b). The Algebra of constructible numbers and number Fields is an Absurd theory based on groundless Axioms as the fields are, and with directed non-Euclid orientations which must be properly revised.
c). The Algebra of Transcental numbers has been devised to postpone the Pure geometrical thought, which is the base of all sciences, by changing the base - field of the geometrical solutions to Algebra as base. The Pythagorians discovered the existence of the incommensurable of the diagonal of a square in relation to its side without giving up the base of it , which is the geometrical logic.
d). All theories concerning the Unsolvability of the Special Greek problems are based on Cantor`s shady proof , < that the totality of All algebraic numbers is denumerable > and not edifyed on the geometrical basic logic which is the foundations of all Algebra .
The problem of Doubling the cube F.4-A , as that of the Trisection of any angle F.11-A, is a Kinematic Mechanical problem with moveable Poles, and could not be seen differently, while Quadrature F.2-A with constant Poles of rotation and the proposed Geometrical solutions are all clearly exposed to the critic of the readers .

All trials for Squaring the circle are shown in [44] and the set questions will be answerd on the Changeable System of the two Expanding squares, Translation [T] and Rotation [R]. The solution of Squaring the circle using the Plane Procedure method is now presented in F.1,2, and consists an , Overthrow, to all existing theories in Geometry, Physics and Philosophy .
e). Geometry is the base of all sciences and it is the reflective logic from the objective reality and which is nature.

The Physical notion of Duplication :

This problem follows, The three dimensional dialectic logic of ancient Greek, Avá̌í $\alpha v \delta \rho o s$, [«тó $\mu \eta$ ' Ov, Ov $\gamma \dot{\prime} \gamma v \varepsilon \sigma \theta \alpha \iota »$ The Non-existent Exists when is done , ‘The Non-existent becomes and never is], where the geometrical magnitudes, have a linear relation (the continuous analogy on Segments) in all Spaces as , in one in two in three dimensions, as this happens to the Compatible Coordinate Systems .
The Structure of Euclidean geometry is such [8] that it is a Compact Logic where Non-Existent is found everywhere, and Existence, monads, is found and is done everywhere.

In Euclidean geometry points do not exist , but their position and correlation is doing geometry. The universe cannot be created, because it is continuously becoming and never is . [9]

According to Euclidean geometry , and since the position of points (empty Space) creates the geometry and Spaces, Zenon Paradox is the first concept of Quantization . [15]
In terms of Mechanics, Spaces Mould happen through ,Mould of Doubling the Cube, where for any monad $\mathrm{ds}=\mathrm{KoA}$ and analogous to KoD , the Volume or The cube of segment KoD is the double the volume of KoA cube, or monad $\mathrm{KoD}^{3}=2 . \mathrm{KoA}^{3}$. This is one of the basic Geometrical Euclidean Geometry Moulds, which create the METERS of monads which \rightarrow Linear is the Segment ds = MA1, Plane is , π, the square CMNH equal to the circle , and in Space is ${ }^{3} \sqrt{2}$ volume KoD^{3}, in all Spaces, Anti-spaces and Sub-spaces of monads \leftarrow i.e. The Expanding square BAoDoCo is Quantized to BADC Rectangle by Translation to point Z `, and by Rotation through point P , (the Pole of rotation) . The Constructing relation between any segments KoX, KoA is \rightarrow

$$
(\mathrm{KoX})^{3}=(\mathrm{KoA})^{3} \cdot(\mathrm{XX} 1 / \mathrm{AD}) \text { as in } \mathrm{F} .7
$$

Application in Physics :

The Electromagnetic waves are able to transmit Energy through a vacuum (empty space) by storing their energy vector in an Standing Transverse Electromagnetic dipole wave, and so considered completely particle like, and in the transverse interference pattern tobe considered as completely wave, so the Same Quantity of Energy is as ,
Energy $\mathrm{I}_{\mathrm{d}}=\frac{\rho \pi^{2} c^{3}}{2 \lambda^{2}}\left[\varepsilon \mathrm{E}^{2}+\mu \mathrm{H}^{2}\right]$ in volume $\mathrm{V}=\left[\frac{4\left(w^{2} r^{2}\right)^{3}}{3 \pi}\right]$ having mass \rightarrow Particle Energy $\mathrm{I}_{\mathrm{d}}=\left(\frac{\rho \cdot \mathrm{C}}{2}\right) .\left(\mathrm{wA}_{\mathrm{o}}\right)^{2}$ in Interference pattern $\mathrm{as} \rightarrow$ Wave

This is the Wave-Particle duality unifying the classical Electromagnetic field and the quantum particle of light.Angular momentum of particles is $\rightarrow \operatorname{Spin}=\frac{\mathrm{E}}{\mathrm{w}}=\left[\pm \overline{\mathrm{v}} . \mathrm{s}^{2}\right] / \mathrm{w}=\left(\mathrm{r} . \mathrm{s}^{2}\right)=\mathrm{w}^{2} \mathrm{r}^{3}=[\mathrm{wr}]^{3}$ and, as $\operatorname{Spin}=\frac{\mathrm{h}}{\boldsymbol{\pi}}=\mathbf{2} \cdot[\mathrm{wr}]^{3}$, or Energy Space quantity wr , is doubled and becomes the Space quantity $\frac{\mathrm{h}}{\boldsymbol{\pi}}$ The above relation of Spin shows the deep relation between Mechanics and E-geometry, where in the tiny Gravity-cave of $\mathrm{r}=10^{-62} \mathrm{~m}$, the Energy -Volume-quantity [wr] in cave, is doubled and is
Quantized in Planck's - cave Space quantity as , $\left(\frac{\mathrm{h}}{\pi}\right)=\operatorname{Spin}=2 .[\mathrm{wr}]^{3} \mathrm{in} \mathrm{r}=10^{-35} \mathrm{~m} \quad$ i.e.
Energy Space quantity , wr , is Quantized, and becomes the New Space quantity , $\mathbf{h} / \boldsymbol{\pi}=\mathbf{2} .[\mathbf{w r}]{ }^{\mathbf{3}}$, doubled, following the Euclidean Space-mould of Duplication of the cube by changing frequency, in tiny Sphere volume $V=(4 \pi / 3) \cdot[\mathrm{wr} / 2]^{3}$. Also, Since $\mathrm{w}=\mathrm{E} /[\mathrm{h} / 2 \pi]=\mathrm{m} \cdot \mathrm{c}^{2} /[\mathrm{h} / 2 \pi]=2 \pi \cdot \mathrm{mc}^{2} / \mathrm{h}=2 \mathrm{r} \cdot \mathrm{s}^{2}$ $=2 \cdot \mathrm{r}^{3} \cdot \mathrm{w}^{2}$, then mass $\mathbf{m}=\frac{(\mathrm{wr})^{3}}{\mathrm{c}^{2}}=\frac{2}{\mathrm{c}^{2}}(\mathrm{wr})^{3}$, is Doubled as above with Space-mould and, is what is called conversion factor mass, \mathbf{m}, and it is an index of the energy changes .
All Energy magnitudes from, $0 \rightarrow \infty$, deposit in the same Space, resonance, by changing frequency

3.. The Trisection of Any Angle .

Because of the three master-meters, where is holding the Ratio of two or three geometrical magnitudes, is such that they have a linear relation (a continuous analogy) in all Spaces, the solution of this problem, as well as of those before, is linearly transformed . The present method is a Plane method, i.e. straight lines and circles, as the others and is not required the use of conics or some other equivalent. Archimedes and Pappus proposals are both instinctively right .

F.8. \rightarrow (1) Archimedes, (2) Pappus Method

The Present method :

It is based on the Extrema geometrical analysis of the mechanical motion of shapes related to a system of poles of rotation .
The classical solutions by means of conics, or reduction to a , vev́øts, is a part of Extrema method. This method changes the Idle between the edge cases and Rotates it through constant points, The Poles, Fig. 11 .

The basic triangle AOD_{1} is such that angle $\mathrm{OD}_{1} \mathrm{~A}=30^{\circ}$ and rotating through pole O .
The three edge positions are ,
a). Angle $\mathrm{AOB}=90^{\circ}$ when $O D_{1} \equiv-\mathrm{OE}$ and then point D_{1} is at point E on OB axis,
b). Angle $A O B=0-90^{\circ}$ when $O D_{1}=O E$ and then point D_{1} is perpendicular to $O B$ axis ,
c). Angle $A O B=0$ when $O A \equiv O$ and then point D_{1} is perpendicular to $O B$ axis.

This moving geometrical mechanism acquires common circles and constant common poles of rotation which are defined with initial ones .
This geometrical motion happens between the Extrema cases referred above ..
The steps of the basic Rotating Triangle AOD_{1} between the extrema cases $\mathrm{AOB}=180$, $\mathrm{AOB}=0$

F.9. \rightarrow The proposed Contemporary Trisection method .

We extend Archimedes method as follows :
a . F9.-(2) . Given an angle $<\mathbf{A O B}=\mathbf{A O C = 9 0}$ -
1.. Draw circle $(\mathrm{A}, \mathrm{AO}=\mathrm{OA})$ with its center at the vertex A intersecting circle $(\mathrm{O}, \mathrm{OA}=\mathrm{AO})$ at the points $\mathrm{A}_{1}, \mathrm{~A}_{2}$ respectively.
2.. Produce line $A A_{1}$ at C so that $A_{1} C=A_{1} A=A O$ and draw $A D / / O B$.
3.. Draw CD perpendicular to $A D$ and complete rectangle $A O C D$.
4.. Point F is such that $\mathrm{OF}=2$. OA
b. F9.(3-4) . Given an angle $<\mathbf{A O B}<90$ -
1.. Draw AD parallel to OB .
2.. Draw circle $(\mathrm{A}, \mathrm{AO}=\mathrm{OA})$ with its center at the vertex A intersecting circle $(\mathrm{O}, \mathrm{OA}=\mathrm{AO})$ at the points $\mathrm{A}_{1}, \mathrm{~A}_{2}$.
3.. Produce line AA_{1} at D_{1} so that $\mathrm{A}_{1} \mathrm{D}_{1}=\mathrm{A}_{1} \mathrm{~A}=\mathrm{OA}$.
4.. Point F is such that $\mathrm{OF}=2 . \mathrm{OA}=2 . \mathrm{OA}_{\mathrm{o}}$
5.. Draw CD perpendicular to AD and complete rectangle $\mathrm{A}^{\prime} \mathrm{OCD}$.
6.. Draw $A_{o} E$ Parallel to $A^{\prime} C$ at point E (or sliding E on $O C$).
7.. Draw $A_{o} E^{\prime}$ parallel to $O B$ and complete rectangle $A_{o} O E E_{1}$.
8.. In F10-(1-2-3), Draw AF intersecting circle (O,OA) at point F_{1} and insert after F_{1} and on $A F$ segment $F_{1} F_{2}$ equal to $O A \rightarrow F_{1} F_{2}=O A$.
9.. Draw AE intersecting circle (O, OA) at point E_{1} and insert after E_{1} on AE segment $E_{1} E_{2}$ equal to $O A \rightarrow E_{1} E_{2}=O A=F_{1} F_{2}$.

To show that :

a). For all angles equal to 90 Points C and E are at a constant distance $\mathrm{OC}=\mathrm{OA} . \sqrt{ } 3$ and $\mathrm{OE}=\mathrm{OA}_{\mathrm{O}} \cdot \sqrt{ } 3$, from vertices O , and also $\mathrm{A}^{\prime} \mathrm{C} / / \mathrm{A}_{0} \mathrm{E}$.
b). The geometrical locus of points C, E is the perpendicular $\mathrm{CD}, \mathrm{EE}_{1}$ line on OB .
c). All equal circles with their center at the vertices O, A and radius $\mathrm{OA}=\mathrm{AO}$ have the same geometrical locus $\mathrm{EE}_{1} \perp \mathrm{OE}$ for all points A on AD , or All radius of equal circles drawn at the points of intersection with its Centers at the vertices O, A and radius $\mathrm{OA}=\mathrm{AO}$ lie on $\mathrm{CD}, \mathrm{E} \mathrm{E}_{1}$ perpendicular lines .
d). Angle $<\mathrm{D}_{1}$ OA is always equal to 90° and angle AOB is created by rotation of the right-angled triangle AOD_{1} through vertex O .
e). Angle < AOB is created in two ways, by constructing circle ($\mathrm{O}, \mathrm{OA}=\mathrm{OA}_{\mathrm{O}}$) and by sliding, of point A_{1} on line $A_{1} D$ Parallel to $O B$ from point A_{1}, to A.
f). Angle <AOB is created in two ways, either by constructing circle ($\mathrm{O}, \mathrm{OA}=\mathrm{OA}_{\mathrm{O}}$) and by sliding, of point A^{\prime} on line $\mathrm{A}^{\prime} \mathrm{D}$ Parallel to OB from point A^{\prime}, to A , or on OA circle .
g). The rotation of lines AE, AF (minimum and maximum edge positions) on circle ($\mathrm{O}, \mathrm{OA}=\mathrm{OA}_{\mathrm{O}}$) from point E to point F which lines intersect circle ($O, O A$) at the edge points E_{1}, F_{1} respectively, fixes a point G on line $E F$ and a point G_{1} common to line $A G$ and to the circle (O, OA) such that $\mathrm{GG}_{1}=\mathrm{OA}$.
Proof :
a) .. F. 9 .(1-2-4)

Let OA be one-dimensional Unit perpendicular to OB such that angle $<\mathrm{AOB}=\mathrm{AOC}=90^{\circ}$ Draw the equal circles (O, OA), (A, AO) and let points $\mathrm{A}_{1}, \mathrm{~A}_{2}$ be the points of intersection. Produce AA_{1} to C on OB axis such that $\mathrm{A}_{1} \mathrm{C}=\mathrm{AA}_{1}$.
Since triangle $A O A_{1}$ has all sides equal to $\mathrm{OA}\left(\mathrm{AA}_{1}=\mathrm{AO}=\mathrm{OA}_{1}\right)$ then it is an equilateral triangle and angle $<\mathrm{A}_{1} \mathrm{AO}=60$ -
Since Angle $<\mathrm{CAO}=60$ and $\mathrm{AC}=2$. OA then triangle ACO is right-angled and since angle $<\mathrm{AOC}=90^{\circ}$, so the angle $\mathrm{ACO}=30^{\circ}$.
Complete rectangle AOCD, and angle $\angle \mathrm{ADO}=180-90-60=30 \circ=\mathrm{ACO}=90 \circ / 3=30$ 。 From Pythagoras theorem $\mathrm{AC}^{2}=\mathrm{AO}^{2}+\mathrm{OC}^{2}$ or $\mathrm{OC}^{2}=4 . \mathrm{OA}^{2}-\mathrm{OA}^{2}=3 . \mathrm{OA}^{2}$ and
$\mathbf{O C}=\mathbf{O A} \cdot \sqrt{ } \mathbf{3}$.
For $\mathrm{OA}=\mathrm{OA}_{\mathrm{O}}$ then $\mathrm{A}_{\mathrm{O}} \mathrm{E}=2 . \mathrm{OA}_{\mathrm{O}}$ and $\mathbf{O E}=\mathbf{O A}_{\mathbf{0}} \cdot \sqrt{ } \mathbf{3}$.
Since $\mathrm{OC} / \mathrm{OE}=\mathbf{O A} / \mathrm{OA}_{\mathbf{0}} \rightarrow$ then line CA^{\prime} is parallel to $\mathbf{E A}_{\mathbf{0}}$.
b) .. F.9.(3-4)
Triangle OAA_{1} is isosceles, therefore angle $<\mathrm{A}_{1} \mathrm{AO}=60$. Since $\mathrm{A}_{1} \mathrm{D}_{1}=\mathrm{A}_{1} \mathrm{O}$, triangle $\mathrm{D}_{1} \mathrm{~A}_{1} \mathrm{O}$ is isosceles and since angle $<\mathrm{OA}_{1} \mathrm{~A}=60^{\circ}$, therefore angle $<\mathrm{OD}_{1} \mathrm{~A}=30^{\circ}$ or , Since $\mathrm{A}_{1} \mathrm{~A}=\mathrm{A}_{1} \mathrm{D}_{1}$ and angle $<\mathrm{A}_{1} \mathrm{AO}=60$ - then triangle AOD_{1} is also right-angle triangle and angles $<\mathrm{D}_{1} \mathrm{OA}=90^{\circ},<\mathrm{OD}_{1} \mathrm{~A}=30^{\circ}$.
Since circle of diameter $D_{1} A$ passes through point O and also through the foot of the perpendicular from point D_{1} to AD , and since also $\mathrm{ODA}=\mathrm{ODA}^{\prime}=30^{\circ}$, then this foot point coincides with point D, therefore the locus of point C is the perpendicular CD_{1} on OC . For $A A_{1}>A_{1} D_{1}$, then D_{1} is on the perpendicular $D_{1} E$ on OC.
Since the Parallel from point A_{1} to OA passes through the middle of OD_{1}, and in case where is $\mathrm{AOB}=\mathrm{AOC}=90$ through the middle of AD , then the circle with diameter $\mathrm{D}_{1} \mathrm{~A}$ passes through point D which is the base point of the perpendicular, i.e.
The geometrical locus of points C, or E, is $C D$ and EE_{1}, the perpendiculars on $O B$.
c) .. F.9.(3-4)

Since $A_{1} A=A_{1} D_{1}$ and angle $<A_{1} A O=60$ a then triangle $A O D_{1}$ is a right - angle triangle and angle $<\mathrm{D}_{1} \mathrm{OA}=90$. Since angle $<\mathrm{A}_{1} \mathrm{O}$ is always equal to $30 \circ$ and angle $<\mathrm{D}_{1} \mathrm{OA}$ is always equal to 90 , therefore angle $<\mathrm{AOB}$ is created by the rotation of the right -angled triangle A-O-D 1 through vertex 0. then this is perpendicular to OA and equal to $\mathrm{A}^{\prime} \mathrm{A}$. (F .8)
(1)
(2)

$\mathrm{FF} 1>\mathrm{F} 1 \mathrm{~F} 2=\mathrm{OA}$
$\mathrm{A} 1 \mathrm{E}=\mathrm{G} 1 \mathrm{G}=\mathrm{OA}$

$\mathrm{EE} 1<\mathrm{E} 1 \mathrm{E} 2=\mathrm{OA}$
F.10. \rightarrow The three cases of the Sliding segment $\mathrm{OA}=\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{E}_{1} \mathrm{E}_{2}$ between a line OB and a circle (O, OA) between the Maxima-Edge cases $\mathrm{F}_{1} \mathrm{~F}, \mathrm{E}_{1} \mathrm{E}$ or between F, E points .
On AF, AE lines of F .10 exists:
$\mathrm{FF}_{1}>\mathrm{OA} \quad \mathrm{GG}_{1}=\mathrm{OA}, \mathrm{A}_{1} \mathrm{E}=\mathrm{OA}_{\mathrm{O}} \quad \mathrm{EE}_{1}<\mathrm{OA}$
$\mathrm{F}_{2} \mathrm{~F}_{1}=\mathrm{OA} \quad \mathrm{A}_{1} \mathrm{E}=\mathrm{OA}_{\mathrm{O}}, \mathrm{EA}_{1}=\mathrm{OA} \quad \mathrm{E}_{1} \mathrm{E}_{2}=\mathrm{OA}$
d) .. F.9-(4) - (F. 10 - F.11)

Let point \mathbf{G} be sliding on OB between points \mathbf{E} and \mathbf{F} where lines $\mathrm{AE}, \mathrm{AG}, \mathrm{AF}$ intersect circle (O, OA) at the points $\mathrm{E}_{1}, \mathrm{G}_{1}, \mathrm{~F}_{1}$ respectively where then exists $\mathrm{FF}_{1}>\mathrm{OA}, \mathrm{GG}=\mathrm{OA}, \mathrm{E} \mathrm{E}_{1}<\mathrm{OA}$.
Points $\boldsymbol{E}, \boldsymbol{F}$ are the limiting points of rotation of lines AE, AF (because then for angle < AOB $=90 \square \rightarrow \mathrm{~A}_{1} \mathrm{C}=\mathrm{A}_{1} \mathrm{~A}=\mathrm{OA}, \mathrm{A}_{1} \mathrm{~A}_{\mathrm{O}}=\mathrm{A}_{1} \mathrm{E}=\mathrm{OA}_{\mathrm{O}}$ and for angle $\left.<\mathrm{AOB}=0 \square \rightarrow \mathrm{OF}=2 . \mathrm{OA}\right)$. Exists also $\mathrm{E}_{1} \mathrm{E}_{2}=\mathrm{OA}, \mathrm{F}_{2} \mathrm{~F}_{1}=\mathrm{OA}$ and point G 1 common to circle (O, OA) and on line AG such that $\mathrm{GG}_{1}=\mathrm{OA}$.
AE Oscillating to AF passes through AG so that $\mathrm{GG}_{1}=\mathrm{OA}$ and point G on sector EF. When point G_{1} of line $A G$ is moving (rotated) on circle ($\mathbf{E}_{\mathbf{2}}, \mathbf{E}_{\mathbf{2}} \mathbf{E}_{\mathbf{1}}=\mathbf{O A}$) and Point G_{1} of $\mathbf{G}_{1} \boldsymbol{G}$ is stretched on circle $(\boldsymbol{O}, \boldsymbol{O A})$, then $\mathrm{G}_{1} \mathrm{G} \neq \mathrm{OA}$.
A position of point G_{1} is such that, when $\mathrm{G}_{\mathrm{G}}=\mathrm{OA}$ point G lies on line EF .
When point G_{1} of line $A G$ is moving (rotated) on circle ($\mathbf{F}_{2}, \mathbf{F}_{\mathbf{2}} \mathbf{F}_{\mathbf{1}}=\mathbf{O A}$) and point G_{1} of $\mathbf{G}_{1} \mathbf{G}$ is stretched on circle $(\mathbf{O}, \mathbf{O A})$ then length $\mathrm{G}_{1} \mathrm{G} \neq \mathrm{OA}$.
A position of point G_{1} is such that, when $\mathrm{G}_{\mathrm{G}}=\mathrm{OA}$ point G lies on line EF without stretching. For both opposite motions there is only one position where point G lies on line $O B$ and is not needed point G_{1} of GA to be stretched on circle (O, OA).

This position happens at the common point , P , of the two circles which is their point of intersection. At this point , P , exists only rotation and is not needed G_{1} of GA to be stretched on circle (O, OA) so that point G to lie on line EF.
This means that point P lies on the circle ($G, \mathrm{GG}_{1}=\mathbf{O A}$), or $\mathbf{G P}=\mathbf{O A}$.
Point G_{1} in angle $<$ BOA is verged through two different and opposite motions, i.e.
1.. From point A^{\prime} to point A_{o} where is done a parallel translation of CA^{\prime} to the new position EA_{o}, this is for all angles equal to 90°, and from this position to the new position EA by rotating EA_{O} to the new position EA having always the distance $\mathrm{E}_{1} \mathrm{E}_{2}=\mathrm{OA}$.

This motion is taking place on a circle of center E_{1} and radius $\mathrm{E}_{1} \mathrm{E}_{2}$.
2.. From point F , where $O F=2 . O A$, is done a parallel translation of $A^{\prime} F$ to FA_{O}, and from this position to the new position FA by rotating FA_{O} to FA having always the distance $\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{OA}$

The Unsolved Ancient - Greek Problems of E-geometry
The two motions coexist, limit, again on a point \mathbf{P} which is the point of intersection
of the circles $\left(\mathrm{E}_{2}, \mathrm{E}_{2} \mathrm{E}_{1}=\mathrm{OA}\right)$ and $\left(\mathrm{F}_{2}, \mathrm{~F}_{2} \mathrm{~F}_{1}=\mathrm{OA}\right)$.
f) ..(F.9.3-4) - (F.10-3)

Remarks - Conclusions :
1.. Point E_{1} is common of line $A E$ and circle ($O, O A$) and point E_{2} is on line $A E$ such that $E_{1} \mathrm{E}_{2}=\mathrm{OA}$ and exists $E \mathrm{E}_{1}<\mathrm{E}_{2} \mathrm{E}_{1}$. Length $\mathrm{E}_{1} \mathrm{E}_{2}=\mathrm{OA}$ is stretched, moves on EA so that point E_{2} is on $E F$. Circle ($E, E E_{1}<E_{2} E_{1}=O A$) cuts circle ($E_{2}, E_{2} E_{1}=O A$) at point E_{1}. There is a point G_{1} on circle $(\mathrm{O}, \mathrm{OA})$ such that $\mathrm{G}_{1} \mathrm{G}=\mathrm{OA}$, where point G is on $E F$, and is not needed $G_{1} \mathbf{G}$ to be stretched on GA where then, circle $\left(G, G G_{1}=O A\right)$ cuts circle ($\mathrm{E}_{2}, \mathrm{E}_{2} \mathrm{E}_{1}=\mathrm{OA}$) at a point P .
2.. Point F_{1} is common of line $A F$ and circle (O, OA) and point F_{2} is on line $A F$ such that $\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{OA}$ and exists $\mathrm{FF} \mathrm{F}_{1}>\mathrm{F}_{2} \mathrm{~F}_{1}$. Segment $\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{OA}$ is stretched, moves on FA so that point F_{2} is on FE. Circle ($\mathrm{F}, \mathrm{F} \mathrm{F}_{1}>\mathrm{F}_{2} \mathrm{~F}_{1}=\mathrm{OA}$) cuts circle ($\mathrm{F}_{2}, \mathrm{~F}_{2} \mathrm{~F}_{1}=\mathrm{OA}$) at point F_{1}. There is a point G_{1} on circle (O, OA) such that $\mathrm{G}_{1} \mathrm{G}=\mathrm{OA}$, where point G is on $F E$, and is not needed $\mathrm{G}_{1} \mathbf{G}$ to be stretched on OB where then circle ($\mathrm{G}, \mathrm{GG}_{1}=\mathrm{OA}$) cuts circle $\left(\mathrm{F}_{2}, \mathrm{~F}_{2} \mathrm{~F}_{1}=\mathrm{OA}\right)$ at a point P .
3.. When point G is at such position on EF that $\mathrm{G}_{\mathbf{1}}=\mathrm{OA}$, then point G must be at A COMMON, to the three lines $\mathrm{E}_{1}, \mathrm{G}_{1}, \mathrm{~F}_{1}$, and also to the three circles $\left(E_{2}, E_{2} E_{1}=O A\right),\left(G, G G_{1}=O A\right),\left(F_{2}, F_{2} F_{1}=O A\right)$
This is possible at the common point , P , of Intersection of circle $\left(\mathrm{E}_{2}, \mathrm{E}_{2} \mathrm{E}_{1}=\mathrm{OA}\right)$ and $\left(\mathrm{F}_{2}, \mathrm{~F}_{2} \mathrm{~F}_{1}=\mathrm{OA}\right)$ and since $\mathrm{G}_{\mathbf{G}}$ is equal to OA without $\mathbf{G}_{\mathbf{G}}^{1} \boldsymbol{b}$ be stretched on $\mathbf{G A}$, then also GP = OA.
4.. In additional, for point G_{1} :
a.. Point G_{1}, from point E_{1}, moving on circle ($\mathrm{E}_{2}, \mathrm{E}_{2} \mathrm{E}_{1}=\mathrm{OA}$) formulates Segment $\mathrm{A} \mathrm{E}_{1} \mathrm{E}$ such that $E_{1} E=G_{1} G<O A$, for G moving on line GA.
There is a point on circle ($\mathrm{E}_{2}, \mathrm{E}_{2} \mathrm{E}_{1}=\mathrm{OA}$) such that $\mathrm{GG}_{1}=\mathrm{OA}$.
b.. Point G_{1}, from point F_{1}, moving on circle $\left(\mathrm{F}_{2}, \mathrm{~F}_{2} \mathrm{~F}_{1}=\mathrm{OA}\right)$ formulates $\mathrm{AF}_{1} \mathrm{~F}$ such that $\mathrm{F}_{1} \mathrm{~F}=\mathrm{GG}_{1}>\mathrm{OA}$, for G moving on line GA.
There is a point on circle $\left(F_{2}, F_{2} F_{1}=O A\right)$ such that $G G_{1}=O A$.
c. Since for both Opposite motions there is a point on the two circles that makes $\mathrm{GG}_{1}=\mathrm{OA}$ then point say P , is common to the two circles .
d.. Since for both motions at point P exists $G G_{1}=O A$ then circle $\left(G, G G_{1}=O A\right)$ passes through point P, and since point P is common to the three circles, then fixing point P as the common to the two circles $\left(E_{2}, E_{2} E_{1}=O A\right),\left(F_{2}, F_{2} F_{1}=O A\right)$, then point G is found as the point of intersection of circle $(\mathrm{P}, \mathrm{PG}=\mathrm{OA})$ and line EF . This means that the common point P of the three circles is constant to point P of the three circles and is constant to this motion.
e.. Since, happens also the motion of a constant Segment on a line and a circle, then it is Extrema Method of the moving Segment as stated. The method may be used for part or Blocked figures either sliding or rotating. In our case, the Initial triangle forming $1 / 3$ angle is formulating in all cases the common pole , P , of the three circles .
From all above the geometrical trisection of any angle is as follows,

$\mathrm{F} .11 \rightarrow$ The extrema Geometrical method of the Trisection of any angle $<A O B$

In F.11- (1) Basic triangle $A O D_{1}=O A E$ defines point E such that angle $<A E O=30 \square=A O B / 3$.
In F.11- (2) Basic triangle $A O D_{1}$ defines D_{1} point such that angle $A D_{1} O=30$ ㅁ $A O B / 3$.
In F.11- (3) Basic triangle $A O D_{1}$ defines $E^{`}$ point such that angle $A E^{\prime} O=30$ 口, and it is the Extrema Case for angles $\mathrm{AOB}=0 \square, \mathrm{~B} \mathrm{OB}=180$ व

In F.11- (4) The two Edge cases (1),(3) issue for any angle $\mathrm{AOB}=\varphi^{\square}$ where $\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{OA}<\mathrm{F}_{1} \mathrm{~F}, \mathrm{E}_{1} \mathrm{E}_{2}=\mathrm{OA}<\mathrm{E}_{1} \mathrm{E}$ In F.11- (5) The two circles with centers F_{1}, E_{1} correspond to Edge cases (1),(3) issuing for any angle $A O B=\varphi \square$
In F.11- (6) The three circles [$\left.\mathrm{F}_{2}, \mathrm{~F}_{2} \mathrm{~F}_{1}=\mathrm{OA}\right],\left[\mathrm{E}_{2}, \mathrm{E}_{2} \mathrm{E}_{1}=\mathrm{OA}\right]$, $\left[\mathrm{G}, \mathrm{GG}_{1}=\mathrm{OA}=\mathrm{GP}\right]$ corresponding to Edge cases (1), (3) define the common axis $\mathrm{P} \mathrm{P}^{\prime}$ of all movable poles and point, P , of this rotational system, such that $\mathrm{GG}_{1}=\mathrm{OA}$ is stretched on $(\mathrm{O}, \mathrm{OA})$ circle and OB line, of any angle $\mathrm{AOB}=\varphi^{\square}$.

F.11-A. \rightarrow Presentation of the Trisection Method on Dr. Geo - Machine Macro -constructions .

In F.11- A From Initial position of triangle AOB , where angle $<\mathrm{AOB}=90^{\circ}$ and Segment $\mathrm{A}_{1} \mathrm{C}=\mathrm{OA}$, to the Final position of triangle, where angle $\angle \mathrm{AOB}=\mathrm{BOB}=0$ and $\mathrm{AOB}=\mathrm{B}{ }^{`} \mathrm{OB}=180$, through the Extrema position between edge - cases of triangle ZOD where $\mathrm{AOB}=\varphi \cdot$ and $\mathrm{GG}_{1}=\mathrm{GP}=\mathrm{OA}$.
3.1. The steps of Trisection of any angle $\langle\boldsymbol{A O B}=\mathbf{9 0} \square \boldsymbol{0}$ ㅁ F.11-[1-6]
1.. Draw circles $(O, O A=O B),(A, A O)$, intersected at $A_{1} \equiv Z_{1}$ point.
2.. Draw $\mathrm{OA}_{\mathrm{O}} \perp \mathrm{OB}$ where point A_{O} is on the circle (O, OA) and on a general circle $(Z, D-E=2$. OA) . The circle ($\mathrm{O}, \mathrm{OD}-\mathrm{E}$) intersects line OB at the Edge point E .
3.. Fix Edge point F on line OB such that $\rightarrow \mathrm{OF}=2$. OA
4.. Draw lines AF, AE intersecting circle (O, OA) at points $\mathrm{F}_{1}, \mathrm{E}_{1}$ respectively .
5.. On lines $F_{1} A, E_{1} A$ fix points F_{2}, E_{2} such that $F_{1} F_{2}=O A$ and $E_{1} E_{2}=O A$.
6.. Draw circles $\left(F_{2}, F_{2} F_{1}=O A\right),\left(E_{2}, E_{2} E_{1}=O A\right)$ and fix point P as their common point of intersection.
7.. Draw circle ($\mathrm{P}, \mathrm{PG}=\mathrm{OA}$) intersecting line OB at point G and draw line GA intersecting circle (O, OA) at point G_{1}, Then Segment $\mathbf{G G}_{\mathbf{1}}=\mathbf{O A}$, and angle $<\mathbf{A O B}=\mathbf{3}$. AGB. Proof :

1. Since point P is common to circles $\left(F_{2}, F_{2} F_{1}=O A\right),\left(E_{2}, E_{2} E_{1}=O A\right)$, then $P G=P F_{2}=P E_{2}=O A$ and line $A G$ between $A E, A F$ intersects circle (O, OA) at the point G_{1} such that $\mathrm{GG}_{1}=\mathrm{OA} . \quad(\mathrm{F} 10.1-2)$ - (F.11-5)
2. Since point G_{1} is on the circle $(O, O A)$ and since $G G_{1}=O A$ then triangle $G_{1} O$ is isosceles and angle $<\mathrm{AGO}=\mathrm{G}_{1} \mathrm{OG}$.
3. The external angle of triangle $\Delta=\mathrm{GG}_{1} \mathrm{O}$ is $<\mathrm{AG}_{1} \mathrm{O}=\mathrm{AGO}+\mathrm{G}_{1} \mathrm{OG}=2$. AGO
4. The external angle of triangle $G O A$ is angle $<A O B=A G O+O A G=3 . A G O$. Therefore angle < AGB=(1/3).(AOB) (o.\&. δ.)

A General Analysis :

Since angle $<D_{1} O A$ is always equal to 90 a then angle $A O B$ is created by rotation of the right-angled triangle $A O D_{1}$ through vertex O. The circle ($A, A O=A_{1} O$) and triangle $A O D_{1}$ consists the geometrical Mechanism which creates the maxima at positions from , AOE , to $\mathrm{A}_{0} \mathrm{OE}$ and to BOF^{\wedge} triangles , on $(\mathrm{O}, \mathrm{OE}=\sqrt{ } 3 . \mathrm{OA}),(\mathrm{O}, \mathrm{OF}=2 . \mathrm{OA})$ circles. $\mathrm{F} .11-(5)$
In (1) Angle $\mathrm{AOB}=90^{\circ}, \mathrm{AE}=2 . \mathrm{OA}=\mathrm{OF}$, and point A_{1} common to circles $(\mathrm{O}, \mathrm{OA}),(\mathrm{A}, \mathrm{AO})$ define point E on $O B$ line such that $A_{1} E=O A$. This happens for the extrema angle $A O B=90^{\circ}$. In (2) Angle is, $0<\mathrm{AOB}<90^{\square}, \mathrm{AD}_{1}=2.0 \mathrm{~A}$ and point A_{1} common to circles (O,OA), (A,AO) defines point D_{1} on $(O, O E=\sqrt{3 . O A})$ circle such that $A_{1} D_{1}=O A$ and on $(O, O F=2 . O A)$ circle at any point D_{f}.
In (3) Angle $<\mathrm{AOB}=0$ or $\mathrm{B}^{`} \mathrm{OB}=180^{\square}, \mathrm{AE}=2 . \mathrm{OA}=\mathrm{BB}^{`}$ and point A_{1} common to (O, OA), (A, AO) circles define point E on OA_{O} line such that $\mathrm{E} \equiv \mathrm{E}^{`}$, where then point $\mathrm{D} \equiv \mathrm{F}^{`}$.
This happens for the extrema angle $<\mathrm{AOB}=0$ or 90 .
In (4-5) where angle is, $0<\mathrm{AOB}<90$, and Segments $\mathrm{F}_{1} \mathrm{~F}_{2}=\mathrm{E}_{1} \mathrm{E}_{2}=\mathrm{OA}$ the equal circles $\left(F_{2}, F_{2} F_{1}=O A\right),\left(E_{2}, E_{2} E_{1}=O A\right)$ define the common point P.
Since this geometrical formulation exists on Extrema edge angles , 0 and 90°, then this point is constant to this formulation , and this point as center of a radius OA circle defines the extrema geometrical locus on it. All Poles are movable except the common Pole line PP` representing the Extrema case of this changeable system .
In (6) Since angle AOB is, $0 \rightarrow 90^{\text {a }}$, and point P is constant, and this because extrema circle ($\mathrm{P}, \mathrm{PG}=\mathrm{OA}$) where G on OB line, then is defining $\left(\mathrm{G}, \mathrm{G} \mathrm{G}_{1}\right)$ circle on GA segment such that point G_{1}, tobe the common point of segment AG and to circles $(\mathrm{O}, \mathrm{OA}),\left(\mathrm{G}, \mathrm{G}_{1}\right)$.

The Physical notion of the Trisection :

This problem follows the two dimensional logic, where, the geometrical magnitudes and their unique circle, have a linear relation (continuous analogy) in all Spaces as , in one in two in three dimensions, and as this happens to Compatible Coordinate Systems, happens also in Circle-arcs.
The Compact-Logic-Space-Layer exists in Units, (The case of 90 angle), where then we may find a new machine that produces the $1 / 3$ of angles as in F.11. [11]

Since angles can be produced from any monad OB , and this because monad can formulate a circle of radius OB , and any point A on circle can then formulate angle $<\mathrm{AOB}$, therefore the logic of continuous analogy of monads in all spaces issues also and on OA radius equal to OB .

Application in Physics :

According to math theory of Elasticity, the total work on free edges where there is no shear becomes from Principal stresses only and work is $\mathrm{W}=\frac{\sigma^{2}}{2 \mathrm{E}}+\frac{\tau^{2}}{2 \mathrm{G}}$ and the analogous Energy in monads $\mathrm{W}=\frac{1}{2}\left[\varepsilon \mathrm{E}^{2}+\mu \mathrm{H}^{2}\right]$ spread as the First Harmonic and equal to outer Spin $\overline{\mathrm{S}}=\mathrm{E} / \mathrm{w}=2 \pi \mathrm{r}$.c .
Equation of Planck's Energy $\mathrm{E}=\mathrm{h} . \mathrm{f}=(\mathrm{h} / \lambda) . \mathrm{c}$ is equal to the Isochromatic pattern fringe-order in monad as $\rightarrow \sigma 1-\sigma 2=(\mathrm{a} / \mathrm{d}) . \mathrm{N}=(\mathrm{a} / \mathrm{d}) \mathrm{nfl}=\left(8 \pi \mathrm{r}^{2} / 3\right)$.n.f1. where $\mathrm{n}=$ the order of isochromatic , a number, $\mathrm{fl}=$ the frequency of Fundamental-Harmonic.
Since total Energy in cave (wr) ${ }^{2}$ is dependent on frequency only, and stored in the Fundamental and the first Six Harmonics, so the summations bands of these Seven Isochromatic Quantized interference fringe-order-patterns, is total energy \mathbf{E} in the same cave $(\mathrm{wr})^{2}$ as ,

$$
\begin{equation*}
\mathrm{E}=\text { Spin.w }=\overline{\mathrm{S}} \cdot \mathrm{w}=(\mathrm{h} / 2 \pi) \cdot 2 \pi \mathrm{f}=\left[\frac{8 \pi \mathrm{r}^{2} \mathrm{f} 1}{3}\right] \cdot\left[\frac{n(n+1)}{2}\right]=\left[\frac{4 \pi \mathrm{r}^{2} \mathrm{f} 1}{3}\right] \mathrm{n} \cdot(\mathrm{n}+1) \tag{a}
\end{equation*}
$$

When stress ($\sigma 1-\sigma 2$) go up then, $\mathbf{n}=\boldsymbol{o r d e r}$ fringe defining Energy goes up also ,and the colors cycle through a more or less repeating pattern and the Intensity of the colors diminishes . Since phase $\varphi=\mathrm{kx}-\mathrm{wt}=$ Spatial and Time Oscillation dependence ,
For $\mathrm{n}=1$, Energy in the First Harmonic is , $\mathrm{E}=2 \pi \mathrm{r} . \mathrm{c}=\left[\frac{4 \mathrm{r}^{2}}{3}\right] . \mathrm{fl} .[\mathbf{1}]$, and for $\mathrm{n}=2$ Energy in the First and Second Isochromatic Harmonic is, $\mathrm{E}=\left[\frac{4 \pi \mathrm{r}^{2}}{3}\right] . \mathrm{fl}$.[3] in threes, and φ is trisected with Energy-Bunched variation f2, i.e.
Energy stored in a homogeneous resonance, is spread in the First of Seven-Harmonics beginning from the Fundamental and after the filling with frequency f1, follows the Second-Harmonic .
In Second-Harmonic energy as frequency is doubled and this because of sufficient keeping homogeneously in Spatial dependence Quantity $\mathrm{kx}=(2 \pi / \lambda) \cdot \mathrm{x}$ which is in threes, meaning that, \rightarrow Dipole - energy is Spatially-trisected in Space -Quantity Quanta the Spin $=h / 2 \pi$ as the angle φ, of phase $\varphi=\mathrm{kx}-\mathrm{wt}=(2 \pi / \lambda) . \mathrm{x}$, and Bisected by the Energy-Quantity Quanta as in an RLC circuit. [49] .

The Physical notion of the Regular Polygons :

According to Archimedes, Geometric means, speaking of numbers, whether solid or square, observes that, Between Plane One - mean suffices, but to connect two solids Two - means are necessary . This denotes that between two square numbers there is one mean proportional number and between two cubes there are two means proportional numbers .
It was proved that Odd numbers become from any two consequent Even numbers, so the sum of two irrationals may be either rational or irrational .
The Cattle - Problem of Archimedes may be further analysed reaching to equations of any degree. It was shown in pages 43-49 that, all n-Regular Polygons End to equations of n-degree Segment, by finding a suitable value of the Segment, x , That is we have in the general case to solve one or two equations of the form :

$$
A \cdot R^{0} \cdot x^{n}-B \cdot R^{2} \cdot x^{n-2}+C \cdot R^{n-6} \cdot x^{3}-D \cdot R^{n-4} \cdot x^{2}+E \cdot R^{n-2} \cdot x^{1}-F \cdot R^{n} \cdot x^{0}=0
$$

The Presented Geometrical method is the solution of the above equation in the general case .

4. The Parallel Postulate, is not an Axiom, is a Theorem.

The Parallel Postulate. F. 13

General : Axiom or Postulate is a statement checked if it is true and is ascertained with logic (the experiences of nature as objective reality).
Theorem or Proposition is a non-main statement requiring a proof based on earlier determined logical properties.
Definition is an initial notion without any sensible definition given to other notions.
Definitions, Propositions or Postulates created Euclid geometry using the geometrical logic which is that of nature, the logic of the objective reality.
Using the same elements it is possible to create many other geometries but the true uniting element is the before refereed.
4.1. The First Definitions $(\mathbf{D n})=(\mathrm{D})$, of Terms in Geometry but the true uniting ,

D1: A point is that which has no part (Position).
D2: A line is a breathless length (for straight line, the whole is equal to the parts) .
D3: The extremities of lines are points (equation).
D4: A straight line lies equally with respect to the points on itself (identity).
D : A midpoint C divides a segment AB (of a straight line) in two. $\mathrm{CA}=\mathrm{CB}$ any point C divides all straight lines through this in two.
D : A straight line AB divides all planes through this in two.
D : A plane ABC divides all spaces through this
in two .
4.2. Common Notions $(\mathbf{C n})=(\mathrm{CN})$

Cn 1 : Things which equal the same thing also equal one another.
Cn 2 : If equals are added to equals, then the wholes are equal.
Cn 3 : If equals are subtracted from equals, then the remainders are equal.
Cn 4 : Things which coincide with one another, equal one another.
Cn 5 : The whole is greater than the part.
4.3. The Five Postulates $(\mathbf{P n})=(\mathrm{P})$ for Construction

P1.. To draw a straight line from any point A to any other point B .
P2.. To produce a finite straight line AB continuously in a straight line.
P3.. To describe a circle with any center and distance. P1, P2 are unique.
P4.. That, all right angles are equal to each other.
P5.. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, if produced indefinitely, meet on that side on which are the angles less than the two right angles, or (for three points on a plane). Three points consist a Plane .
P5a. The same is plane's postulate which states that, from any point M , not on a straight line AB , only one line MM^{\prime} can be drawn parallel to AB .
Since a straight line passes through two points only and because point M is the third , then the parallel postulate it is valid on a plane (three points only).
$A B$ is a straight line through points $A, B, A B$ is also the measurable line segment of line $A B$, and M any other point. When $M A+M B>A B$, then point M is not on line $A B$. (differently if MA+MB $=\mathrm{AB}$, then this answers the question of why any line contains at least two points),
i.e. for any point M on line $A B$ where is holding
$\mathrm{MA}+\mathrm{MB}=\mathrm{AB}$, meaning that line segments MA, MB coincide on AB , is thus proved from the other axioms and so D 2 is not an axiom.$\quad \rightarrow$
To prove that , one and only one line MM^{\prime} can be drawn parallel to AB .

F.12. \rightarrow In three points (in a Plane).
4.4. The Process in order to prove the above Axiom is necessary to show : F.13,
a.. The parallel to AB is the locus of all points at a constant distance \mathbf{h} from the line AB , and for point M is MA_{1},
b..The locus of all these points is a straight line.

F.13. \rightarrow The Parallel Method

Step 1

Draw the circle ($M, M A$) be joined meeting line $A B$ in C. Since $M A=M C$, point M is on mid perpendicular of $A C$. Let A_{1} be the midpoint of $A C$, (it is $A_{1} A+A_{1} C=A C$ because A_{1} is on the straight line AC). Triangles $\mathrm{MAA}_{1}, \mathrm{MCA}_{1}$ are equal because the three sides are equal, therefore angle $<\mathrm{MA}_{1} \mathrm{~A}=\mathrm{MA}_{1} \mathrm{C}(\mathrm{CN} 1)$ and since the sum of the two angles $<\mathrm{MA}_{1} \mathrm{~A}+\mathrm{MA}_{1} \mathrm{C}=180^{\circ}$ (CN2, 6D) then angle $<\mathrm{MA}_{1} \mathrm{~A}=\mathrm{MA}_{1} \mathrm{C}=90^{\circ}$.(P4) so, MA_{1} is the minimum fixed distance \mathbf{h} of point M to AC.

Step 2

Let B_{1} be the midpoint of CB , (it is $\mathrm{B}_{1} \mathrm{C}+\mathrm{B}_{1} \mathrm{~B}=\mathrm{CB}$ because B_{1} is on the straight line CB) and Draw $\mathrm{B}_{1} \mathrm{M}^{\prime}=\mathrm{h}$ equal to $\mathrm{A}_{1} \mathrm{M}$ on the mid-perpendicular from point B_{1} to CB . Draw the circle ($\mathrm{M}^{\prime}, \mathrm{M}^{\prime} \mathrm{B}=\mathrm{M}^{\prime} \mathrm{C}$) intersecting the circle $(\mathrm{M}, \mathrm{MA}=\mathrm{MC})$ at point $\mathrm{D} .(\mathrm{P} 3)$
Since $M^{\prime} C=M^{\prime} B$, point M^{\prime} lies on mid- perpendicular of $C B$. (CN1)
Since $M^{\prime} C=M^{\prime} D$, point M^{\prime} lies on mid-perpendicular of $C D$. (CN1) Since $M C=M D$, point M lies on mid-perpendicular of CD. (CN1) Because points M and M^{\prime} lie on the same mid-perpendicular (This mid - perpendicular is drawn from point C^{\prime} to CD and it is the midpoint of CD) and because only one line MM^{\prime} passes through points M, M 'then line MM^{\prime} coincides with this mid-perpendicular (CN4) .

Step 3
Draw the perpendicular of CD at point C^{\prime}. (P3, P1)
a..Because $\mathrm{MA}_{1} \perp \mathrm{AC}$ and also $\mathrm{MC}^{\prime} \perp \mathrm{CD}$ then angle $<\mathrm{A}_{1} \mathrm{MC}^{\prime}=\mathrm{A}_{1} \mathrm{CC}^{\prime}$. (Cn 2,Cn3,E.I.15) Because $\mathrm{M}^{\prime} \mathrm{B}_{1} \perp \mathrm{CB}$ and also $\mathrm{M}^{\prime} \mathrm{C}^{\prime} \perp \mathrm{CD}$ then angle $<\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{C}^{\prime}=\mathrm{B}_{1} \mathrm{CC}^{\prime}$. (Cn2, Cn3, E.I.15)
b..The sum of angles $\mathrm{A}_{1} \mathrm{CC}^{\prime}+\mathrm{B}_{1} \mathrm{CC}^{\prime}=180^{\circ}=\mathrm{A}_{1} \mathrm{MC}^{\prime}+\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{C}^{\prime}$. (6.D), and since Point C' lies on straight line $M M^{\prime}$, therefore the sum of angles in shape $A_{1} B_{1} M^{\prime} M$ are $<M A_{1} B_{1}+A_{1} B_{1} M^{\prime}+$ $\left[B_{1} M^{\prime} \mathrm{M}+\mathrm{M}^{\prime} \mathrm{MA}_{1}\right]=90^{\circ}+90^{\circ}+180^{\circ}=360^{\circ}(\mathrm{Cn} 2)$, i.e. The sum of angles in a Quadrilateral is 360° and in Rectangle all equal to 90°. (m)
c..The right-angled triangles $\mathrm{MA}_{1} \mathrm{~B}_{1}, \mathrm{M}^{\prime} \mathrm{B}_{1} \mathrm{~A}_{1}$ are equal because $\mathrm{A}_{1} \mathrm{M}=\mathrm{B}_{1} \mathrm{M}^{\prime}$ and $\mathrm{A}_{1} \mathrm{~B}_{1}$ common, therefore side $\mathrm{A}_{1} \mathrm{M}^{\prime}=\mathrm{B}_{1} \mathrm{M}(\mathrm{Cn} 1)$. Triangles $\mathrm{A}_{1} \mathrm{MM}^{\prime}, \mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}$ are equal because have the three sides equal each other, therefore angle $<\mathrm{A}_{1} \mathrm{MM}^{\prime}=\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}$, and since their sum is 180° as before (6D), so angle $<\mathrm{A}_{1} \mathrm{MM}^{\prime}=\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}=90^{\circ}$ (Cn2).
d.. Since angle $<A_{1} M M^{\prime}=A_{1} C C^{\prime}$ and also angle $<B_{1} M^{\prime} M=B_{1} C C^{\prime}$ (P4), therefore the three quadrilaterals $\mathrm{A}_{1} \mathrm{CC}^{\prime} \mathrm{M}, \mathrm{B}_{1} \mathrm{CC}^{\prime} \mathrm{M}^{\prime}, \mathrm{A}_{1} \mathrm{~B}_{1} \mathrm{M}^{\prime} \mathrm{M}$ are Rectangles (CN3).
From the above three rectangles and because all points (M, M^{\prime} and C^{\prime}) equidistant from $A B$, this means that $\mathrm{C}^{\prime} \mathrm{C}$ is also the minimum equal distance of point C^{\prime} to line AB or, $\mathrm{h}=\mathrm{MA}_{1}=\mathrm{M}^{\prime} \mathrm{B}_{1}=$ $\mathrm{CD} / 2=\mathrm{C}^{\prime} \mathrm{C}(\mathrm{Cn} 1)$ Namely, line MM^{\prime} is perpendicular to segment CD at point C^{\prime} and this line coincides with the mid-perpendicular of CD at this point C^{\prime} and points $\mathrm{M}, \mathrm{M}^{\prime}, \mathrm{C}^{\prime}$ are on line MM^{\prime}. Point C^{\prime} equidistant, h, from line $A B$, as it is for points M, M^{\prime}, so the locus of the three points is the straight line MM^{\prime}, so the two demands are satisfied, $\left(\mathrm{h}=\mathrm{C}^{\prime} \mathrm{C}=\mathrm{MA}_{1}=\mathrm{M}^{\prime} \mathrm{B}_{1}\right.$ and also $\mathrm{C}^{\prime} \mathrm{C} \perp \mathrm{AB}$, $\mathrm{MA}_{1} \perp \mathrm{AB}, \mathrm{M}^{\prime} \mathrm{B}_{1} \perp \mathrm{AB}$) . (o.ع.. .) - (q.e.d)
e.. The right-angle triangles $\mathrm{A}_{1} \mathrm{CM}, \mathrm{MCC}$ ' are equal because side $\mathrm{MA}_{1}=\mathrm{C}^{\prime} \mathrm{C}$ and MC common so angle $<\mathrm{A}_{1} \mathrm{CM}=\mathrm{C}^{\prime} \mathrm{MC}$, and the Sum of angles $\mathrm{C}^{\prime} \mathrm{MC}+\mathrm{MCB}_{1}=\mathrm{A}_{1} \mathrm{CM}+\mathrm{MCB}_{1}=180^{\text {a }}$

F.13-A. \rightarrow Presentation of the Parallel Method on Dr. Geo - Machine Macro - Constructions .

a.. The three Points A , B , M consist a Plane and so this Proved Theorem exist only in plane .
b.. Points A, B consist a Line and this because exists postulate P1.
c.. Point M is not on A B line and this because when segment $M A+M B>A B$ then point M is not on line AB according to Markos definition .
d.. When Point M is on $A B$ line, and this because segment $M A+M B=A B$ then point M being on line $A B$ is an Extrema case , and then formulates infinite Parallel lines coinciding with $A B$ line in the Infinite (∞) Planes. All for the extrema Geometry cases in [44-46].

4.5 The Succession of Proofs :

1.. Draw the circle (M, MA) be joined meeting line $A B$ in C and let A_{1}, B_{1} be the midpoint of CA, CB.
2.. On mid-perpendicular $\mathrm{B}^{\prime} \mathrm{M}^{\prime}$ find point M^{\prime} such that $\mathrm{M}^{\prime} \mathrm{B} 1=\mathrm{MA}_{1}$, and draw the circle $\left(\mathrm{M}^{\prime}, \mathrm{M}^{\prime} \mathrm{B}=\mathrm{M}^{\prime} \mathrm{C}\right)$ intersecting the circle $(\mathrm{M}, \mathrm{MA}=\mathrm{MC})$ at point D .
3.. Draw mid-perpendicular of CD at point C^{\prime}.
4..To show that line MM^{\prime} is a straight line passing through point C 'and it is such that $\mathrm{MA}_{1}=\mathrm{M}^{\prime} \mathrm{B}_{1}=$ $\mathrm{C}^{\prime} \mathrm{C}=\mathrm{h}$, i.e. a constant distance, h , from line AB or, also The Sum of angles $\mathrm{C}^{\prime} \mathrm{MC}+\mathrm{MCB}_{1}=$ $\mathrm{A}_{1} \mathrm{CM}+\mathrm{MCB}_{1}=180$ 。

Proofed Succession

1.. The mid-perpendicular of CD passes through points $\mathrm{M}, \mathrm{M}^{\prime}$.
2.. Angle $<\mathrm{A}_{1} \mathrm{MC}^{\prime}=\mathrm{A}_{1} \mathrm{MM}^{\prime}=\mathrm{A}_{1} \mathrm{CC}^{\prime}$, Angle $<\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{C}^{\prime}=\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}=\mathrm{B}_{1} \mathrm{CC}^{\prime}<\mathrm{A}_{1} \mathrm{MC}^{\prime}=\mathrm{A}_{1} \mathrm{CC}^{\prime}$ because their sides are perpendicular among them i.e. $\mathrm{MA}_{1} \perp \mathrm{CA}, \mathrm{MC}^{\prime} \perp \mathrm{CC}^{\prime}$.
a.. In case $<\mathrm{A}_{1} \mathrm{MM}^{\prime}+\mathrm{A}_{1} \mathrm{CC}^{\prime}=180^{\circ}$ and $\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}+\mathrm{B}_{1} \mathrm{CC}^{\prime}=180^{\circ}$ then $<\mathrm{A}_{1} \mathrm{MM}^{\prime}=180^{\circ}-\mathrm{A}_{1} \mathrm{CC}^{\prime}$, $B_{1} M^{\prime} \mathrm{M}=180^{\circ}-\mathrm{B}_{1} \mathrm{CC}^{\prime}$, and by summation $<\mathrm{A}_{1} \mathrm{MM}^{\prime}+\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}=360^{\circ}-\mathrm{A}_{1} \mathrm{CC}^{\prime}-\mathrm{B}_{1} \mathrm{CC}^{\prime}$ or Sum of angles $<\mathrm{A}_{1} \mathrm{MM}^{\prime}+\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}=360-\left(\mathrm{A}_{1} \mathrm{CC}^{\prime}+\mathrm{B}_{1} \mathrm{CC}^{\prime}\right)=360-180^{\circ}=180^{\circ}$
3.. The sum of angles $A_{1} \mathrm{MM}^{\prime}+\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}=180^{\circ}$ because the equal sum of angles $\mathrm{A}_{1} \mathrm{CC}^{\prime}+\mathrm{B}_{1} \mathrm{CC}^{\prime}=$ 180°, so the sum of angles in quadrilateral $\mathrm{MA}_{1} \mathrm{~B}_{1} \mathrm{M}^{\prime}$ is equal to 360°.
4.. The right-angled triangles $M A_{1} B_{1}, M^{\prime} B_{1} A_{1}$ are equal, so diagonal $M B_{1}=M^{\prime} A_{1}$ and since triangles $\mathrm{A}_{1} \mathrm{MM}^{\prime}, \mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}$ are equal, then angle $\mathrm{A}_{1} \mathrm{MM}^{\prime}=\mathrm{B}_{1} \mathrm{M}^{\prime} \mathrm{M}$ and since their sum is $180{ }^{\circ}$, therefore angle $<\mathrm{A}_{1} \mathrm{MM}^{\prime}=\mathrm{MM}^{\prime} \mathrm{B}_{1}=\mathrm{M}^{\prime} \mathrm{B}_{1} \mathrm{~A}_{1}=\mathrm{B}_{1} \mathrm{~A}_{1} \mathrm{M}=90$ 。
5.. Since angle $A_{1} C C^{\prime}=B_{1} C C^{\prime}=90^{\circ}$, then quadrilaterals $A_{1} C C^{\prime} M, B_{1}{C C^{\prime}}^{\prime} M^{\prime}$ are rectangles and for the three rectangles $\mathrm{MA}_{1} \mathrm{CC}^{\prime}, \mathrm{CB}_{1} \mathrm{M}^{\prime} \mathrm{C}^{\prime}, \mathrm{MA}_{1} \mathrm{~B}_{1} \mathrm{M}^{\prime}$ exists $\mathrm{MA}_{1}=\mathrm{M}^{\prime} \mathrm{B}_{1}=\mathrm{C}^{\prime} \mathrm{C}$
6.. The right-angled triangles $\mathrm{MCA}_{1}, \mathrm{MCC}^{\prime}$ are equal, so angle $<\mathrm{A}_{1} \mathrm{CM}=\mathrm{C}^{\prime} \mathrm{MC}$ and since the sum of angles $<\mathrm{A}_{1} \mathrm{CM}+\mathrm{MCB}_{1}=180{ }^{\circ}$ then also $\mathrm{C}^{\prime} \mathrm{MC}+\mathrm{MCB}_{1}=180{ }^{\circ} \rightarrow$
which is the second to show, as this problem has been set at first by Euclid.
All above is a Proof of the Parallel postulate due to the fact that the parallel postulate is dependent of the other four axioms (now is proved as a theorem from the other four).
Since line segment $A B$ is common to ∞ Planes and only one Plane is passing through point M (Plane ABM from the three points A, B, M, then the Parallel Postulate is valid for all Spaces which have this common Plane, as Spherical, n-dimensional geometry Spaces. It was proved that it is a necessary logical consequence of the others axioms, agree also with the Properties of physical objects, $\mathrm{d}+0=$ $\mathrm{d}, \mathrm{d} * 0=0$, now is possible to decide through mathematical reasoning, that the geometry of the physical universe is Euclidean. Since the essential difference between Euclidean geometry and the two non-Euclidean geometries, Spherical and hyperbolic geometry, is the nature of parallel line, i.e. the parallel postulate so ,
\ll The consistent System of the - Non - Euclidean geometry - have to decide the direction of the existing mathematical logic >>.
The above consistency proof is applicable to any line Segment $A B$ on line $A B$,(segment $A B$ is the first dimensional unit, as $A B=0 \rightarrow \infty$), from any point M not on line $A B$, [$M A+M B>A B$ for three points only which consist the Plane. For any point M between points A, B is holding $M A+M B=A B$ i.e. from two points M , A or M , B passes the only one line AB . A line is also continuous (P 1) with points and discontinuous with segment AB [14], which is the metric defined by non- Euclidean geometries , and it is

A Line Contains at Least Two Points, is Not an Axiom Because is Proved as Theorem

Definition D2 states that for any point M on line AB is holding $\mathrm{MA}+\mathrm{MB}=\mathrm{AB}$ which is equal to $<$ segment $M A+$ segment $M B$ is equal to segment $A B>$ i.e. the two lines $M A, M B$ coincide on line $A B$ and thus this postulate is proved also from the other axioms, thus D2 is not an axiom, which form a system self consistent with its intrinsic real-world meaning. F.12-13.

4.6. Conclusions.

Parallel line.

A line (two points only) is not a great circle (more than three points being in circle s Plane) so anything built on this logic is a mislead false .

The fact that the sum of angles on any triangle is 180° is springing for the first time, in article
(Rational Figured numbers or Figures) [9] .
This admission of two or more than two parallel lines, instead of one of Euclid's, does not proof the truth of the admission. The same to Euclid's also, until the present proved method. Euclidean geometry does not distinguish, Space from time because time exists only in its deviation - Plank's length level ,neither Space from Energy - because Energy exists as quanta on any first dimensional Unit AB, which as above connects the only two fundamental elements of Universe , that of points or Sector $=$ Segment $=$ Monad = Quaternion , and that of Energy. [23]-[39].

The proposed Method in articles, based on the prior four axioms only, proofs, (not using any other admission but a pure geometric logic under the restrictions imposed to seek the solution) that , through point M on any Plane ABM (three points only that are not coinciding and which consist the Plane), passes only one line of which all points equidistant from AB as point M ,
i.e. the right is to Euclid Geometry.

The what is needed for conceiving the alterations from Points which are nothing, to segments,
i.e. quantization of points as, the discreteting $=$ monads $=$ quaternion, to lines, plane and volume , is the acquiring and having Extrema knowledge .
In Euclidean geometry the inner transformations exist as pure Points, segments, lines, Planes, Volumes, etc. as the Absolute geometry is (The Continuity of Points), automatically transformed through the three basic Moulds (the three Master moulds and Linear transformations exist as one Quantization) to Relative external transformations, which exist as the , material , Physical world of matter and energy (Discrete of Monads) . [43-44]

The new Perception connecting the Relativistic Time and Einstein`s Energy - is Now Refining
 Time and Dark -matter Force - clearly proves That Big-Bang have Never been existed .

In [17-45-46] is shown the most important Extrema Geometrical Mechanism in this Cosmos which is that of STPL lines, that produces and composite, All the opposite space Points from Spaces to Anti-Spaces and to Sub-Spaces as this is in a Common Circle, this is the Sub-Space, to lines into a Cylinder
This extrema mould is a Transformation, i.e. a Geometrical Quantization Mechanism, \rightarrow for the Quantization of Euclidean geometry, points,
to the Physical world, to Physics, and is based on the following geometrical logic ,
Since Primary point ,A, is nothing and without direction and it is the only Space, and this point to exist, to be, at any other point ,B, which is not coinciding with point ,A, then on this couple exists the Principle of Virtual Displacements $\mathrm{W}=\int_{\mathrm{A}}^{\mathrm{B}} \mathrm{P} . \mathrm{ds}=0$ or $\left[\right.$ ds. $\left(\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}\right)=0$], i.e. for any ds $>0 \operatorname{Impulse} \mathrm{P}=$ $\left(\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}\right)=0$ and Work [ds. $\left(\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}\right)=0$], Therefore, Each Unit $\mathrm{AB}=\mathrm{ds}>0$, exists by this Inner Impulse (P) where $\mathrm{P}_{\mathrm{A}}+\mathrm{P}_{\mathrm{B}}=0$.
The Position and Dimension of all Points which are connected across the Universe and that of Spaces, exists, because of this equilibrium Static Inner Impulse and thus show the Energy-Space continuum .

Applying the above logic on any monad = quaternion $(\mathrm{s}+\overline{\mathrm{v}} . \nabla \mathrm{i})$, where, $\mathrm{s}=$ the real part and $(\overline{\mathrm{v}} . \nabla \mathrm{i})$ the imaginary part of quaternion so ,

Thrust of two equal and opposite quaternion is the, Action of these quaternions which is,

$$
\begin{aligned}
& (\mathrm{s}+\overline{\mathrm{v}} . \nabla \mathrm{i}) .(\mathrm{s}+\overline{\mathrm{v}} . \nabla \mathrm{i})=[\mathrm{s}+\overline{\mathrm{v}} . \nabla \mathrm{i}]^{2}=\mathrm{s}^{2}+|\overline{\mathrm{v}}|^{2} . \nabla \mathrm{i}^{2}+2|\mathrm{~s}| \mathrm{x}|\overline{\mathrm{v}}| \cdot \nabla \mathrm{i}=\mathrm{s}^{2}-|\overline{\mathrm{v}}|^{2}+2|\mathrm{~s}| \mathrm{x}|\overline{\mathrm{w}} . \overline{\mathrm{r}} . \therefore| \cdot \nabla \mathrm{i}= \\
& {\left[\mathrm{s}^{2}\right]-\left[|\overline{\mathrm{v}}|^{2}\right]+[2 \overline{\mathrm{w}} \cdot|\mathrm{~s}||\overrightarrow{\mathrm{r}}| \cdot \nabla \mathrm{Vi}] \quad \text { where, }} \\
& {\left[+\mathrm{s}^{2}\right] \rightarrow \mathrm{s}^{2}=(\mathrm{w} . \mathrm{r})^{2}, \quad \rightarrow \text { is the real part }}
\end{aligned}
$$

of the new quaternion which is, the positive Scalar product, of Space from the same scalar product ,s,s with $1 / 2,3 / 2$, , spin and this because of ,w, and which represents the massive, Space, part of quaternion \rightarrow monad .
$\left[-s^{2}\right] \rightarrow-|\overline{\mathrm{v}}|^{2}=-|\overline{\mathrm{w}} . \overline{\mathrm{r}}|^{2}=-[|\overline{\mathrm{w}}| \cdot|\overline{\mathrm{r}}|]^{2}=-(\mathrm{w} . \mathrm{r})^{2} \rightarrow$ is the always, the negative Scalar product, of Antispace from the dot product of $, \overline{\mathrm{w}}, \overline{\mathrm{r}}$ vectors, with $-1 / 2,-3 / 2$, spin and this because of,-w , and which represents the massive, Anti-Space, part of quaternion \rightarrow monad .
$[\nabla \mathrm{i}] \rightarrow 2 .|\mathrm{s}| \mathrm{x}|\overline{\mathrm{w}} . \overline{\mathrm{r}} \therefore| . \nabla \mathrm{i}=2|\mathrm{wr}| .|(\mathrm{wr})| . \nabla \mathrm{i}=2 .(\mathrm{w} . \mathrm{r})^{2} \rightarrow$ is a vector of, the velocity vector product, from the cross product of $\overline{\mathrm{w}}, \overline{\mathrm{r}}$ vectors with double angular velocity term giving $1,3,5$, spin and this because of, $\pm \mathrm{w}$, in inner structure of monads, and represents the, Energy Quanta, of the Unification of the Space and Anti-Space through the Energy (Work) part of quaternion .

A wider analysis is given in articles [40-43] .
When a point , A , is quantized to point, B , then becomes the line segment $\mathrm{AB}=$ vector $\mathrm{AB}=$ quaternion $[\mathrm{AB}] \rightarrow$ monad, and is the closed system, AB , and since also from the law of conservation of energy, it is the first law of thermodynamics, which states that the energy of a closed system remains constant, therefore neither increases nor decreases without interference from outside, and so the total amount of energy in this closed system , AB , in existence has always been the same, Then the Forms that this energy takes are constantly changing, i.e.

The conservation of energy is realized when stored in monads and following the physical laws in E-geometry where then are Material \rightarrow Points, monads, etc \leftarrow This is the unification of this Physical world of, what is called matter and Energy, and that of Euclidean Geometry which are, Points, Segments, Planes and Volumes.
For more in [48] .
The three Moulds (i.e. The three Geometrical Mechanism) of Euclidean Geometry which create the METERS of monads and which are, Linear for a perpendicular Segment, Plane for the Square equal to the circle on Segment, Space for the Double Volume of initial volume of the Segment, (the volume of the sphere is related to Plane which is related to line and which is related to segment), Exist on Segments in Spaces, Anti-spaces and Sub-spaces.
This is the Euclidean Geometry Quantization to its constituents (i.e. Geometry in its moulds). The analogous happens when E-Geometry is Quantized to Space and Energy monads [48].
METER of Points A is the Point A , the
METER of line is the Segment $\mathrm{ds}=\mathrm{AB}=$ monad $=$ constant and equal to monad, or to the perpendicular distance of this segment to the set of two parallel lines between points A, B, the METER of Plane is that of circle on Segment $=$ monad and which is that Square equal to the circle , number,π, the
METER of Volume,$\sqrt[3]{ } 2$, is that of Cube , on Segment $=$ monad which is equal to the Double Cube of the Segment and Measures all the Spaces, the Anti-spaces and the Subspaces in this cosmos .

Generally is more referred,
a). There is not any Paradoxes of the infinite because is clearly defined what is a Point a cave and what is a Segment.
b). The Algebra of constructible numbers and number Fields is an Absurd theory, based on
groundless Axioms as the fields are, and with direction the non-Euclid orientations purposes which must be properly revised .
c). The Algebra of Transcental numbers has been devised to postpone the Pure geometrical thought, which is the base of all sciences, by changing the base-field of solutions to Algebra as base .
Pythagorians discovered the existence of the incommensurable of the diagonal of a square in relation to its side without giving up the base, which is the geometrical logic.
d). All theories concerning the Unsolvability of the Special Greek problems are based on

Cantor`s shady proof,$<$ that the totality of All algebraic numbers is denumerable $>$ and not edifyed on the geometrical basic logic which is the foundations of all Algebra .

The problem of Doubling the cube F.4-A, as that of the Trisection of any angle F.11-A, is a Mechanical problem and could not be seen differently and the proposed Geometrical solutions is clearly exposed to the critic of all readers .

All trials for Squaring the circle are shown in [44] and the set questions will be answerd on the Changeable System of the two Expanding squares, Translation $[\mathrm{T}]$ and Rotation $[\mathrm{R}]$.
The solution of Squaring the circle using the Plane Procedure method is now presented in F-1,2, and consists an, Overthrow, to all existing theories in Geometry, Physics and Philosophy .
e). Geometry is the base of all sciences and it is the reflective logic from the objective reality , which is nature, to our mind.

International Research Journal of Advanced Engineering and Science
ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry and the Regular - Polygons .
F.2-A \rightarrow A Presentation of the Quadrature Method on Dr. Geo-Machine Macro - constructions. The Inscribed Square CBAO, with Pole-line AOP, rotates through Pole P , to the \rightarrow CircleSquare CMNH with Pole-line NHP, and to the \rightarrow Circumscribed Square CAC ${ }^{\circ}$, with Pole-line $\mathrm{C}^{\prime} \mathrm{PP}=\mathrm{C}^{`} \mathrm{P}$, of the circle $\mathrm{E}, \mathrm{EO}=\mathrm{EC}$ and at position $\mathrm{Be}, \mathrm{A}_{\mathrm{e}} \mathrm{NHP}$ Pole-line formulates square $\mathrm{CMNH}=\pi . \mathrm{EO}^{2}$ which is the Squaring of the circle. Number $\pi=\frac{\mathrm{CM}^{2}}{\mathrm{EO}^{2}}$ as in [Fig.2-A]

F.4-A. \rightarrow A Presentation of the Dublication Method on Dr.Geo - Machine Macro-constructions

BCDA Is the In-between Quadrilateral, on (K,KZ) Extrema-circle, and on $\mathrm{K}_{0} \mathrm{Z}-\mathrm{K}_{0} \mathrm{~B}$ Extrema lines of common poles Z, P, mechanism. The Initial Quadrilateral $\mathrm{BC}_{0} \mathrm{D}_{0} \mathrm{~A}_{0}$, with Pole-lines $\mathrm{D}_{\mathrm{O}} \mathrm{A}_{\mathrm{O}} \mathrm{P}, \mathrm{D}_{\mathrm{O}} \mathrm{C}_{\mathrm{O}} \mathrm{Z}^{\prime}$, rotates through Pole P and the moveable Pole Z ` on \(\mathrm{Z}^{`} \mathrm{Z}\) arc, to the \rightarrow Extreme Quadrilateral BCDA through Pole-lines DAP - DCZ with point Do, sliding on $\mathrm{B}_{\mathrm{O}} \mathrm{D}_{\mathrm{O}}$ Pole-line, and then at point $\mathrm{D}, \mathrm{KD}^{3}=2 . \mathrm{KoA}^{3}$ which is the Dublication of the Cube .
For any initial segment $K_{O} X$ issues $\left(K_{O} X^{\prime}\right)^{3}=2 .\left(K_{O} X\right)^{3}$ where $K_{O} X^{\prime}=K_{0} D .\left(\frac{\mathrm{KoX}}{\mathrm{KoA}}\right) \quad$ and
${ }^{3} \sqrt{2}=\left(\frac{\mathrm{KoD}}{\mathrm{KoA}}\right) \cdot\left(\frac{\mathrm{KoX}}{\mathrm{KoX}^{\prime}}\right)=\left[\frac{\mathrm{KoD}}{\mathrm{KoA}}\right]^{2}=\frac{\mathrm{KoD}^{2}}{\mathrm{KoA}^{2}} \rightarrow$ as in $[$ Fig $7-2]$, since $\left(\frac{\mathrm{KoD}}{\mathrm{KoA}}\right)=\left(\frac{\mathrm{KoX}}{\mathrm{KoX}}\right)$

F.11-A. \rightarrow Presentation of the Trisection Method on Dr. Geo-Machine Macro - constructions .

From Initial position of triangle AOC , where angle $\mathrm{AOB}=90^{\circ}$ and Segment $\mathrm{A}_{1} \mathrm{C}=\mathrm{OA}$, to the Final position of triangle, where angle $\mathrm{AOB}=\mathrm{BOB}=0 \square$ and $\mathrm{AOB}=\mathrm{B}{ }^{`} \mathrm{OB}=180^{\circ}$, through
the Extrema position between edge- cases of triangle ZOD where $\mathrm{AOB}=\varphi \cdot$ and at common point P , $\mathrm{PG}=\mathrm{OA}=\mathrm{GP}=\mathrm{GG}_{1}=\mathrm{G}_{1} \mathrm{O}$ and at point G , then $\mathrm{G}_{1} \mathrm{G}=\mathrm{G}_{1} \mathrm{O}=\mathrm{OA}$ which is the Trisection of angle AOB , and Angle $<\mathrm{AGB}=\left(\frac{1}{3}\right)$. AOB .

The Presentation of the Parallel Method.

International Research Journal of Advanced Engineering and Science

ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry
a.. The three Points A, B , M consist a Plane and so this Theorem exist only in plane.
b.. Points A, B consist a Line and this because exists postulate [P1].
c.. Point $\quad M$ is not on $A B$ line and this because when segment $M A+M B>A B$ then point M is not on line AB and $\mathrm{MA}_{1}=\mathrm{M}^{\prime} \mathrm{B}_{1}$.
d.. When Point M is on $A B$ line, and this because segment $M A+M B=A B$ then point M being on line $A B$ is an Extrema case, and then formulates infinite Parallel lines coinciding with AB line in the Infinite (∞) Planes through $A B$.

F.13-A. \rightarrow Presentation of the Parallel Method on Dr. Geo - Machine Macro - Constructions

5. THE REGULAR POLYGONS :

5.1. THE ALGEBRAIC SOLUTION :

It has been proved by De Moivre's, that the n -th roots on the unit circle AB are represented by the vertices of the Regular n-sided Polygon inscribed in the circle .
It has been proved that the Resemblance Ratio of Areas, of the circumscribed to the inscribed

[^2] the circle, then the Sum of the heights y_{n} is equal to $n * R$.
This is a linear relation between Heights, h , and the radius of the circle, the monad.
This property on the circle yields to the Geometrical construction (As Resemblance Ratio of Areas is now controlled), and the Algebraic measuring of the Regular Polygons as follows :
when : $\mathrm{R}=$ The radius of the circle, with a random diameter AB .
$\mathrm{a}=$ The side of the Regular \mathbf{n}-Polygon inscribed in the circle $\mathrm{n}=$ Number of sides, a , of the n -Polygon , then exists :
$$
\mathrm{n} \cdot \mathrm{R}=2 \cdot \mathrm{R}+2 \cdot \mathrm{y} 1+2 \cdot \mathrm{y} 2+2 \cdot \mathrm{y} 3+\ldots \ldots \ldots .2 \cdot y_{n}
$$
the heights y_{n} are as follows:


```
\(y_{B}=[2 . R]\)
\(y_{1}=\left[4 . R^{2}-a^{2}\right] /(2 . R)\)
\(y_{2}=\left[4 \cdot R^{4}-4 \cdot R^{2} \cdot a^{2}+a^{4}\right] /\left(2 \cdot R^{3}\right)\)
\(y_{3}=\left[8 \cdot R^{6}-10 \cdot R^{4} \cdot a^{2}+6 \cdot R^{2} \cdot a^{4}-a^{6}\right]-a^{2} \cdot \sqrt{ } 64 \cdot R^{8}-96 \cdot R^{6} \cdot a^{2}+52 \cdot R^{4} \cdot a^{4}-12 \cdot R^{2} \cdot a^{6}+a^{8}\)
\(y_{n}=[\)
```

\qquad

``` ] / 2. \(\mathrm{R}^{\mathrm{n}}\)
```


THE ALGEBRAIC EQUATIONS OF THE REGULAR n -POLYGONS

(a) REGULAR TRIANGLE :

The Equation of the vertices of the Regular Triangle is :

$$
3 \cdot R=2 \cdot R+\left[\frac{4 \cdot R^{2}-a^{2}}{R}\right] \quad \ggg R^{2}=4 \cdot R^{2}-a^{2} \ggg a^{2}=3 \cdot R^{2}
$$

$$
\begin{equation*}
\text { The side } \mathbf{a}_{\mathbf{3}}=\mathbf{R} \cdot \sqrt{\mathbf{3}} \tag{1}
\end{equation*}
$$

(b) REGULAR QUADRILATERAL (SQUARE) :

The Equation of the vertices of the Regular Square gives :

$$
\begin{equation*}
4 \cdot R=2 \cdot R+\left[\frac{4 \cdot R^{2}-a^{2}}{R}\right] \quad \ggg \quad a^{2}=2 \cdot R^{2} \tag{2}
\end{equation*}
$$

The side $\quad \mathbf{a}_{4}=\mathbf{R} \cdot \sqrt{\mathbf{2}}$
(c) REGULAR PENTAGON :

The Equation of the vertices of the Regular Pentagon is :

$$
5 \cdot R=2 \cdot R+\left[\frac{4 \cdot R^{2}-a^{2}}{R}\right]+\left[4 \cdot R^{4} \cdot-4 \cdot R^{2} \cdot a^{2}+a^{4} \cdot\right] \quad \ggg a^{4}-5 \cdot R^{2} \cdot a^{2}+5 \cdot R^{4}=0
$$

Solving the equation gives :

$$
\begin{aligned}
& a^{2}=\left\{\begin{array}{c}
R^{2} \\
--4^{--}
\end{array}\right\} \cdot[10-2 \sqrt{5}] \quad \ggg \quad \text { The side } \quad \mathbf{a} 5=\left|\frac{R}{2}\right| \sqrt{10-2 \cdot \sqrt{5}}
\end{aligned}
$$

(d) REGULAR HEXAGON :

The Equation of the vertices of the Regular Hexagon is :

$$
6 \cdot R=2 \cdot R+\left[4 \cdot R^{2}-a^{2}\right]+\left[4 \cdot R^{4}-4 \cdot R \cdot \cdot^{2} \cdot a^{2}+a^{4}\right] \gg a^{4}-5 \cdot R^{2} \cdot a^{2}+4 \cdot R^{4}=0
$$

Solving the equation gives :

$$
a^{2}=\frac{5 \cdot R^{2}-\sqrt{25 \cdot R^{4}-16 \cdot R^{4}}}{}=\left[\begin{array}{c}
5-3] \cdot R^{2} \tag{4}\\
--2^{--}
\end{array}=R^{2} \quad \text { The side } \quad \mathbf{a}_{6}=\mathbf{R}\right.
$$

(e) REGULAR HEPTAGON :

The Equation of the vertices of the Regular Xeptagon is :

$$
\begin{aligned}
& \text { 7. } R=2 \cdot R+\left[\frac{4 \cdot R^{2}-a^{2}}{R}\right]+\left[\frac{4 \cdot R^{4}-4 \cdot R^{2} \cdot a^{2}+a^{4}}{R^{3}}\right]+\left[8 \cdot R^{6}-10 \cdot R^{4} \cdot a^{2}+6 \cdot R^{2} \cdot a^{4} a-a^{6}\right]- \\
& -\left[----\quad a^{2}\right] \cdot \sqrt{64 \cdot R^{8}-96 \cdot R^{6} \cdot a^{2}+52 \cdot R^{4} \cdot a^{4}-12 \cdot R^{2} \cdot a^{6}+a^{8}} \\
& \text { 2. } R^{5}
\end{aligned}
$$

Rearranging the terms and solving the equation in the quantity \mathbf{a}, obtaining :

$$
R^{2} \cdot a^{10}-13 \cdot R^{4} \cdot a^{8}+63 \cdot R^{6} \cdot a^{6}-140 \cdot R^{8} \cdot R^{4}+140 \cdot R^{10} \cdot a^{2}-49 \cdot R^{12}=0 \quad \text { for } a^{2}=x
$$

[^3]\[

$$
\begin{equation*}
x^{5}-13 \cdot R^{2} \cdot x^{4}+63 \cdot R^{4} \cdot x^{3}-140 \cdot R^{6} \cdot x^{2}+140 \cdot R^{8} \cdot x^{1}-49 \cdot R^{10}=0 \tag{7}
\end{equation*}
$$

\]

Solving the 5 nth degree equation the Real roots are the following two :
$\mathrm{X}_{1}=\mathrm{R}^{2} \cdot[3-\sqrt{2}] \quad, \mathrm{X}_{2}=\mathrm{R}^{2} \cdot[3+\sqrt{2}] \quad$ which satisfy equation (7)
Having the two roots, the Sum of roots be equal to 13 , their combination taken $2,3,4$ at time be equal to $63,-140,140$, the product of roots be equal to -49 , then equation (7) is reduced to the third degree equation as :

$$
\begin{equation*}
z^{3}-7 . z^{2}+14 . z-7=0 \tag{7a}
\end{equation*}
$$

by setting $\quad \psi=\mathrm{z}-(-7 / 3)$ into (7a) , then gives $\psi^{3}+\boldsymbol{\rho} . \psi+\mathbf{q}=\mathbf{0} \quad \ldots$. (7b) where, $\rho=14-(-7)^{2} / 3=14-49 / 3=-7 / 3>\rho^{2}=49 / 9>\rho^{3}=-343 / 27$ $\mathrm{q}=2 .(-7)^{3} / 27+14 .(-7) / 3-7=7 / 27 \quad>\quad \mathrm{q}^{2}=49 / 729$

Substituting ρ, q then $\psi^{3}-(7 / 3) \cdot \psi+(7 / 27)=0 \ldots(7 b)$

The solution of this third degree equation (7b) is as follows :

$$
\begin{aligned}
& \rho=-7 / 3 \\
& q=7 / 27
\end{aligned}
$$

Discriminant $\mathrm{D}=\mathrm{q}^{2} / 4+\rho^{3} / 27=(49 / 729.4)-(343 / 27.27)=-[49 / 108]<0$

$$
\begin{aligned}
& \mathrm{D}=-49 / 108=\mathrm{i}^{2}\left(3.21^{2} / 4.27^{2}\right)=\mathrm{i}^{2}(21 \cdot \sqrt{3} / 2.27)^{2}=\mathrm{i}^{2}(21 \cdot \sqrt{3} / 54)^{2} \\
& \mathrm{D}=[7 \cdot \sqrt{3} / 18]^{2} \cdot \mathrm{i}^{2} \text { also } \quad 2 \sqrt{\mathrm{D}}=\underset{-18^{--}}{|7 . \sqrt{3}| . \mathrm{i}}
\end{aligned}
$$

Therefore the equation has three real roots :

Substituting $\psi=\mathrm{w}-\rho / 3 . \mathrm{w}=\mathrm{w}+7 / 9 . \mathrm{w}>\psi^{2}=\mathrm{w}^{2}+49 / 81 . \mathrm{w}^{2}+14 / 9$
to (7b) then becomes $w^{3}+343 / 729 \mathrm{w}^{3}+7 / 27=0$
and for $\mathrm{z}=\mathrm{w}^{3} \mathrm{z}+343 / 729 \mathrm{z}+7 / 27=0$

$$
\begin{equation*}
z^{2}+7 . z / 27+343 / 729=0 \tag{7c}
\end{equation*}
$$

The Determinant $\mathrm{D}<0$ therefore the two quadratic complex roots are as follows :
$Z_{1}=[-7 / 27-\sqrt{49 / 27.27-4.343 / 729}] / 2=[-7 / 27-\sqrt{49 / 27.27 .4-49.7 .4 / 27.27 .4}] / 2$

$$
\begin{array}{rlrl}
& =[-7 / 27-\sqrt{(49-49 \cdot 28) / 27 \cdot 27.4}] / 2 & =[-7-7 \cdot \sqrt{-27}] / 27 \cdot 2 \\
& =[-7-21 \cdot \sqrt{-3}] / 3^{3} \cdot 2 & & =\left[\frac{-7}{2}\right] \cdot(1-3 \cdot \text { i. } \sqrt{3}) / 27=(-7 / 54) \cdot[1-3 . i \cdot \sqrt{3}] \\
\mathrm{Z}_{2} & =[-7 / 2 \cdot(1-3 \cdot \mathrm{i} \sqrt{3}] / 27 & & =(-7 / 54) \cdot[1+3 . i . \sqrt{3}]
\end{array}
$$

The Process is beginning from the last denoting quantities to the first ones :

$$
\text { Root } \quad \psi=W+7 / 9 . W=\frac{1}{3 .-\sqrt{3} / \overline{-7 \pm 21 . i} \frac{\sqrt{3}}{2}}+3 /-7 \pm \frac{21 \mathrm{i} . \sqrt{3}}{2}
$$

$$
\begin{aligned}
& 7 \quad 1
\end{aligned}
$$

The root a_{7} of equation (7) equal to the side of the regular Heptagon is $\mathrm{a}_{7}=\sqrt{\mathrm{X}}$

Instead of substituting $\psi=w-\rho / 3 . w$ into (7.b), is substituted $\psi=\mathbf{u + v}$ and then gives the equation of second degree as $z^{2}+7 . z / 27+343 / 729=0$ which has the two complex roots as follows :

and by substituting $\mathrm{Z}_{1}, \mathrm{Z}_{2}$ into (7 b) becomes the same formula as in (4).

3 \qquad $\int_{\sqrt{2}-(7 / 2) \cdot[1+3 \cdot i \cdot \sqrt{3}]}=7$ Analytically is :
$\mathrm{x}=-\mathrm{R}^{2} \cdot[0,753020375967025701777] \quad \gg \quad \mathrm{x}^{2}=0,56704$
$\mathrm{a}_{7}=\sqrt{\mathrm{x}}=\mathrm{R} .[0,867767453193664601 \ldots]$

By using the formula of the real root of equation (7a) then :
$a \cdot x^{3}+b \cdot x^{2}+c \cdot x+d=0 \quad \ggg$ for $a=1, b=-7, c=14, d=-7$ then $x^{3}-7 \cdot x^{2}+14 \cdot x-7=0$
$x=-\frac{b}{3}-\frac{21 / 3 .\left(-b^{2}+3 . c\right)}{[}+\frac{\left[-2 b^{3}+9 b c-27 d+\sqrt{\left.4\left(-b^{2}+3 c\right)^{3}+\left(-2 b^{3}+9 b c-27 d\right)^{2}\right]}\right]}{1 / 3}$

Substituting the coefficients to the upper equation becomes :

$$
\begin{aligned}
& -b^{2}+3 . c=-(-7)^{2}+3 \cdot 14=-49+42=-7-2 \cdot b^{3}+9 \cdot b \cdot c-27 \cdot d=-2 \cdot(-7)^{3}+9 \cdot(-7) \cdot 14-27 \cdot(-7)= \\
& 686-882+189=-7 \\
& 4 \cdot\left(-b^{2}+3 \cdot c\right)^{3}=4(-7)^{3}=-1372\left(-2 . b^{3}+9 . b \cdot c-27 \cdot d\right)^{2}=(-7)^{2}=4932 \frac{1}{3}={ }^{3} \sqrt{ } 8 \cdot 4=2 \cdot{ }^{3} \sqrt{ } 4
\end{aligned}
$$

$$
X=\frac{7}{3}-\frac{\sqrt[3]{2} \cdot(-7)}{3 \cdot \sqrt[3]{-7+21 \cdot i \cdot \sqrt{3}}}+\frac{\sqrt[3]{ }-7+21 \cdot i \cdot \sqrt{3}}{2 \cdot \sqrt{4}}
$$

$$
\boldsymbol{a}_{7}=\sqrt{\mathbf{X}}=/_{/}^{/ \frac{7}{3}}+\frac{7 \cdot \sqrt[3]{2}}{\sqrt[3]{3} \overline{\sqrt{-7+21 . i .} \sqrt{ } 3}}+\frac{\sqrt[3]{-7+21 . i \cdot \sqrt{3}}}{2 \cdot \sqrt{4}} \quad \begin{aligned}
& \text { The Side of the } \\
& \text { Regular Heptagon } \\
& \begin{array}{l}
\text { (4.a) } \\
\text { Further Analysis to the Reader }
\end{array}
\end{aligned}
$$

International Research Journal of Advanced Engineering and Science
ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry
(f) REGULAR OCTAGON :

The equation of vertices of the Regular Octagon is

$$
\begin{aligned}
& 8 \cdot R=2 \cdot R+\left(a^{2}\right)+\left(4 \cdot R^{2} \cdot a^{2}-a^{4}\right)+10 \cdot R^{4} \cdot a^{2}-6 \cdot R^{2} \cdot a^{4}+a^{6}+a^{2} \cdot \sqrt{64 \cdot R^{8}-96 \cdot R^{6} a^{2}+52 \cdot R^{4} \cdot a^{4}-12 \cdot R^{2} \cdot a^{6}+a^{8}} \\
& { }^{-} \mathrm{R}^{-} \quad-----\mathrm{R}^{3^{--}}
\end{aligned}
$$

Rearranging the terms and solving the equation in the quantity \mathbf{a}, is a 10th degree equation, and by reduction $\left(x=\mathrm{a}^{2}\right)$ is find the $5^{\text {th }}$ degree equation as follows :

$$
\begin{align*}
& a^{10}-13 \cdot R^{2} \cdot a^{8}+62 \cdot R^{4} \cdot a^{6}-132 \cdot R^{6} \cdot a^{4}+120 \cdot R^{8} \cdot a^{2}-36 \cdot R^{10}=0 \\
& x^{5}-13 \cdot R^{2} \cdot x^{4}+62 \cdot R^{4} \cdot x^{3}-132 \cdot R^{6} \cdot x^{2}+120 \cdot R^{8} \cdot x^{1}-36 \cdot R^{10}=0 \tag{a}
\end{align*}
$$

Solving the $5^{\text {th }}$ degree equation is find the known algebraic root of Octagon of side a as :

The roots are >>>>>>>>>>

$$
\begin{align*}
& x_{1}=R^{2} \cdot[2-\sqrt{2}], x_{2}=R^{2} \cdot[3-\sqrt{3}] \\
& \mathrm{a}_{8}=\sqrt{\mathrm{x}}=\mathrm{R} \cdot \sqrt{2-\sqrt{2}} \quad \ldots \ldots \ldots \text { (b) } \tag{b}
\end{align*}
$$

Verification :
$\mathrm{x}=\mathrm{a}^{2}=\mathrm{R}^{2}(2-\sqrt{2}) \quad \mathrm{x}^{2}=\mathrm{R}^{4} \cdot(6-4 \sqrt{2}) \quad \mathrm{x}^{3}=\mathrm{R}^{6} \cdot(20-14 \cdot \sqrt{2})$
$\mathrm{x}^{4}=\mathrm{R}^{8} \cdot(68-48 \sqrt{2}) \quad \mathrm{x}^{5}=\mathrm{R}^{10} \cdot(232-164 \sqrt{2})$
by substitution (c) in (a) becomes :
$\mathrm{R}^{10} \cdot[232-164 \cdot \sqrt{2}]=\mathrm{R}^{10} .[232-164 \cdot \sqrt{2} 2]$
$-R^{10} \cdot[884-624 \cdot \sqrt{2}]=R^{10} \cdot[-884+624 \cdot \sqrt{2}]$
$\mathrm{R}^{10} \cdot[1240-868 \cdot \sqrt{2}]=\mathrm{R}^{10} \cdot[1240-868 \cdot \sqrt{2}]$
$-\mathrm{R}^{10} \cdot[792-528 \cdot \sqrt{2}]=\mathrm{R}^{10} \cdot[-792+528 \cdot \sqrt{2}]$
$R^{10} \cdot[240-120 \cdot \sqrt{2}]=R^{10} \cdot[240-120 \cdot \sqrt{2}]$
$-R^{10} \cdot[36]=R^{10} \cdot[-36]$

$$
\begin{aligned}
& \mathrm{R}^{10} \cdot[1712-1712+(1152-1152) \cdot \sqrt{2}]=0 \\
& \mathrm{R}^{10} \cdot[0+0]=0 \quad \text { therefore Side } \quad \boldsymbol{a}_{\mathbf{8}}=\mathbf{R} \cdot \sqrt{\mathbf{2}-\sqrt{2} \ldots \ldots \text { (b) }}
\end{aligned}
$$

(g) CONCLUTION :

By summation the heights \mathbf{y} on any tangent in a circle, which hold for every Regular \boldsymbol{n}-sided Polygon inscribed in the circle as the next is :

$$
\begin{equation*}
\mathrm{n} \cdot \mathrm{R}=2 . \mathrm{R}+2 . y_{1}+2 \cdot y_{2}+2 \cdot y_{3}+\ldots . .2 \cdot y_{n} \tag{n}
\end{equation*}
$$

the sides a_{n} of all these Regular n-sided Polygons are Algebraically expressed
The Geometrical Construction of all Regular Polygons has been proved to be based on the solution of the moving Segment ZD of the figure of page 8 and it is the Master Key of Geometry, because so , the nth degree equations are the vertices of the n-polygon.

In this way, all Regular p-gon are constructible and measureable.
The mathematical reasoning is based on Geometrical logic exclusively alone .
As the Resemblance Ratio of Areas on the 4 -gone is equal to 2 , the problem of squaring the circle has been approached and solved by extending Euclid logic of Units (under the restrictions imposed to seek the solution, with a ruler and a compass,) on the unit circle AB , to unknown and now the Geometrical elements. (the settled age-old question for all these problems is not valid).

The Regular Heptagon :
According to Heron, the regular Heptagon is equal to six times the equilateral triangle with the same side and is the approximate value of $\sqrt{ } 3 . \mathrm{R} / 2$
According to Archimedes, given a straight line AB we mark upon it two points C, D such that $\mathrm{AD} . \mathrm{CD}=\mathrm{DB}^{2}$ and $\mathrm{CB} . \mathrm{DB}=\mathrm{AC}^{2}$, without giving the way of marking the two points . According to the Contemporary Method, the side of the Regular Heptagon is the root of a third degree equation with three real roots , one of which is that of the regular Heptagon as analytically presented.
5.2. THE GEOMETRICAL SOLUTION :
a.. The Even and Odd n-Polygons :

The Unsolved Ancient - Greek Problems of E-geometry
$\mathbf{F . 1 4} \rightarrow$ An Even and an Odd n-Polygon in circle O, OA with diameters , $\mathrm{A}_{\mathrm{k}} \mathrm{A}_{2 \mathrm{k}}$, passing from $\mathrm{A}_{2 \mathrm{k}}$, as vertex (apex) of the Polygone , and diameters , $A_{k+2} M_{1}$ perpendicular to side $A_{1} A_{2}$.

Let be the n-Polygon $A_{1}, A_{2}, A_{3}, A_{k}, A_{k+1}, A_{k+2}, A_{2 k}$, in circle $\left(O, O A_{1}\right)$,
(e) a straight line not intersecting the circle
$\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{2 \mathrm{k}}$, The heights of the vertices to (e) line,
$h_{1}, h_{2}, h_{2 k+1}$, The heights of the midpoints $M_{k} M_{k+1}$ of the sides to (e) line and
$\mathrm{OK}=\mathrm{h}$, The height from the center O to (e) line.

To proof :
In any n - Polygon , The Sum , $\Sigma=\Sigma(\mathrm{h})$, of the Heights, $\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{2 \mathrm{k}}$, of the Vertices $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{\mathrm{k}}, \mathrm{A}_{\mathrm{k}+1}, \mathrm{~A}_{\mathrm{k}+2}, \mathrm{~A}_{2 \mathrm{k}}$, where $n=2 k$, from any straight line (e) is equal to

$$
\Sigma=\Sigma(\mathrm{h})=\mathbf{n} \cdot \mathrm{OK}=\mathbf{n} \cdot \mathbf{h}
$$

Proof F. 14 :

From any vertex A_{k}, of the n-Polygon draw the diameter ($A_{k} \mathrm{OA}_{2 k}$)
a.. When $\mathrm{n}=2 . \mathrm{k} \quad \rightarrow$ then Vertex $\mathrm{A}_{2 \mathrm{k}}$ belongs to the Polygon
b.. When $\mathrm{n}=2 . \mathrm{k}+1 \rightarrow$ then line $\mathrm{A}_{\mathrm{k}} \mathrm{O}$, is mid-perpendicular to one of the sides .

Case a.. $\mathrm{n}=2 . \mathrm{k} \quad$ F. 14 -(1)
Exists $\frac{n}{2}=\frac{2 \mathrm{k}}{2}=\mathrm{k}$, and are the pairs of vertices in opposite diameters as in $\mathrm{A}_{1}, \mathrm{~A}_{\mathrm{k}+1}$, and the , k , Trapezium which has bases the heights of the vertices in opposite diameters from (e) line, and which have height $\mathrm{OK}=\mathrm{h}$, as Common Height from their Diameter, i.e.

From trapezium $A_{1}, A_{1}, A_{k+1}, A^{`}{ }_{k+1}$ exists $d_{1}+d_{k+1}=2 . h \quad$ and analogically,

$$
\begin{aligned}
& \mathrm{d}_{2}+\mathrm{d}_{\mathrm{k}+2}=2 . \mathrm{h} \\
& \mathrm{~d}_{3}+\mathrm{d}_{\mathrm{k}+3}=2 . \mathrm{h}
\end{aligned}
$$

$$
\mathrm{d}_{\mathrm{k}}+\mathrm{d}_{\mathrm{k}+1}=2 . \mathrm{h}
$$

And by Summation ,

$$
\begin{equation*}
\mathrm{d}_{1}+\mathrm{d}_{2}+\ldots . \mathrm{d}_{\mathrm{k}}+\mathrm{d}_{2 \mathrm{k}}=2 . \mathrm{h} \quad \text { or } \quad \Sigma=(2 \mathrm{k}) . \mathrm{h}=\mathrm{n} . \mathrm{h}=\mathrm{n} . \mathrm{OK} \tag{1}
\end{equation*}
$$

Case b. $\quad \mathrm{n}=2 . \mathrm{k}+1 \quad$ F. 14 -(2)
$\mathrm{A}_{1} \mathrm{~A}_{2}, \mathrm{~A}_{2} \mathrm{~A}_{3}, \ldots . \mathrm{A}_{2 \mathrm{k}+1} \mathrm{~A}_{1}$, the sides of the Polygon .
$M_{1}, M_{2}, M_{2 k+1}$, are the midpoints of sides from line (e)
$h_{1}, h_{2}, \ldots . h_{2 k+1}$ the corresponding heights of midpoints from (e).
The diameter from vertex A_{1} is perpendicular to side $A_{k+1} A_{k+2}$ which has the midpoint M_{k+1}, while $\quad A_{1} M_{k+1}=A_{1} O+\mathrm{OM}_{\mathrm{k}+1}=\mathrm{R}+\mathrm{r}_{\mathrm{n}}$
In trapezium $\mathrm{A}_{1} \mathrm{~A}_{1} \mathrm{M}^{`}{ }_{\mathrm{k}+1} \mathrm{M}_{\mathrm{k}+1}$ with Bases $\mathrm{A}_{1} \mathrm{~A}_{1}$ and $\mathrm{M}^{`}{ }_{\mathrm{k}+1} \mathrm{M}_{\mathrm{k}+1}$, both perpendicular to (e) line is parallel to height $\mathrm{OK}=\mathrm{h}$ and bisects $\mathrm{A}_{1} \mathrm{O}=\mathrm{R}$ and $\mathrm{OM}_{\mathrm{k}+1}=\mathrm{r}_{\mathrm{n}}$ and from figure, exists

$$
\begin{equation*}
\mathrm{OK}=\mathrm{h}=\frac{\mathrm{R} \mathrm{~h}_{\mathrm{k}+1}+\mathrm{r}_{\mathrm{n}} \cdot \mathrm{~d}_{1}}{\mathrm{R}+\mathrm{r}_{\mathrm{n}}} \tag{2}
\end{equation*}
$$

i.e. Height OK is common to all $2 \mathrm{k}+1$ trapezium which are formed as $\mathrm{A}_{1} \mathrm{~A}_{1} \mathrm{M}^{`}{ }_{k+1} \mathrm{M}_{\mathrm{k}+1}$ and OK Height divides also the corresponding to $A_{1} M_{k+1}$ side with the same analogy as $\frac{R}{r_{n}}$.
By summation of $2 \mathrm{k}+1$ parts of (2) which are all equal to $\mathrm{OK}=\mathrm{h}$, then from the $2 \mathrm{k}+1$ different Between them trapezium referred exists,
$(2 k+1) . h=\frac{R\left\{h_{k+1}+h_{k+2}+h_{k+1+h_{1}}+\cdots h_{k}\right\}+r_{n} \cdot\left\{d_{1+} d_{2}+\cdots \cdot d_{k+1}+d_{2 k+1}\right\}}{R+r_{n}}=n . h=\frac{R \cdot S+r_{n} \Sigma}{R+r_{n}}$.
where $S=h_{1}+h_{2}+\ldots . h_{k}+d_{2 k+1}$. Since $h_{1}, h_{2}, \ldots . h_{k}, d_{2 k+1}$ are the diameters of trapezium with bases d_{1}, d_{2} to h_{1}, d_{2}, d_{3} to h_{2} and so on and also $d_{2 k+1}, d_{1}$ to $h_{2 k+1}$ then $\mathrm{S}=\frac{\mathrm{d}_{1}+\mathrm{d}_{2}}{2}+\frac{\mathrm{d}_{2}+\mathrm{d}_{3}}{2}+\ldots . . \frac{\mathrm{d}_{2 \mathrm{k}}+\mathrm{d}_{1}}{2}=\frac{2\left\{\mathrm{~d}_{1}+\mathrm{d}_{2}+\cdots \mathrm{d}_{2 \mathrm{k}+1}\right\}}{2}=\mathrm{d}_{1}+\mathrm{d}_{2}+\ldots . \mathrm{d}_{\mathrm{k}}+\mathrm{d}_{2 \mathrm{k}}=\Sigma$ and (3) is n. $\mathrm{h}=\frac{\mathrm{R} . \mathrm{S}+\mathrm{r}_{\mathrm{n}} \Sigma}{\mathrm{R}+\mathrm{r}_{\mathrm{n}}}=\left[\frac{\mathrm{R}+\mathrm{r}_{\mathrm{n}}}{\mathrm{R}+\mathrm{r}_{\mathrm{n}}}\right] . \Sigma=\Sigma$ i.e. $\Sigma=\mathbf{n} . \mathrm{h}$ for all Even and Odd n-Polygons .

A relation between Heights and the Number of the Regular Polygons .

Case c.. Line (e) is Extrema as Tangential to circle F. 14 -(3)
In this case height , h , is equal to radius R and $\mathrm{OK}=\mathrm{h}=\mathrm{R}$.
Since the Sum of Heights of the vertices in any n-Polygon is $\Sigma=\mathrm{n} . \mathrm{h}=\mathrm{n} . \mathrm{OK}$ then $\boldsymbol{\Sigma}=\mathbf{n} \cdot \mathbf{R}$ This remark helps to construct Geometrically, i.e. with a Ruler and a Compass, all the Regular n-Polygons because gives the relation of the Apothem, the radius r_{n} of the inscribed circle which is related to the Interior angle $w=\left\{\frac{n-2}{n}\right\} .180^{\circ}$.
i.e. Angles, w , in a circle of radius, R , define the \boldsymbol{n}-Sides, $\mathrm{A}_{1} \mathrm{~A}_{2}$, of the Regular Polygon which in turn define the Sum, Σ, of their heights equal to $\Sigma=\mathrm{n} . \mathrm{R}$
Since also the relation of radius , R, between the Circle and ,r, of the Inscribed circle is extended to Heights , this helps Extrema - Method to be applicable on the solution which follows .
b.. The Theory of Means :

It was known from Pappus the how to exhibit in a semicircle all three means, namely, The Arithmetic, The Geometric, and The Harmonic mean .

In Fig. $15-(1 \mathrm{a}) \rightarrow$ On the diameter AC of circle $(\mathrm{O}, \mathrm{OA}=\mathrm{OC}), \mathrm{C}$ is any Pont on OC .
Draw BD at right angles to AC meeting the semi-circle in D.
Join OD and draw BE perpendicular to OD .
Show that DE is the Harmonic - Mean between AB, BC
Proof :
For, since ODB is a right - angled triangle, and BE is perpendicular to OD then,
$\mathrm{DE}: \mathrm{BD}=\mathrm{BD}: \mathrm{DO}$ or $\mathrm{DE} . \mathrm{DO}=\mathrm{BD}^{2}=\mathrm{AB} . \mathrm{BC}$
But $D O=\frac{1}{2}(A B+B C)$ therefore $D E .(A B+B C)=2$. $A B \cdot B C$. By rearranging
is $\mathrm{AB} \cdot(\mathrm{DE}-\mathrm{BC})=\mathrm{BC} \cdot(\mathrm{AB}-\mathrm{DE})$ or $\mathrm{AB}: \mathrm{BC}=(\mathrm{AB}-\mathrm{DE}):(\mathrm{DE}-\mathrm{BE})$,
that is, DE is the Harmonic Mean between AB and BC .
In Fig. $15-(1 b) \rightarrow$ Is given only Segment $A B$ and is defined Harmonic mean $A M$ between $A B, M B$ Draw $B C$ at right angles to $A B$ meeting center C of circle $(C, C B=A B / 2)$. Join AC intersecting circle $(\mathrm{C}, \mathrm{CB})$ at points D, E where $\mathrm{DE}=2 . \mathrm{DC}=\mathrm{AB}$. Draw circle (A, AD) intersecting AB at point M . Show that AM is the Harmonic - Mean between AB , MB .
The Proof :
For, since ABC is a right - angled triangle, and $\mathrm{DE}=\mathrm{AB}$ then ,
$A B^{2}=A D \cdot A E=A D \cdot(A D+D E)=A D \cdot(A D+A B)=A D^{2}+A D \cdot A B$ therefore ,
$A D^{2}=A B^{2}-A D \cdot A B=A B \cdot(A B-A D)$ or $A D^{2}=A B \cdot M B$

That is, AM is the Harmonic Mean in AB Segment, or between AB and MB.

6.. Markos Theory , on Segments and Angles Relation :

In Fig. $15-(2) \rightarrow$ Two Even,n, and, $\mathrm{n}+2$, Regular Polygons on the same circle (O, OA) where ,
$\mathrm{n}, \mathrm{n}+2$ are the number of sides differing by an Even number
$\lambda_{a}=$ The length of a side of $a-[n-$ Polygon $]$.
$\lambda_{b}=$ The length of a side of $b-[n+2$ Polygon $]$.
$r_{a}=$ The Apothem (the radius of the inscribed circle of $a-$ Polygon).
$r_{b}=$ The Apothem (the radius of the inscribed circle of $b-$ Polygon).
$h_{A}=$ The Height of KA_{1} side of a - Polygon.
$h{ }_{B}=$ The Height of $K B_{1}$ side of b-Polygon.
$\Delta h=h_{A}-h_{B}$, the difference of heights .
$\Delta r=r_{a}-r_{b}$, the difference of apothems.
$S=$ The sum of interior angles equal to $(n-2) \cdot 180^{\circ}=(n-2) \cdot \pi$
$\frac{\mathrm{h}_{\mathrm{A}}}{\lambda_{\mathrm{a}}}=\sin \varphi_{\mathrm{a}}, \frac{\mathrm{h}_{\mathrm{B}}}{\lambda_{\mathrm{b}}}=\sin \varphi_{\mathrm{b}}, \frac{\mathrm{h}}{\lambda}=\varphi$,
$\mathrm{w}_{\mathrm{a}}=\left[\frac{2}{n}\right] .180=\left[\frac{2}{n}\right] \pi$, The Interior angle of the $[\mathrm{n}-$ Polygon $]$.
$\mathrm{w}_{\mathrm{b}}=\left[\frac{2}{n+2}\right] \cdot 180=\left[\frac{2}{n+2}\right] \cdot \pi$, The Interior angle of the $[\mathrm{n}+2$ Polygon $]$.
$\mathrm{w}_{\mathrm{o}}=$ An Extrema-angle between $\mathrm{w}_{\mathrm{a}}, \mathrm{w}_{\mathrm{b}}$ which is related to Heights .
$\varphi_{\mathrm{a}}=\left[\frac{n-2}{2 . n}\right] \pi$, The angle of side λ_{a} to (e) line for Even, n-Polygon.
$\varphi_{b}=\left[\frac{\mathrm{n}}{2(\mathrm{n}+2)}\right] \pi$, The angle of side λ_{b} to (e) line for Even, $\mathrm{n}+2$ Polygon.
$\varphi_{o}=\left[\frac{\mathrm{n}-1}{2(\mathrm{n}+1)}\right] \pi$, The angle of side λ_{o} to (e) line for Odd-Polygon.
Show that, the Extrema-angle, w_{o}, and the complementary angle, φ_{o}, define the In-between Odd-Regular n-Polygons on the same circle (O, OA), by Scanning the, $\Delta \mathrm{h}$, difference Height, on Circles-Heights - System, and following the Harmonic - Mean of Heights .
Proof : Fig. $15-(2,3)$
a.. Draw on OK circle , the Tangent at point K , and from K any two Chords KA and KB . From Points A, B draw the Perpendiculars $\mathrm{AA}^{\prime}, \mathrm{BB}^{`}$ and the Parallels $\mathrm{AA}_{1}, \mathrm{BB}_{1}$, to Tangent (e).
b.. Draw the circle of Heights ($\mathrm{A}_{1}, \mathrm{~A}_{1} \mathrm{~B}_{1}$)

In right angles triangles $\mathrm{KAA}^{\wedge}, \mathrm{KBB}^{`}$, ratios $\frac{\mathrm{AA}^{\wedge}}{\mathrm{KA}}=\frac{\mathrm{h}_{\mathrm{A}}}{\lambda_{\mathrm{a}}}=\sin \varphi_{\mathrm{a}}$ and $\frac{\mathrm{BB}^{`}}{\mathrm{~KB}}=\frac{\mathrm{h}_{\mathrm{B}}}{\lambda_{\mathrm{b}}}=\sin \varphi_{\mathrm{b}}$, where $\mathrm{h}_{\mathrm{A}}=\lambda_{\mathrm{a}} \cdot \sin \varphi_{\mathrm{a}}$ and $\mathrm{h}_{\mathrm{B}}=\lambda_{\mathrm{b}} \cdot \sin \varphi_{\mathrm{b}}$ and the difference $\Delta \mathrm{h}=\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}$, or

$$
\begin{equation*}
\Delta \mathrm{h}=\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=\lambda_{\mathrm{a}} \cdot \sin \varphi_{\mathrm{a}}-\lambda_{\mathrm{b}} \cdot \sin \varphi_{\mathrm{b}} \tag{1}
\end{equation*}
$$

Since between the two sequent Even-Regular-Polygons, $n, n+2$, exists the Geometric logic of $A B$

International Research Journal of Advanced Engineering and Science

ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry
Monads, i.e. In a Segment the whole is equal to the parts, and to the two halves, and for angle φ_{a} to become φ_{b} is needed to pass through another one angle φ_{o}, which is between the two, therefore ,
a.. Between the two sequence Even -Regular-Polygons exists another one Regular-Polygon .
b.. According to Pappus theory of Proportion and Means, between the three terms h, λ, φ exists one of the three means .
c.. For since the Sum $\{$ it is algebraically $n+(n+2)=2 n+2=2 .(n+1)\}$ must be an Integer which can be divided by 2 .
d.. Between the two Even -Regular-Polygons exists the only one ($\mathrm{n}+1$) Odd-Regular-Polygon .

For the commonly divergence angle, φ, equation (1) becomes h_{φ},

$$
\begin{equation*}
\Delta \mathrm{h}=\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=\left(\lambda_{\mathrm{a}}-\lambda_{\mathrm{b}}\right) \cdot \sin \varphi=\Delta \lambda \cdot \sin \varphi \tag{2}
\end{equation*}
$$

or, $\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=\left(2 \cdot \mathrm{r}_{\mathrm{a}} \cdot \sin \varphi-2 \cdot \mathrm{r}_{\mathrm{b}} \cdot \sin \varphi\right) \cdot \sin \varphi=2\left(\mathrm{r}_{\mathrm{a}}-\mathrm{r}_{\mathrm{b}}\right) \cdot \sin ^{2} \varphi$

$$
\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=2\left(\mathrm{r}_{\mathrm{a}}-\mathrm{r}_{\mathrm{b}}\right) \cdot \sin ^{2} \varphi \quad \text { or } \quad \frac{\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}}{\sin \varphi}=\frac{\sin \varphi}{1 / 2\left(\mathrm{r}_{\mathrm{a}}-\mathrm{r}_{\mathrm{b}}\right)}
$$

That is, $\sin \varphi=\left(\frac{h_{\varphi}}{\lambda_{\varphi}}\right)$, is the Harmonic - Mean between $\left[h_{A}-h_{B}\right],\left[\frac{1}{2\left(r_{a}-r_{b}\right)}\right]$
From (1)

$$
\begin{align*}
& \Delta \mathrm{h}=\lambda_{\mathrm{a}} \cdot \sin \varphi_{\mathrm{a}}-\lambda_{\mathrm{b}} \cdot \sin \varphi_{\mathrm{b}}=\frac{\lambda_{\mathrm{a}}{ }^{2}}{4 \mathrm{R}^{2}}-\frac{\lambda_{\mathrm{b}}{ }^{2}}{4 \mathrm{R}^{2}}=\frac{1}{4 \mathrm{R}^{2}}\left(\lambda_{\mathrm{a}}{ }^{2}-\lambda_{\mathrm{a}}{ }^{2}\right) \text { or } \\
& \text { 2.R. } \Delta \mathrm{h}=\left(\lambda_{\mathrm{a}}{ }^{2}-\lambda_{\mathrm{b}}{ }^{2}\right)=\left[\lambda_{\mathrm{a}}-\lambda_{\mathrm{b}}\right] \cdot\left[\lambda_{\mathrm{a}}+\lambda_{\mathrm{b}}\right] . \quad \cdots \cdots \cdots . \tag{4}
\end{align*}
$$

Show that, the Extrema-angle , w_{o}, formulates the complementary angle, φ, defining the In-between Odd-Regular n-Polygons on the same circle (O, OK), using the Extreme cases of this System $\left\{\Delta \mathrm{h}=\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=\mathrm{A}_{1} \mathrm{~B}_{1}\right\}$, on the Circles of difference of Height.

Analysis :
1.. From above relation of Heights and circle radius for two Sequent - Even - Polygons then,

$$
\Sigma \mathrm{h}_{\mathrm{n}}=\mathrm{n} \cdot \mathrm{R}=\mathrm{n} \cdot \mathrm{OK} \quad \text { (a) and } \quad \Sigma \mathrm{h}_{\mathrm{n}+2}=(\mathrm{n}+2) \cdot \mathrm{R}=(\mathrm{n}+2) \cdot \mathrm{OK} \quad \text { (b) }
$$

By Subtraction (a), (b)

$$
\Sigma \mathrm{h}_{\mathrm{n}+2}-\Sigma \mathrm{h}_{\mathrm{n}}=(\mathrm{n}+2) \mathrm{R}-\mathrm{nR}=2 . \mathrm{R} \quad \rightarrow \text { constant }
$$

By Summation (a), (b)

$$
\Sigma \mathrm{h}_{\mathrm{n}+2}+\Sigma \mathrm{h}_{\mathrm{n}}=(\mathrm{n}+2) \mathrm{R}+\mathrm{nR}=(\mathrm{n}+1) .2 \cdot \mathrm{R} \rightarrow \text { constant }
$$

i.e. in the System of Regular - Polygons the, Interior angles (\mathbf{w}) and Gradient (φ) , Heights (h) and their differences, $\Delta \mathrm{h},-$ Summation and Subtraction of Heights are Interconnected and Intertwined at the Common Circle [A, $\Delta \mathrm{h}=\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}$] producing the Common ($\mathrm{n}+1$), Odd - Regular - Polygon .
2.. In Fig. 15-(2-3) \rightarrow For , KA , KB , chords exists $\lambda_{a}=2 R \cdot \sin \varphi_{a}, \lambda_{b}=2 R \cdot \sin \varphi_{b}$, and their product $[P O P]=\left(\lambda_{a} \cdot \lambda_{a}\right)=4 R^{2} \cdot\left[\sin \varphi_{a} \cdot \sin \varphi_{b}\right]$
The sum of heights for the n and $\mathrm{n}+2$ Even Regular Polygon is $\Sigma h_{A}=\mathrm{n} \cdot \mathrm{R}$ and $\Sigma \mathrm{h}_{\mathrm{B}}=(\mathrm{n}+2) \cdot \mathrm{R}$ and the In-between Odd Regular Polygon $\quad \Sigma \mathrm{h}_{\mathrm{o}}=(\mathrm{n}+1)$. R . The corresponding Interior angles

$$
\begin{array}{lll}
\mathrm{w}_{\mathrm{a}}=\left[\frac{2}{n}\right] \pi & \text { and } & \varphi_{\mathrm{a}}=\left[\frac{n-2}{2 \cdot n}\right] \pi \\
\mathrm{w}_{\mathrm{b}}=\left[\frac{2}{n+2}\right] \pi & \text { and } & \varphi_{\mathrm{b}}=\left[\frac{n}{2 \cdot(n+2)}\right] \pi \\
\mathrm{w}_{\mathrm{o}}=\left[\frac{2}{n+1}\right] \pi & \text { and } & \varphi_{\mathrm{o}}=\left[\frac{n-1}{2 \cdot(n+1)}\right] \pi
\end{array}
$$

The Power of point O to circle of diameter Δh is for $\lambda_{o}=2 R \cdot \sin \varphi_{o}, \lambda_{o}=2 R \cdot \sin \varphi_{o}$, $[P O P]=\left[\lambda_{o} \cdot \lambda_{o}^{\prime}\right]=4 R^{2} \cdot \sin ^{2} \varphi_{o} \ldots$. (6) and equal to (5) therefore

$$
\begin{equation*}
\sin \varphi_{\mathrm{a}} \cdot \sin \varphi_{\mathrm{b}}=\sin ^{2} \varphi_{\mathrm{o}} \quad \text { or } \quad \frac{\sin \varphi_{\mathrm{a}}}{\sin \varphi_{\mathrm{o}}}=\frac{\sin \varphi_{\mathrm{o}}}{\sin \varphi_{\mathrm{b}}} \tag{7}
\end{equation*}
$$

i.e. Angle φ_{o} follows the Harmonic-Mean between angles φ_{a}, φ_{b} on Δh Difference of Heights.
3.. Since Product of magnitudes $\lambda_{a} \cdot \lambda_{b}=$ constant and also $\left(\lambda_{a}-\lambda_{b}\right) \cdot\left(\lambda_{a}+\lambda_{b}\right)=$ constant, therefore, the Power of any point IN and OUT of the circle of Heights is Constant , meaning that exists another one Regular-Polygon, between the two Even - Sequence i.e.

> The Outer are the two Even-Regular N and $\mathrm{N}+2$ Polygons, and The Inner is the $\mathrm{N}+1$ Odd-Regular Polygon.

F. $15 \rightarrow$ In (1) are shown the two ways for constructing the three Means on One or Two Segments . In (2) is shown the Divergency of Sides to Heights of Two n , and ($\mathrm{n}+2$) Even Polygons . In (3) is shown the locus of the Two - Circles of Heights ($\mathrm{A}_{1}, \mathrm{~A}_{1} \mathrm{~B}_{1}$) and the parallels to (e) . to be Extrema case for the two segments KA , and KB .

International Research Journal of Advanced Engineering and Science

The construction of all the Even-Regular-Polygons is possible by dividing the circle (O,OK) in $2,4,6,8,10,12,14 \ldots 2 \mathrm{n}$ parts as $\mathrm{w}_{\mathrm{a}}=\left[\frac{2}{n}\right] \pi$ and $\varphi_{\mathrm{a}}=\left[\frac{n-2}{2 . n}\right] \pi, \mathrm{n}=1,2,3 \ldots$. The construction of all the Odd-Regular-Polygons is possible by Applying the Circles on Heights between the chords of the Even-Sequence of Polygons on [2,4]-[4,6]-[6, 8]-[8,10]... $[(2 \mathrm{n})-(2 \mathrm{n}+2)]$ as formulas $\mathrm{w}_{\mathrm{o}}=\left[\frac{2}{n+1}\right] \pi$ and $\varphi_{\mathrm{o}}=\left[\frac{n-1}{2 .(n+1)}\right] \pi$ founded from point K.
Case $A \rightarrow$ Digone.

Step 1:

Draw from point K , of any circle (O , OK), Tangent (e) at K and Chord KA which is the diameter (because diameter of the circle is the Side of the Regular - Digone) and any KB , corresponding to the Even (n) and ($\mathrm{n}+2$) Regular Polygon .
Step 2 :
Draw from points A , B , the perpendiculars to (e) and define the difference $\Delta \mathrm{h}=\mathrm{h}_{\mathrm{A}}-\mathrm{h}_{\mathrm{B}}=\mathrm{AB} \mathrm{A}_{1}$ on diameter KA and Draw circle ($A, A B B_{1}$) with radius Δh, and line KA intersecting circle at point A_{o}.
Step 3 :
Draw tangents $\mathrm{KC}, \mathrm{KC}_{1}$ and chord CC_{1} intersecting circle (O, OA) at point C .

Step 4 :

Draw Chord KC which is the Side of the Regular Odd - ($\mathrm{n}+1$) - Regular - Polygon on angle φ_{c}

F.16 \rightarrow In (1) is shown the Rolling of a circle on a straight line and forming the Cycloid .

In (2) is shown the Inner - Outer Power of Points, K, O, on circle of $A B$ diameter .
In (3) is shown the How and Why KM Segment is the Harmonic-Mean between KA , KB ${ }_{1}$.
Proof :
1.. Because triangle ACK is rightangled then AC is perpendicular to KC therefore Segment KC is perpendicular to AC and it is Tangential to circle ($\mathrm{A}, \mathrm{AB}_{1}$).
The same also for KC_{1}, which is also tangent to circle ($\mathrm{A}, \mathrm{AB} \mathrm{B}_{1}$).
2.. From relations $\quad \mathrm{KA}_{\mathrm{o}}=K A+\mathrm{AA}_{0}=K A+A B_{1}$

$$
\begin{aligned}
& K B_{1}=K A-A B_{1}=K A-\left(K A_{o}-K A\right)=2 . K A-K A_{o} \quad \text { or , } \\
& 2 . K A=K A_{o}+K B_{1}=\left(h_{A}+\Delta h\right)+h_{B} \quad \ldots \ldots \ldots .(1) \text { therefore }
\end{aligned}
$$

$$
\mathrm{KA}=\frac{\mathrm{h}_{\mathrm{A}}+\Delta \mathrm{h}+\mathrm{h}_{\mathrm{B}}}{2}
$$

(2) The Arithmetic - Mean .
3.. From the Power of point K to circle ($\mathrm{A}, \mathrm{AB}_{1}$) exists [KC $]^{2}=\left[\mathrm{KB}_{1}\right] .\left[\mathrm{KA}_{\mathrm{o}}\right]$ therefore

$$
\mathrm{KC}=\sqrt{\mathrm{KB}_{1} \cdot \mathrm{KA}_{\mathrm{o}}}=\sqrt{\left[\mathrm{h}_{\mathrm{A}}+\Delta \mathrm{h}\right] \cdot \mathrm{h}_{\mathrm{B}}} \quad \ldots \text { (3) The Geometric }- \text { Mean }
$$

4.. From the right angled triangle $A C M$ exists $K M . K A=K C{ }^{2}=\left(K_{1}\right) \cdot\left(K_{o}\right)$ or

$$
\begin{equation*}
K M=\frac{K A_{0} \cdot K B_{1}}{K A}=\left[\frac{K A_{0} \cdot K B_{1}}{K A_{0}+K B_{1}}\right] .2=\left[\frac{2}{\frac{1}{K A_{0}}+\frac{1}{K B_{1}}}\right] \tag{4}
\end{equation*}
$$

KM is the Harmonic - Mean between KA_{o} and K_{1} or $\left(\mathrm{h}_{\mathrm{A}}+\Delta \mathrm{h}\right), \mathrm{h}_{\mathrm{B}}$.
For $\mathbf{n}=\mathbf{2}$, then $K A$ is the Side of the Regular - Digone and equal to the diameter of the circle . For $\mathrm{n}=\mathrm{n}+2=4$, then $K B$ is the Side of the Regular - Pentagon sided on the perpendicular to KA side. Exist $\mathrm{h}_{\mathrm{A}}=\mathrm{KA}, \mathrm{h}_{\mathrm{B}}=\mathrm{KO}=\mathrm{KB}_{1}, \Delta \mathrm{~h}=A \mathrm{~B}_{1}$, and A_{3} point coincides with A_{2}, and consequence with C point. Parallel line DA_{4} coincides with the parallel $\mathrm{C} C$ ` line and KC is the Side of the $\mathrm{n}+1=3$, Regular - Trigon on $\mathrm{KM}=\mathrm{KO}+\frac{\Delta \mathrm{h}}{2}=1,5 . \mathrm{OK}$.

Point A is the Vertex and KA is the Side of the Regular Digone.
Point C is the Vertex and KC is the Side of the Regular Trigon (Triangle).
Point B is the Vertex and KB is the Side of the Regular Tetragon.
In addition, from formula $\Sigma=\mathrm{n} . \mathrm{R}=3 \mathrm{R}=3 . \mathrm{OK}$, and since every half is $\frac{3}{2}$. $\mathrm{OK}=1,5$. OK then Point C is on half $\Delta \mathrm{h}$, or height $\mathrm{h}=\mathrm{KO}+\frac{\mathrm{OA}}{2}$.
For $\mathbf{n}=\mathbf{4}$, then $K A$ is the Side of the Regular - Tetragon and equal $K X=O K \cdot \sqrt{2}$ chord .
For $n=n+2=6$, then $K B$ is the Side of the Regular -Hexagon sided on circle (O,OA).
For $\mathrm{n}=\mathrm{n}+1=5$ then it is the side of the Regular-Pentagon.
The How this is Geometrically achieved follows by the following three methods .
a.. The [Antiphon-Archimedes] Ancient Greek - Polygons method .
b.. The [Euler-Savary] Coupler-Curves curvature - centers method .
c.. The [Markos] Geometrical , Three - Circles - Method, in Polygons .

6.2. The Geometrical Construction of ALL Regular Polygons .

Preliminaries : The Coupler Curves.

Geometry :
Let A be a point on a Plane System ,S, rolling on the fixed system ,So, as in Fig-17.1
K_{A} is the center of curvature, the Instaneous center on the fix system.
P is the Instaneous center of curvature on the fix curve So (the pole P),
$(p),(\pi)$ are the coupler curves on , S, So
$\mathrm{u}=$ The translational velocity of pole P equal to $\mathrm{ds} / \mathrm{dt}=\mathrm{AA} / \mathrm{dt}$
$\mathrm{w}=$ Angular velocity of pole P equal to $d r / d t=d\left(\right.$ APA $\left.^{`}\right) / d t$ and for $d=u / w$ then,
Euler-Savary equation is $\quad E x=\left[1 / r_{D}-1 / R_{D}\right] \sin \varphi=1 / d \quad$..................... (a)
When point P lies on the radius of curvature of Polar path $(\varphi=90)$ then $\sin \varphi=1$ and from Fig-17.2 holds $\rightarrow\left[1 / r_{D}-1 / R_{D}\right]=1 / d$ and issues $r=r_{D} \cdot \sin \varphi$ and $R=R_{D} \cdot \sin \varphi$
i.e. The trajectories of points A on the circumference of circle radius $\boldsymbol{r}_{\boldsymbol{D}}$, have their center of curvature on circumference of circle of radius $\boldsymbol{R}_{\boldsymbol{D}}$.

Motion :

The motion of curves (p), (π) is in Fig -17.3
Let $\overline{\mathrm{v}_{\mathrm{A}}}, \overline{\mathrm{V}_{\mathrm{P}}}, \overline{\mathrm{V}_{\mathrm{KA}}}$, be the velocities of points $\mathrm{A}, \mathrm{P}, \mathrm{K}_{\mathrm{A}}$ to their systems.
For system S the curvature center K_{A}, the Instaneous center, is found from the intersection of A`P` and AP. For system ,So, the curvature center $K_{A A}$, the Instaneous center of K_{A} on fixed system (π) is found from the intersection of $\mathrm{P}^{\prime} K_{A A}$ and PK_{A}.
From the above similar triangle $\mathrm{K}_{\mathrm{A}} \mathrm{AA}^{`}, \mathrm{~K}_{\mathrm{A}} \mathrm{PP}^{`}$ exists ,
$\left(\mathrm{K}_{\mathrm{A}} \mathrm{A} / \mathrm{PA}\right)=\left(\mathrm{K}_{\mathrm{A}} \mathrm{A}^{\prime} / \mathrm{P}^{\prime} \mathrm{A}^{\prime}\right)=\left(\mathrm{K}_{\mathrm{AA}} \mathrm{A}^{\prime} / \mathrm{PK}_{\mathrm{AA}}{ }^{\prime}\right)=\mathrm{K}_{\mathrm{A}} \mathrm{K}_{\mathrm{AA}} / \mathrm{P} \mathrm{K}_{\mathrm{AA}}$ or $\left\{\mathrm{K}_{\mathrm{A}} \mathrm{A} / \mathrm{PA}\right\}=\left\{\mathrm{K}_{\mathrm{A}} \mathrm{K}_{\mathrm{AA}} / \mathrm{K}_{\mathrm{AA}} \mathrm{P}\right\} \ldots$ (b)
i.e. The Points $\mathrm{A}, \mathrm{K}_{\mathrm{AA}}$ are harmonically divided by the points $\mathrm{P}, \mathrm{K}_{\mathrm{A}}$ and exists,

$1 / \mathrm{PA}+1 / \mathrm{P}_{\mathrm{AA}}=2 / \mathrm{PK}_{\mathrm{A}}$

Inversing the two Systems by considering fixed system, So, rolling on , S , as in Fig-17.4 then, $E x=\left[1 / r_{A}-1 / R_{A}\right] \sin \varphi_{A}=1 / \mathrm{d}$ and $\left[1 / r_{A^{\prime}}-1 / R_{A^{`}}\right] \sin \varphi_{\mathrm{A}}^{`}=1 / \mathrm{d}$ where in both cases issues , $\left(\mathrm{PK}_{\mathrm{A}}-\mathrm{PA}\right) /\left(\mathrm{PK}_{\mathrm{A}} \cdot \mathrm{PA}\right)=-\left(\mathrm{PK}_{\mathrm{A}}{ }^{-}-\mathrm{PA}^{\prime}\right) /\left(\mathrm{PK}_{A^{\prime}} \cdot \mathrm{PA}^{\prime}\right)$ or $\mathrm{Ex}=\left(1 / \mathrm{PA}-1 / \mathrm{PK}_{\mathrm{A}}\right)=\left(1 / \mathrm{PK}_{\mathrm{A}^{\prime}}-\mathrm{PA}{ }^{\prime}\right)=1 / \mathrm{d} \ldots(\mathrm{c})$

The Path of the Instaneous-center of curvature, \mathbf{O}_{A}, on $(\mathrm{k}),(\pi)$ coupler envelope curves is proved that , During the rolling of curve (k) of system, S, and the fixed to it envelope (π) , then the Instaneous-center of curvature and those of the constant envelope (π) , coincides to the Instaneouscenter of curvature K_{A} of (k) as in Fig-17.1

The center D, of a Rolling circle (\mathbf{p}) on another circle (π), executes a circular motion with K_{D} as center which coincides with the center of curvature of the second circle. Because angle $\varphi=90^{\circ}$, then for every point A on (p) exists a center of curvature K_{A} on AP and $\mathrm{C} \mathrm{K}_{\mathrm{p}}$ as in Fig-17.2

During the rolling of a circle (\mathbf{p}) on ($\boldsymbol{\pi}$) line, then the corresponding Instaneous-center of curvature K_{A} of any point A is the common point of intersection of AP produced and the parallel to DP from point C and the Instaneous-center of curvature K_{D} for point D is in infinite and $K D=\infty$. The Euler-Savary equation involves the four points $A, P, K_{A}, K_{A A}$ lying on the path normal. Equation (b) may be written in the form $\mathrm{PA} / \mathrm{AK}_{\mathrm{AA}}=\mathrm{A} K_{\mathrm{AA}} / \mathrm{AK}_{\mathrm{A}}$ and is recognized that AK AA is the mean proportional between PA and $\mathrm{K}_{\mathrm{A}} \mathrm{A}$.

The Cubic of Stationary curvature :
Euler-Savary formula apply to the analysis of a mechanism in a given position and vicinity . It gives also the radius of curvature and the center of curvature of a couple-curve. Because couple-curve (Path \leftrightarrow Evolute) is the equilibrium of any moving system , then Complex-plane is involved and the E-S geometrical equations,
$\mathrm{Ex}=\left(1 / \mathrm{PA}-1 / \mathrm{PK}_{\mathrm{A}}\right) \mathrm{i} . \mathrm{e}^{\mathrm{i} \varphi}=\mathrm{h}\left[1 / \mathrm{PA}-1 / \mathrm{PK}_{\mathrm{A}}\right]=\mathrm{h} \cdot\left(\frac{\mathrm{d} \varphi}{\mathrm{ds}}\right)$ and for the homothetic motion ($\mathrm{h}=1$) then,

$$
\begin{equation*}
E x=\frac{1}{P A}-\frac{1}{P K_{A}}=\frac{1}{P K_{A A}}\left(\frac{d \varphi}{d s}\right) \tag{d}
\end{equation*}
$$

Equation (d) is that of Rhodonea Hypocycloid curves .
 shows the location of coupler points whose curves have an infinite radius of curvature, i.e. on inflection circle lie all centers of curvature of System curves and which , these are rolling on inflection point on the envelope .(Envelope here are the two or more surfaces in direct contact).The Cubic of Stationary curvature [COSC] indicates the location of coupler points that will trace segments of approximate circular arcs. In Geometry , the rolling of a circle , on a circle and or on a line is likewise to Mechanism as, Space Rolling on Anti=space, a Negative particle, Electron, on a Positive particle , Proton, or on many Protons, so the Wheel-Rims represent the, COSC in Mechanics .

Cupler curves (p) - (in) Polnt of contact P_{1} Polo $K_{\mathrm{A}}=$ Curvature center p = Curvature radius (1)	$\begin{aligned} & {[1 / \mathrm{r}-1 / \mathrm{R}] \cdot \sin \varphi=} \\ & 1 / \mathrm{ro}-1 / \mathrm{Ro}=1 / \mathrm{d} \end{aligned}$ Notation of the Euler-Savary equation (2)	$1 / \mathrm{PA}+1 / \mathrm{PK} s=2 / \mathrm{PK}$ Veloctty Components of points A, $\mathbf{P}, \mathrm{Ka}_{\text {a }}$ for defining point Ken of the Euler-Savary equation (3)	lnversion of points curves (p), (π) (4)

F.17 \rightarrow In (1) A point A on Coupler-curves (p), (π) define the point of curvature KA, the Instaneous point \mathbf{P}, the pole on (π).
In (2) is the case of point A lying on radius of curvature of polar path (point D) where then the paths of points A in , S, system have the Instaneous center of curvature KA on the fixed system So .
In (3) The Velocity Instaneous center, for curvature point K_{A}, in S_{o} system is point $K_{A A}$.
In (4) The two points A, K_{A}, of Coupler-curves (p), (π), follow the inversed motion where Poles of rotation, A and K_{A}, are inverted.

Above F. 17 is the Master-key for the solution to inscribe in a circle a regular polygon with any given number of sides .

International Research Journal of Advanced Engineering and Science

ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry
From above analysis all Mechanical - Solutions of the Regular - n.Polygons, in [63].

6.3. At MéӨodot :

Прокатарктєќ́ : То ఆє́ $\mu \alpha$, F.16(3).

[To Kavoviкó E $\xi \alpha{ }^{\gamma} \gamma \omega v o$],
 [To Kavoviкó $\Delta \omega \delta \varepsilon \kappa \alpha ́ \gamma \omega v o$], к $\alpha \iota$ оv́ ω к $\alpha \theta^{`} \varepsilon \xi \xi^{\prime} \zeta \sigma \varepsilon 15^{\circ}$, 7, 5° \qquad

$\Pi \alpha \rho \alpha \tau \eta \dot{\eta} \boldsymbol{\eta} \boldsymbol{\eta}$.

 \qquad
H бєıр́́ $\tau \omega v$ Movóv $\alpha \rho ı \theta \mu \dot{\rho} v$ عívaı $1,3,5,7,9,11,13,15,17,19,21$ \qquad

 $\mathrm{h}=\mathrm{OK}$, To ט́ $\psi o \varsigma ~ \tau o v ~ \kappa \varepsilon ́ v \tau \rho o v ~ O ~ \alpha \pi o ́ ~ \tau \eta v ~(e), ~$
 к $\alpha \iota \pi o v ́$

 $\pi \lambda \varepsilon \cup \rho \dot{\sim} \nu, \mathrm{KK}_{n}$.

Avtós o A $\lambda \lambda \eta \lambda о \sigma \chi \eta \mu \alpha \tau \iota \sigma \mu o ́ s ~ \tau \omega v$ Tєббо́ $\rho \omega v$ ко́к $\lambda \omega v$,

$$
\left\{(\mathrm{O}, \mathrm{OK})-\left(\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}^{`}{ }_{1}\right)-\left(\mathrm{O}_{1}{ }_{1}, \mathbf{0}^{`} \mathbf{P}_{\mathbf{1}}\right)-\left(\mathrm{O}_{\mathbf{2}}, \mathbf{0}_{\mathbf{2}} \mathrm{P}_{\mathbf{2}}\right)\right\}
$$

 $\tau \omega v \pi \lambda \varepsilon \cup \rho \dot{\rho} \nu \mathrm{~K} \mathrm{~K}_{1}$, $\mathrm{K} \mathrm{K}_{2}$, $\kappa \alpha \downarrow \tau \eta \varsigma \varepsilon \varphi \alpha \pi \tau о \mu \varepsilon ́ v \eta \varsigma$ (e) .

 Oı $\gamma \omega$ vícs $<\mathrm{KM}_{1} \mathrm{O}_{2}=\mathrm{KM}_{2} \mathrm{O}_{1}=90^{\circ}$, $<\mathrm{KM}_{1} \mathrm{P}_{1}=\mathrm{KM}_{1} \mathrm{O}=90^{\circ}$, $<\mathrm{K} \mathrm{K}_{2} \mathrm{P}_{1}=\mathrm{KK}_{2} \mathrm{O}_{\kappa}=90^{\circ}$,

Oı $\gamma \omega v i ́ \varepsilon \varsigma ~<~ \mathrm{~K}_{1} \mathrm{KK}_{2}, \mathrm{~K}_{1} \mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}, \mathrm{OP}_{1} \mathrm{O}_{\mathrm{k}}, \mathrm{OP}_{2} \mathrm{O}_{\mathrm{k}}, \mathrm{P}_{2} \mathrm{OP}_{1}$ cívaı í $\sigma \varepsilon \varsigma \mu \varepsilon \tau \alpha \xi \mathfrak{c} \tau \omega v$,

ß) Oı $\pi \lambda \varepsilon \cup \rho \varepsilon ́ \varsigma ~ \tau \omega v \mathrm{P}_{1} \mathrm{M}_{1}, \mathrm{P}_{1} \mathrm{~K}_{2}$, $\kappa \alpha ́ \theta \varepsilon \tau \varepsilon \varsigma ~ \tau \omega v \mathrm{KK}_{1}, \mathrm{KK}_{2}$ عטрíбкоvтаı

 $\tau \omega v$ ки́к $\lambda \omega v\left(\mathrm{O}_{4}, \mathrm{O}_{4} \mathrm{~K}=\mathrm{O}_{4} \mathrm{O}\right),\left(\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{~K}=\mathrm{O}_{2} \mathrm{P}_{2}\right)$.

International Research Journal of Advanced Engineering and Science

ISSN (Online): 2455-9024
The Unsolved Ancient - Greek Problems of E-geometry

o.ع. δ.

Ма́ркоऽ , 5/5/2017

 Поди́үตvo то бпиєío K .

 Movov́ - Kavovıкои́ - Подuүต́vov , $\pi \varepsilon \rho v \alpha ́ ~ \alpha \pi o ́ ~ \tau o ~, ~ \infty, ~ \pi o v ́ ~ \varepsilon i ́ v \alpha l ~ \eta ~ \tau o \mu \eta ́ ~ \tau \eta \varsigma ~ \varepsilon v \theta \varepsilon i ́ \alpha \varsigma ~(e) ~ к \alpha l ~ \tau o v ~$

o. $\varepsilon . \delta$.

Парати́ $\rho \boldsymbol{\eta} \boldsymbol{\eta}$.

 $\pi \alpha \rho \alpha \kappa \alpha ́ \mu \pi \tau о v \tau \alpha \varsigma ~ \tau о v ́ \varsigma ~ \mu \varepsilon ́ \chi \rho \imath ~ \sigma \eta ́ \mu \varepsilon \rho \alpha ~ \pi \varepsilon \rho ı о р ı \sigma \mu о и ́ \varsigma ~ \sigma \tau \eta \nu ~ А \lambda \gamma \varepsilon \beta \rho ı к \grave{~-~} \theta \varepsilon \omega \rho i ́ \alpha ~ \tau \omega v ~ П \rho \omega ́ \tau \omega v ~ \pi \rho о \varsigma ~$

 Avóк $\alpha \mu \psi \eta \varsigma ~ \sigma \varepsilon, E v \tau o ́ s-E v \alpha \lambda \lambda \alpha ́ \xi ́ ~ i \sigma \varepsilon \varsigma ~ \gamma \omega v i \varepsilon \varsigma ~ o ́ ~ \pi \omega \varsigma ~ \varepsilon i v \alpha l ~<~ \mathrm{OP}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}}=\mathrm{OP}_{\mathrm{k}} \mathrm{O}_{\mathrm{k}} \varepsilon \pi i ́ \tau \omega v \pi \alpha \rho \alpha \lambda \lambda \dot{\eta} \lambda \omega \nu \mathrm{O}_{\mathrm{k}}, \mathrm{OP}_{\mathrm{a}}$.

International Research Journal of Advanced Engineering and Science

To $\varepsilon \gamma \gamma \varepsilon \gamma \rho \alpha \mu \mu \varepsilon ́ v o ~ \sigma \chi \eta ́ \mu \alpha \quad \mathrm{P}_{\mathrm{k}} \mathrm{K}_{1} \mathrm{M}_{1} \mathrm{P}_{\mathrm{a} 1}$, $\varepsilon v \tau o ́ \varsigma ~ \tau o v ~ К и ́ к \lambda о v ~ К \alpha \mu \pi \eta ́ \varsigma ~, ~ \varepsilon ́ v \alpha ı ~ o \rho \theta o \gamma ต ́ v ı o ~ \delta ı o ́ \tau ı ~ \eta ~$ $\gamma \omega v^{\prime} \alpha<\mathrm{P}_{\mathrm{k}} \mathrm{K}_{1} \mathrm{M}_{1}=\mathrm{K}_{1} \mathrm{M}_{1} \mathrm{P}_{\mathrm{a} 1}=90^{\circ}$, Ap $\alpha \kappa \alpha \eta \chi \circ \rho \delta \dot{\eta} \quad \mathrm{P}_{\mathrm{k}} \mathrm{P}_{\mathrm{a} 1} / / \mathrm{K}_{1} \mathrm{M}_{1}$. Е $\pi \varepsilon ı \delta \dot{\eta} \delta \varepsilon \eta \gamma \omega v i ́ \alpha$

$\Delta \eta \lambda \alpha \delta \dot{\eta}$,

 $\kappa \alpha \imath \kappa \alpha ́ \theta \varepsilon \tau \cos \tau \eta \varsigma \mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}, \delta \eta \lambda \alpha \delta \dot{\eta}$,

H ГЕ@METPIKH KATAKEYH TOY KANONIKOY TPIГ』NOY

$\varphi 3=360 / 3=120$

For $\mathbf{n}=\mathbf{2}$, then $\mathrm{K} \mathrm{K}_{1}$ is the Side of the Regular - Digone and equal to 2.OK..
For $n=n+2=4$, then $K K_{2}$ is the Side of the Regular -Tetragon and equal to OK. $\sqrt{2}$,
the point K_{2} on (O, OK) circle. Exist $\Delta \mathrm{h}=\mathrm{h}_{\mathrm{K} 1}-\mathrm{h}_{\mathrm{K} 2}=\mathrm{O}_{\mathrm{k}} \mathrm{O}$.
The Circle of Heights is $\left(\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{O}\right)$. The Coupler-Circle is $\left(\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{P}\right)$,
Points P_{1}, P_{2} are the intersections of Sides $K K_{1}, K K_{2}$ produced.
Point K_{3} is the intersection of $\mathrm{P}_{2} \mathrm{O}_{\mathrm{k}}$ Segment, and the circle (O , OK).

 $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu$ о δ ı́ $\tau \imath ~ \eta ~ \gamma \omega v i ́ \alpha<\mathrm{P}_{\mathrm{k} 1} \mathrm{~K}_{1} \mathrm{M}_{1}=\mathrm{K}_{1} \mathrm{M}_{1} \mathrm{P}_{\mathrm{a}}=90^{\circ}$, $\mathrm{A} \rho \alpha \kappa \alpha \imath \eta \chi о \rho \delta \dot{\eta} \mathrm{P}_{\mathrm{k} 1} \mathrm{P}_{\mathrm{a}} / / \mathrm{K}_{1} \mathrm{M}_{1}$ $\eta \delta \varepsilon \gamma \omega v i ́ \alpha \mathrm{P}_{\mathrm{k} 1} \mathrm{P}_{\mathrm{a}} \mathrm{P}_{\mathrm{k} 7}=\mathrm{K}_{1} \mathrm{~K} \mathrm{~K}_{2}$ ठเó $\tau \iota$ ह́ $\chi \circ v v \tau \imath \varsigma \pi \lambda \varepsilon v \rho \varepsilon ́ \varsigma \tau \omega v \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \lambda \varepsilon \varsigma \mu \varepsilon \tau \alpha \xi v ́ \tau \omega v \alpha \pi o ́ \tau \omega v$

 $\eta \pi \lambda \varepsilon \cup \rho \alpha \dot{~ \tau o v ~ K a v o v i к o v ́ ~ E \tau \tau \alpha \gamma ต ́ v o v ~ . ~}$

International Research Journal of Advanced Engineering and Science
ISSN (Online): 2455-9024

 $\pi \alpha \rho \alpha \lambda \lambda \eta \lambda o ́ \gamma \rho \alpha \mu \mu$ о δ ó́ $\downarrow \eta \gamma \omega v i ́ \alpha<\mathrm{P}_{\mathrm{k} 1} \mathrm{~K}_{1} \mathrm{M}_{1}=\mathrm{K}_{1} \mathrm{M}_{1} \mathrm{P}_{\mathrm{a}}=90^{\circ}$, A $\operatorname{\rho } \alpha \kappa \alpha \imath \eta \chi о \rho \delta \dot{\eta} \mathrm{P}_{\mathrm{k} 1} \mathrm{P}_{\mathrm{a}} / / \mathrm{K}_{1} \mathrm{M}_{1}$

 $\eta \delta \varepsilon \gamma \omega v^{\prime} \alpha<\mathrm{P}_{\mathrm{k} 1} \mathrm{P}_{\mathrm{a}} \mathrm{P}_{\mathrm{k} 11}=\mathrm{K}_{1} \mathrm{~K} \mathrm{~K}_{2} \delta$ ó $\tau \iota$ と́ $\chi \circ v v \tau \imath \varsigma \pi \lambda \varepsilon v \rho \varepsilon ́ \varsigma ~ \tau \omega v \pi \alpha \rho \alpha ́ \lambda \lambda \eta \lambda \lambda \varepsilon \varsigma \mu \varepsilon \tau \alpha \xi v ́ \tau \omega v \alpha \pi o ́ \tau \omega v$

H ГЕЛMETPIKH KATA¿KEYH TOY KANONIKOY $\triangle E K A T P I A Г \Omega N O \Upsilon$

Н ГЕ Ω METPIKH KATAГKEYH O $\Lambda \Omega \mathrm{N}, \mathrm{T} \Omega \mathrm{N}$ KANONIK $\Omega \mathrm{N}-\mathrm{MON} \Omega \mathrm{N}-\Pi О \Lambda Y Г \Omega \mathrm{~N} \Omega \mathrm{~N}$

To $\Sigma v ́ \sigma \tau \eta \mu \alpha ~ \tau \omega v$ Ки́к $\lambda \omega v$ - К $\alpha \mu \pi \eta ́ s-A v \alpha ́ \kappa \alpha \mu \psi \eta \varsigma ~ \sigma \chi \eta \mu \alpha \tau i \zeta \varepsilon \tau \alpha ı ~ \varepsilon \pi i ́ ~ \tau о v ~ \mu \varepsilon \gamma \alpha \lambda \nu \tau \varepsilon ́ \rho о v ~ к и ́ к \lambda о v ~, ~$

 $E v \alpha \lambda \lambda \dot{\alpha} \xi \gamma \omega v i \varepsilon \varsigma \tau \omega v<\mathrm{P}_{\mathrm{a}} \mathrm{OP}_{\mathrm{k}}=\mathrm{OP}_{\mathrm{k}} \mathrm{O}_{\mathrm{k}}$ каl $<\mathrm{P}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}=0 \mathrm{P}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}}=\mathrm{K}_{1} \mathrm{KK}_{2}=\Delta \varphi=\varphi_{1}-\varphi_{2}$.
 $\mathrm{K}_{1} \mathrm{M}_{1} \mu \varepsilon \tau \alpha \mathrm{Av} \mathrm{\alpha ́} \mathrm{\sigma} \mathrm{\tau} \mathrm{\rho о} \mathrm{\varphi} \mathrm{\alpha} \mathrm{\tau} \mathrm{\rho í} \mathrm{\gamma} \mathrm{\omega v} \mathrm{\alpha} \mathrm{P}_{\mathrm{k}} \mathrm{K}_{1} \mathrm{M}_{1}, \mathrm{P}_{\mathrm{a}} \mathrm{M}_{1} \mathrm{~K}_{1}$. Oı ки́кえоı $\varepsilon \pi i ́ ~ \tau \omega v \delta 1 \alpha \mu \varepsilon ́ \tau \rho \omega v \mathrm{P}_{\mathrm{k}} \mathrm{M}_{1}, \mathrm{P}_{\mathrm{a}} \mathrm{K}_{1}$

THE GEOMETRICAL CONSTRUCTION OF ALL THE ODD - REGULAR - POLYGONS

The above Geometric Proof, solves the problem of the Odd- Regular - Polygons by surpassing the limitations to the theory of Algebraic numbers and to the Unsolvability of the Greek problems using the Wrong Theory of Constructible Numbers .
In figure F 16 (3) is holding $\mathrm{OX}{ }^{\perp} \mathrm{OA}$, i.e. angle $<\mathrm{XOK}=\mathrm{X}{ }^{`} \mathrm{OK}=90^{\circ}$. Any other angle $\mathrm{XOC}<$ 90° is equal to the symmetric $\mathrm{X}^{\circ} \mathrm{OC}_{1}$, when it passes from OA line, Inversion of angle through OA , where angle $<\mathrm{XOA}=\mathrm{XOA}=90^{\circ}$ and where OC side passes through infinite. In Figure F.20 -A , The system of Coupler curves, the Inflection and the Inverted Reflection circles, is formatted in the rightangled Parallelograms $\mathrm{K}_{1} \mathrm{M}_{1} \mathrm{P}_{\mathrm{a}} \mathrm{P}_{\mathrm{k} 1}$ or $\mathrm{K}_{1} \mathrm{M}_{1} \mathrm{P}_{\mathrm{a} 1} \mathrm{P}_{\mathrm{k}}$. The circumscribed Inflection circle lying on $\mathrm{M}_{1} \mathrm{~K}_{1} \mathrm{P}_{\mathrm{k}}$ triangle, defines vertices P_{k} on $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$ line, while the circumscribed Reflection circle on $\mathrm{M}_{1} \mathrm{P}_{\mathrm{a}} \mathrm{K}_{1}$ triangle, defines vertices P_{a} on OM_{1} line parallel to $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$ forming.
Segments $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}, \mathrm{OP}_{\mathrm{a}}$ are parallel therefore, Quadrilateral $\mathbf{0 0}_{\mathbf{k}} \mathbf{P}_{\mathbf{k}} \mathbf{P}_{\mathrm{a}}$ is Trapezium of height $\mathrm{K}_{1} \mathrm{M}_{1}$. Because chords $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}, \mathrm{OP}_{\mathrm{a}}$ are perpendicular to $\mathrm{K} \mathrm{K}_{1}$ chord, so these are parallels, and because chords, $\mathrm{OP}_{\mathrm{k}}, \mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{a}}$, are in cross between the parallels, therefore the two Alternate Interior angles $<\mathrm{P}_{\mathrm{a}} \mathrm{OP}_{\mathrm{k}}=\mathrm{OP}_{\mathrm{k}} \mathrm{O}_{\mathrm{k}}$ and angle $<\mathrm{P}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}=\mathrm{OP}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}}=\mathrm{K}_{1} \mathrm{~K} \mathrm{~K}_{2}=\Delta \varphi=\varphi_{1}-\varphi_{2}$. Presupposition for these Alternate Interior angles, is the Rotation of line $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$ through pole O_{k}, by starting from Infinite (∞) and limiting to chord $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{a}}$.
This type of Rotation is equivalent to the motion of point K_{1} to point K_{2} on circle [O , OK], with the followings ,
1... During Rotation of chord $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$ through pole O_{k}, establishes the velocity direction $\mathrm{K}_{1} \mathrm{~V}_{1}$ to chord $\mathrm{K} \mathrm{K}_{1}$ extended, or on KV_{1} line. The same happens for chord $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}$ which establishes the velocity direction $\mathrm{K}_{2} \mathrm{~V}_{2}$ perpendicular to chord $\mathrm{K} \mathrm{K}_{2}$ extended also. Generally for, Any point K_{7} between the points $\mathrm{K}_{1}, \mathrm{~K}_{2}$ occupies a perpendicular to chord $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{7}$ velocity, say the Velocity $\mathrm{K}_{7} \mathrm{~V}_{7}$, on the Inflection -Velocity - Circle [$\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}_{2}$] directed on OK_{7} line for every Position of point V_{7}. It was proved before, that the edge of arrow V_{1}, passes through an Inflection circle, Inversion, and the same is happening for any other arrow V_{7}.
2.. The Rotation of line $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$ through pole O_{k}, formulates Infinite Inflection - Circles circumscribed in the rightangled triangles $\mathrm{P}_{\mathrm{k}} \mathrm{K}_{1} \mathrm{M}_{7}$ with diameter $\mathrm{P}_{\mathrm{k}} \mathrm{M}_{7}$, (where M_{7} is the intersection of line $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{7}$ and line $\mathrm{K} \mathrm{K}_{1}$), limiting to the Inflection - circle of $\mathrm{P}_{\mathrm{k}} \mathrm{M}_{1}$ diameter, But Simultaneously, are formulated Infinite Reflection - Circles circumscribed in the rightangled triangles $\mathrm{P}_{\mathrm{a}} \mathrm{M}_{1} \mathrm{M}_{7}$ with diameter $\mathrm{P}_{\mathrm{a}} \mathrm{M}_{7}$, limiting to the Reflection - circle of $\mathrm{P}_{\mathrm{a}} \mathrm{K}_{1}$ diameter .
Inversion of the circles happens because Diameter $\mathrm{K}_{7} \mathrm{OM}_{7}$ is Mid-perpendicular to the opposite Side in the middle point \mathbf{M}_{7} in contradiction to Diameter $\mathbf{K}_{2} \mathbf{0} \mathbf{M}_{2}$ which passes through vertices.
3.. It was proved the equation $\Sigma(\mathrm{h})=\mathrm{n}$.OK, the Summation of heights h , of the vertices of any (n) Polygon from any (e) line tangential to any vertices, is equal to, n , times the radius OK . When , $\mathrm{n}, \mathrm{n}+2$, are the numbers of the vertices of any two sequent and Even Polygons, then exists the In-between , $\mathrm{n}+1$, Odd -Polygon. The position of this Odd-Polygon is common to the Inflection and Reflection circles. It was proved also, that the edge of arrow V_{1} passes through the Inflection circle $\left[\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}_{2}\right]$ and through the Envelope of Inflection circles where then, the point of intersection, R.k-a, defines the direction $K_{1} V_{7}$, which belongs to the $\mathrm{n}+1$ Odd - Regular-Polygon . i.e. line KV_{7} intersecting the circle [O,OK] at point K_{7} defines chord K_{7} which is the Side of the intermediate Odd-Regular-Polygon. (q.e.d).

6.3. The Methods :

Preliminaries: The Subject, F.16(3).
Any circle (O, OK) can be divided into ,
a.. Two equal parts by the diameter KA [It is the Dipole AK] with angle $<\mathrm{AOK}=180^{\circ}$.
b.. Four equal parts by the Bisector of 180° which is the perpendicular and second diameter X ${ }^{`} \mathrm{X}$.
c.. Eight equal parts by the Bisector of the four angles which are 90°.
d.. Sixteen equal parts by the Bisector of the Eight angles which are 45°, and so on .
e.. The circle having $360^{\circ}=2 \pi$ radians, can be divided into,

Three equal parts as $360^{\circ} / 3=120^{\circ}$ and which is possible [The Equilateral triangle], Six equal parts as $360^{\circ} / 6=60^{\circ}$ and which is possible by the bisectors of the triangle [The Regular Hexagon],
Twelve equal parts as $360^{\circ} / 12=30^{\circ}$ and which is possible by the bisectors of the Hexagon [The Regular Dodecagon], and so on , to $15^{\circ}, 7,5^{\circ}$ \qquad

Remark :

a... The series of Even Numbers is $2,4,6,8,10,12,14,16,18,20$

The series of Odd Numbers is $1,3,5,7,9,11,13,15,17,19,21$ \qquad
Becoming from the Arithmetic - mean between two Adjoined - Even numbers, as for example,
Number five $5=\frac{4+6}{2}=\frac{10}{2}=5$. The logic of addition issues in Geometry in its moulds which is the logic of Material - Point, which is Zero ($0=$ Nothing) and exists as the Addition of Positive + Negative $(\rightarrow+\leftarrow)$. [See, Material Geometry 58-60-61]
b... In previous paragraph $5.5($ Case c) was proved (1) $\Sigma(\mathrm{h})=(2 \mathrm{k}) . \mathrm{h}=\mathrm{n} . \mathrm{h}=\mathrm{n} . \mathrm{OK}$, where $\Sigma=$ The Summation of Heights, h, of the Vertices (n) - in the Regular Polygon from the vertices K_{n}, projected to tangential (e) at the initial point K , $\mathrm{h}=\mathrm{OK}$, The height of center , O , measured on (e) tangent , $\mathrm{n}=$ The number of Sides of the Regular Polygon and which Changes the Sum of heights from the Tangential line (e) to a Linear and Integer number of the radius of the circle, and which is directly related to angles, φ_{n}, and vertices of sides, $\mathrm{KK}_{\boldsymbol{n}}$.
c... On any Chord $\mathrm{KK}_{\mathbf{1}}$ of circle (O ,OK) , the central angle $<\mathrm{KOK}_{1}$, is twice the Inscribed and equal to $<\mathrm{K} \mathrm{O}_{\mathrm{K}} \mathrm{K}_{1}=\mathrm{KOM}_{1}$. The mid - perpendicular OM_{1}, is parallel to the Perpendicular line $\mathrm{O}_{\mathrm{K}} \mathrm{K}_{1}$, therefore cut each other to infinite (∞). Because the two perpendiculars pass from O and O_{K} points , these consist the Poles of their rotation .

In F. 18 -A , any Point $\mathbf{K}_{\mathbf{2}}$ on circle, formulates the second chord $\mathbf{K K}_{\mathbf{2}}$, while the perpendicular $\mathrm{O}_{\mathrm{K}} \mathrm{K}_{2}$ projected cuts OM_{1}, the parallel to $\mathrm{O}_{\mathrm{K}} \mathrm{K}_{1}$ at a point P_{1}, which is the Pole of rotation of the two chords, or angles, and this because point P_{2} is moving on OM_{1} from infinite to KP_{1} diameter . On diameter KP_{2} of circle $\left(\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{P}_{2}=\mathrm{O}_{2} \mathrm{~K}\right)$, and center O_{2}, are formulated the same angles φ_{1}, φ_{2} by chords $\mathrm{P}_{1} \mathrm{M}_{1}, \mathrm{P}_{2} \mathrm{~K}_{2}$, such that angles are equal $<\mathrm{M}_{1} \mathrm{P}_{1} \mathrm{~K}_{2}=\mathrm{K}_{1} \mathrm{KK}_{2}=0 \mathrm{P}_{1} \mathrm{O}_{\mathrm{k}}$, That is, on any two chords $\mathrm{KK}_{1}, \mathrm{KK}_{2}$, of circle (O, OK), with common vertices K , the Mid-Perpendicular $\mathbf{O M}_{1}$ of the first, and the Perpendicular $\mathbf{O}_{\mathrm{K}} \mathrm{K}_{2}$ of the second, cut each other at a point \mathbf{P}_{1}, which defines its conjugate circle $\left(\mathbf{O}_{\mathbf{1}}, 0^{\prime}{ }_{1} \mathbf{P}_{\mathbf{1}}\right)$, $\{$ it is the Circle of equal angles with circle (O, OK) \} . The same happens with circle $\left(\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{P}_{2}=\mathbf{0}_{2} \mathrm{~K}\right)$.
d... From relation $\Sigma=(2 \mathrm{k}) . \mathrm{h}=\mathrm{n} . \mathrm{h}=\mathrm{n} . \mathrm{OK}$, For $\mathrm{n}=2$ then $\Sigma=2 . \mathrm{h}=2 . \mathrm{OK}$ that is diameter $K \mathrm{~K}_{\mathrm{K}}$. For $\mathrm{n}=3$ then $\Sigma=3 . \mathrm{h}=3$.OK and for $\mathrm{n}=4$ then $\Sigma=4 . \mathrm{h}=4$.OK. Because the Odd - numbers are the Arithmetic - mean between two Adjoined - Even numbers so for 3.OK is $(2 . \mathrm{OK}+4 . \mathrm{OK}) / 2$. The difference of heights is $\Delta \mathrm{h}=\mathrm{h}_{\mathrm{K} 1}-\mathrm{h}_{\mathrm{K} 2}=\mathrm{K}_{1} \mathrm{~K}^{`}$ 1 and it is between the parallels through points $\mathrm{K}_{1}, \mathrm{~K}_{2}$, and line (e). Circle ($\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}^{`}{ }_{1}$) is the circle of Hypsometric differences of the chords $\mathrm{K}_{1}, \mathrm{~K}_{2}$, and changes according to point K_{1} or the same with point K_{2}. That is ,
The circle of the Hypsometric differences $\left(\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}^{`}{ }_{1}\right)$ is correlated with chords [$\mathrm{KK}_{1}, \mathrm{KK}_{2}$], [$\mathrm{O}_{\mathrm{K}} \mathrm{K}_{1}, \mathrm{O}_{\mathrm{K}} \mathrm{K}_{2}$] of circle (O, OK) through the corresponding vertices $\mathrm{K}, \mathrm{O}_{\mathrm{K}}$ and with that of Equal angles circle $\left(\mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{P}_{1}\right)$ through the mid-perpendicular OM_{1} of the first chord K_{1}, and the mid-perpendicular $\mathrm{O}_{\mathrm{K}} \mathrm{K}_{2}$ of the second chord KK_{2}.

This co relation of this Formation between these four circles ,

$$
\left\{(\mathrm{O}, \mathrm{OK})-\left(\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}^{`}{ }_{1}\right)-\left(\mathbf{O}_{\mathbf{1}}, \mathbf{0}^{`}{ }_{1} \mathbf{P}_{\mathbf{1}}\right)-\left(\mathrm{O}_{\mathbf{2}}, \mathbf{O}_{\mathbf{2}} \mathrm{P}_{\mathbf{2}}\right)\right\}
$$

and Perpendicular to line (e), Allows to Any circle (O, OK) to define their in between motion through the two chords $\mathrm{K} \mathrm{K}_{1}, \mathrm{~K} \mathrm{~K}_{2}$, or and angles φ_{1}, φ_{2}, that is, From the relation of Heights $\Sigma(\mathrm{h})=(2 \mathrm{k}) . \mathrm{h}=\mathrm{n} . \mathrm{h}=\mathrm{n} . \mathrm{OK}$, becomes that the Summation of heights of any two Adjoined - Even Regular Polygons, $\mathrm{n}, \mathrm{n}+2$ is $\rightarrow \quad \frac{\Sigma 2(\mathrm{~h} 1)}{2}+\frac{\Sigma 2(\mathrm{~h} 2)}{2}=\left[\frac{\mathrm{n}_{1}}{2}+\frac{\mathrm{n}_{2}}{2}\right] . \mathrm{OK}=\left[\frac{\mathrm{n}_{1}+\mathrm{n}_{2}}{2}\right] . \mathrm{OK}=\mathrm{n}_{3} . \mathrm{OK}$, where $n_{3}=\left[\frac{n_{1}+n_{2}}{2}\right]$ is the number of vertices between the two Even n_{1}, n_{2},

The Odd-Number - Vertices Regular-Polygon .

On the Hypsometric difference $\Delta \mathrm{h}=\mathrm{O}_{1} \mathrm{~K}^{`}$ and on the perpendicular to line (e) are kept all properties of the addition.From the Instaneous position of angles φ_{1}, φ_{2}, to the two circles the chords are defined. e... Because chords $\mathrm{K} \mathrm{K}_{1}, \mathrm{~K} \mathrm{~K}_{2}$, are perpendicular to $\mathrm{OP}_{1}, \mathrm{O}_{\mathrm{K}} \mathrm{P}_{1}$, lines, Therefore point K is the Orthocenter of all perpendicular and rightangled triangles, as well as their common chord $\mathrm{K}_{1} \mathrm{M}_{1}$, of the two circles $\left(\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{P}_{2}\right)$, ($\left.\mathrm{O}, \mathrm{OK}\right)$. Because the Geometric locus of chords $\mathrm{K} \mathrm{K}_{1}, \mathrm{~K} \mathrm{~K}$, of the Common Orthocenter K is \rightarrow for circle (O , OK) the arc $\mathrm{K}_{1} \mathrm{~K}_{2}$, and for circle ($\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{~K}=\mathrm{O}_{2} \mathrm{P}_{2}$) arc $\mathrm{M}_{1} \mathrm{~K}_{2}$, and for circle ($\mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{P}^{`}{ }_{1}$) arc (1)-(2) with the points of the chords intersection, Therefore points (1), M_{1} are limit points of these circles such that exists $K M_{1} \perp P_{1} M_{1}$. The above logics result to the , Mechanical and Geometrical solution, which follows .

The new Mechanical Approach :

In F. 18 - A. is the circle (O, OK) with the tangential line (e) at point K , and the diameter KO_{K}.

Define on the circle from vertices, K , The vertices $\mathrm{K}_{1}, \mathrm{~K}_{2}$ corresponding to the edges of sides of two Adjoined Even-Regular Polygons and the corresponding angles φ_{1}, φ_{2}, between sides $\mathrm{K} \mathrm{K}_{1}, \mathrm{~K} \mathrm{~K}_{2}$, and the tangent line (e) .
Draw the parallels from vertices K_{1}, K_{2}, to (e) line and from vertices K_{1} perpendicular to (e), such that cuts the parallel from point K_{2}, at point $\mathrm{K}_{1}{ }_{1}$, and draw the perpendicular $\mathrm{K}_{1} \mathrm{~K}^{`}{ }_{1}$ as the radius the circle $\left(\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}_{1}\right)$.
Draw $\mathrm{O}_{\mathrm{K}} \mathrm{K}_{1}$ produced which cuts OK_{2} extended (from point O) at point P_{2} and from point O_{2} (the middle of diameter $\mathrm{K} \mathrm{P}_{2}$) draw the circle ($\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{~K}=\mathrm{O}_{2} \mathrm{P}_{2}$).
Extend sides $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}, \mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}$, so that they cut circle $\left(\mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{~K}^{`}{ }_{1}\right)$ at points $1,1^{`}$, and 2, $2^{`}$, and draw chords 1-2` Kal 2-1` respectively.
Define the common point, T , of chords 1-2` \(\kappa \alpha 12-1^{`}\) and produce, $\mathrm{O}_{\mathrm{k}} \mathrm{T}$, such that cuts circle (O, OK) at point K_{5}. OR , with the Harmonic Mean,
Draw from point $\mathrm{K}^{`}{ }_{1}$ the perpendicular , $\mathrm{K}^{`}{ }_{1} \mathrm{~A}=\left(\mathrm{K}^{`}{ }_{1} \mathrm{~K}_{1}\right) / 2$ and the circle $\left(\mathrm{A}, \mathrm{AK}_{1}\right)$ cutting the chord $\mathrm{O}_{1} \mathrm{~A}$ at point B .
Draw from point K_{1} the circle ($\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~B}$) such that intersects the perpendicular $\mathrm{K}_{1} \mathrm{~K}^{`}{ }_{1}$ at point, C , and from this point C the parallel to (e) so that cuts circle (O, OK) at point K_{5}.

The chord K_{5} is the side of the Regular-Odd-Polygon , and this because
The circle ($\mathrm{O}_{4}, \mathrm{O}_{4} \mathrm{~K}=\mathrm{O}_{4} \mathrm{O}$) is the circle of the middle of chords $\mathrm{KK}_{1}, \mathrm{KK}_{2}$ so and for $K K_{5}$. Angles $<\mathrm{KM}_{1} \mathrm{O}_{2}=\mathrm{KM}_{2} \mathrm{O}_{1}=90^{\circ}$, $<\mathrm{KM}_{1} \mathrm{P}_{1}=\mathrm{KM}_{1} \mathrm{O}=90^{\circ}$, $<\mathrm{K} \mathrm{K}_{2} \mathrm{P}_{1}=\mathrm{KK}_{2} \mathrm{O}_{\mathrm{K}}=90^{\circ}$,

Therefore point K is the Orthocenter of the triangles $\mathrm{KOM}_{2}, \mathrm{KOP}_{1}, \mathrm{KO}_{\mathrm{k}} \mathrm{P}_{2}, \mathrm{~K} \mathrm{O}_{\mathrm{k}} \mathrm{O}_{1}$.
Angles $<\mathrm{K}_{1} \mathrm{KK}_{2}, \mathrm{~K}_{1} \mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}, \mathrm{OP}_{1} \mathrm{O}_{\mathrm{k}}, \mathrm{OP}_{2} \mathrm{O}_{\mathrm{k}}, \mathrm{P}_{2} \mathrm{OP}_{1}$ are equal between them ,
Because these are α) Inscribed to the same arc , $\mathrm{K}_{1} \mathrm{~K}_{2}$, of circle (O , OK),
β) Their sides $P_{1} M_{1}, P_{1} K_{2}$, and being perpendicular to $K K_{1}, K K_{2}$ are in circle $\left(\mathrm{O}_{1}, \mathrm{O}^{`}{ }_{1} \mathrm{~K}=0^{`}{ }_{1} \mathrm{P}_{1}\right)$,
γ) Alternate Interior angles between the parallels, OP_{1}, and $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{2}$ of the circles $\left(\mathrm{O}_{4}, \mathrm{O}_{4} \mathrm{~K}=\mathrm{O}_{4} \mathrm{O}\right),\left(\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{~K}=\mathrm{O}_{2} \mathrm{P}_{2}\right)$.
Chords $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}, \mathrm{OM}_{1}$ are perpendicular to chord KK_{1}, Therefore are parallels,
Chords $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}, \mathrm{OM}_{2}$ are perpendicular to chord KK_{2}, Therefore are parallels,
The Geometrical locus of point K_{1}, from Point $\mathrm{K}_{\mathbf{1}}$ to point $\mathrm{K}_{\mathbf{2}}$, and on circle (O , OK) is arc $\mathrm{K}_{1} \mathrm{~K}_{2}$ of the circle, while on circle $\left(\mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{~K}^{`}{ }_{1}\right)$ arc $1,2 `$ of the circle .
The Geometrical locus of point K_{2}, from Point K_{2} to point K_{1}, and on circle (O , OK) is arc $\mathrm{K}_{2} \mathrm{~K}_{1}$ of the circle, while on circle $\left(\mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{~K}_{1}^{\prime}\right)$ arc 2 , $1^{`}$ of the circle .
The Geometrical locus from point, \mathbf{O}, of the parallels to chord $\mathrm{O}_{\mathrm{k}} \mathrm{O}_{1}$, are the chords $\mathrm{OP}_{1}, \mathrm{O}_{4} \mathrm{O}_{1}$, and from Pole, O_{k}, section, T , between chords 1,2 and $2,1^{`}$ respectively .
Because angle $<\mathrm{O}_{\mathrm{k}} \mathrm{O}_{1} \mathrm{~K}=\mathrm{O}_{\mathrm{k}} \mathrm{K}_{2} \mathrm{~K}=90^{\circ}$, Therefore section, T , moves parallel to line $\mathrm{O}_{1} \mathrm{~K}$, and it is the common point of the two Geometrical loci.

Because points $\mathrm{K}_{1}, \mathrm{~K}_{2}$ are the two Adjoined - Even Regular Polygons of circle (O, OK) and simultaneously points $\mathbf{O}_{1}, \mathbf{P}_{2}$, the corresponding extreme Poles on circles $\left(\mathrm{O}_{1}, \mathrm{O}_{1} \mathrm{~K}^{\prime}{ }_{1}\right),\left(\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{~K}\right)$, following the common joint for point K , to be the Orthocenter and the Pole of Polygons, and point, T, the constant and common Pole of the System, Therefore line $\mathrm{O}_{\mathrm{k}} \mathrm{T}$, is constant and cuts circle (O, OK), at point K_{5} which is the vertices of the intermediate Regular-Odd-Polygon?? defined the harmonic height $\mathrm{K}_{\mathbf{1}} \mathrm{C}$ and from parallel chord CK_{5}, point $\mathrm{K}_{\mathbf{5}}$, on circle (O ,OK) such that corresponds the above Harmonic relation, Therefore chord K_{5} is also of the inner and The between Odd-Regular- Polygon q.e.d

$$
\text { Ма́рко̧ , } 5 \text { / } 5 \text { / } 2017
$$

The new Geometrical Approach :

In F. 18 - A. of circle (O, OK) since sides $\mathrm{P}_{1} \mathrm{O}_{\mathrm{k}}, \mathrm{P}_{1} \mathrm{O}$ are perpendicular to $K K_{2}, K K_{1}$ respectively So angle $<\mathrm{OP}_{1} \mathrm{O}_{\mathrm{k}}=\mathrm{K}_{1} \mathrm{KK}_{2}$, and since also $\mathrm{P}_{2} \mathrm{O}$ chord is between the parallel lines $\mathrm{P}_{1} \mathrm{O}, \mathrm{P}_{2} \mathrm{O}_{\mathrm{k}}$, Therefore angles $<\mathrm{OP}_{1} \mathrm{O}_{\mathrm{k}}, \mathrm{OP}_{2} \mathrm{O}_{\mathrm{k}}$ are equal, either on the constant Poles of the vertices $\mathrm{O}, \mathrm{O}_{\mathrm{k}}$, or on the movable Poles of vertices $\mathrm{P}_{1}, \mathrm{P}_{2}$. Since angles $<\mathrm{OP}_{1} \mathrm{O}_{\mathrm{k}}, \mathrm{OP}_{2} \mathrm{O}_{\mathrm{k}}$, are equal $\boldsymbol{S o}$ lie on a circle of chord OO_{k}. Since also exist on the same circle the Poles $\mathrm{O}_{\mathrm{k}}, \mathrm{O}, \mathrm{P}_{1}, \mathrm{P}_{2}$ Therefore lie on a circle of center the intersection of the mid-perpendicular of chords $\mathrm{O}_{\mathrm{k}}, \mathrm{OP}_{2}$, and is point O_{3} The point K of line (e) is common to the infinite (∞) Regular - Polygons of the circles with center the point , O , and radius $\mathrm{KO}=0 \rightarrow \infty$, Therefore the Infinite Regular Polygon becomes line (e), the Regular Polygons lie on circle (O, OK) and the Zero Regular Polygon is point K.
Since the movable Poles $\mathrm{P}_{1}, \mathrm{P}_{2}$, of the two Adjoined-Even Regular Polygons lie on circle [$\mathrm{O}_{3}, \mathrm{O}_{3} \mathrm{O}$] The Anti-Space circle [12], So the inter and movable pole of the Odd - Regular - Polygon passes from the infinite, ∞, and which is the intersection of line (e) and this circle and it is the common point P_{5}. The same happens with angle of 90° with two lines passing from infinite.
Chord OP_{5} corresponds to the Reflection chords of the Reflection - circle [$\mathrm{O}_{2}, \mathrm{O}_{2} \mathrm{P}_{2}$] with center in infinite and which is in point P_{5}. The two intersecting pairs $\mathrm{P}_{4}, \mathrm{P}_{4}^{\prime}$ and $\mathrm{P}_{6}, \mathrm{P}_{6}^{\prime}$, converge to the one pair such that $\mathrm{P}_{5}=\mathrm{P}^{`}{ }_{5}$, where the two points coincide . q.e.d.

Remarks :

In F. $18-\mathrm{B}$, chords $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}, \mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}$, are perpendicular to $\mathrm{KK}_{1}, \mathrm{KK}_{2}$, therefore angle $<\mathrm{K}_{1} \mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}=$ $\mathrm{K}_{1} \mathrm{~K} \mathrm{~K}_{2}$. Chord $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}$ is parallel to $\mathrm{OM}_{1}, \mathrm{OP}_{\mathrm{a}}$ and since chord $\mathrm{P}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}}$ is between the two parallels then the Alternate Interior angles $<\mathrm{OP}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}}, \mathrm{P}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}$ are equal. In order that point P_{k} reaches to P_{a}, which means from Inflection-Envelope to the Reflection-Envelope, line $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$ must move from point K_{1} to point M_{1} perpendicularly. This motion presupposes that the point K_{1} is lying on Inflection circle which happens because the perpendicular velocities of $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}$ chord are always directed on KK_{1} chord . i.e. the Velocity-circle $\left[\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}_{2}\right]$ is an Inflection circle .
Since the End-Inflection-Circle passes through $\mathrm{K}_{1}, \mathrm{P}_{\mathrm{k}}$ points, and the End-Reflection-Circle passes through $\mathrm{K}_{1}, \mathrm{P}_{\mathrm{a}}$ points, with point $\mathrm{K}_{\mathbf{1}}$ always common, then Passes also through the outer Common-Inflection-Reflection-Point which lies on the Velocity-circle, where for point $\mathbf{K}_{\mathbf{1}}$ the Pole of Rotation is in infinite and the Alternate Interior angles reversible .
Because the Diameters through the vertices $\mathrm{K}_{1}, \mathrm{~K}_{2}$ pass through the corresponding, \mathbf{n}, and, $\boldsymbol{n}+\mathbf{2}$, Odd - Regular - Polygons, the Diameter through the vertices $\mathrm{K}_{7=n+1}$ passes through the center of the Opposite Side, Therefore it is Mid-perpendicular between the Inflation and to the Reflation point .

The Exact Geometrical Solution of the Odd-Regular-Polygons follows :

[^4]
F.20-A \rightarrow In circle (O , OK) For $\mathbf{n = 6}$, then $\mathrm{K} \mathrm{K}_{1}$ is the Side of the Even - Regular - Hexagon while for $\mathbf{n}=\mathbf{8}$, then KK_{2} is the Side of the Even-Regular -Octagon .
$\mathbf{K ~ K}_{\mathbf{1}}$ is the Side of the Odd-Regular - Hexagon ,
$\mathbf{K} \mathbf{K}_{2}$ is the Side of the Odd - Regular - Octagon ,
Exists Circle of Heights $\Delta \mathrm{h}=\mathrm{h}_{\mathrm{K}_{1}}-\mathrm{h}_{\mathrm{K} 2}=\mathrm{K}_{1} \mathrm{~K}_{1}{ }_{1}$ and Velocity Inflection circle $\Delta \mathrm{V}=\mathrm{K}_{1} \mathrm{~K}_{2}$ Straight - Line $\left\{\mathrm{O}_{\mathrm{k}}, \mathrm{K}_{1}, \mathrm{P}_{\mathrm{k}}\right\}$ is parallel to $\left\{\mathrm{O}, \mathrm{M}_{1}, \mathrm{P}_{\mathrm{a}}\right\}$ and the Alternate Interior angles equal , $<\mathrm{OP}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}}=\mathrm{P}_{\mathrm{k}} \mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{a}}=\mathrm{K}_{1} \mathrm{KK}_{2}$. The same for angle $<\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}=\mathrm{P}_{\mathrm{k}} \mathrm{OP}_{\mathrm{a}}$
The Inflection Circle [$\mathrm{PO}_{\mathrm{k}}, \mathrm{PO}_{\mathrm{k}}-\mathrm{K}_{1}$] or the Reflection circle [$\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{a}}-\mathrm{K}_{1}$] cut the Inflection Velocity - Circle [$\mathrm{K}_{1}, \Delta \mathrm{~V}=\mathrm{K}_{1} \mathrm{~K}_{2}$] at Edge point, $\mathrm{R}_{\cdot \mathrm{k}-\mathrm{a}}$.
Line $K R_{\cdot k-\mathrm{a}}$ intersects the circle (O, OK) at point K_{7} which is the vertices of the $\mathrm{n}+1=7$
Regular Odd Polygon, and which is the Regular -Heptagon .
$\mathbf{K ~ K}_{\mathbf{7}}$ is the Side of the Odd - Regular - Heptagon ,

The Geometrical Proof :

In circle (O , OK) of F.20-A , the points $\mathrm{K}_{1}, \mathrm{~K}_{2}$ are the Vertices and $\mathrm{K}_{1}, \mathrm{~K}_{2}$ are the Sides of two Adjoined-Even Regular Polygons. Chords $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}, \mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}$ are perpendicular to the sides $\mathrm{K} \mathrm{K}, \mathrm{K}_{1}$, because lie on diameter K_{k}. The mid-perpendicular OM_{1} of KK_{1} side, is parallel to $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}$ chord because both are perpendicular to $\mathrm{K} \mathrm{K}_{1}$ side. Line OK_{2} produced intersects $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{1}$ line at point P_{k} and since Segment OP_{k} lies between the two parallels, the Alternate - Interior angles $<\mathrm{OP}_{\mathrm{k}} \mathrm{O}_{\mathrm{k}}, \mathrm{P}_{\mathrm{k}} \mathrm{OP}_{\mathrm{a}}$ are equal.
Line $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}$ produced intersects OM_{1} line at point P_{a} and since Segment $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{a}}$ lies between the two parallels then the, Alternate Interior angles $<\mathrm{OP}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}}, \mathrm{P}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$ are equal, and since angle $<\mathrm{K}_{1} \mathrm{O}_{\mathrm{k}} \mathrm{K}_{2}=\mathrm{K}_{1} \mathrm{~K} \mathrm{~K}_{2}$, then angle $<\mathrm{OP}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}}=\mathrm{P}_{\mathrm{a}} \mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}=\mathrm{K}_{1} \mathrm{~K} \mathrm{~K} \mathrm{~K}_{2}$.

Segments $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}, \mathrm{OP}_{\mathrm{a}}$ are parallel therefore, Quadrilateral $\mathbf{0 0}_{\mathbf{k}} \mathbf{P}_{\mathbf{k}} \mathbf{P}_{\mathbf{a}}$ is Trapezium of height $\mathrm{K}_{1} \mathrm{M}_{1}$. Since the right angle triangles, $\mathrm{P}_{\mathrm{k}} \mathrm{K}_{1} \mathrm{M}_{1}, \mathrm{P}_{\mathrm{a}} \mathrm{M}_{1} \mathrm{~K}_{1}$ occupy the common segment $\mathrm{K}_{1} \mathrm{M}_{1}=\mathrm{M}_{1} \mathrm{~K}_{1}$ therefore are Inverted (either Inflection or Reflection) Triangles and their Hypotenuses $P_{a} K_{1}, P_{k} M_{1}$, formulate the Reflection $\left[\mathrm{P}_{\mathrm{a}} \mathrm{M}_{1} \mathrm{~K}_{1}\right]$ and the Inflection $\left[\mathrm{P}_{\mathrm{k}} \mathrm{K}_{1} \mathrm{M}_{1}\right]$ Circles on $\mathrm{K}_{1} \mathrm{M}_{1}=\mathrm{M}_{1} \mathrm{~K}_{1}$ common segment. [This terminology of, Inflection and Reflection circle, becomes from Mechanics].
Remark:Trapezium $\mathrm{OP}_{\mathrm{a}} \mathrm{P}_{\mathrm{k}} \mathrm{O}_{\mathrm{k}}$ is a Geometrical mechanism with its Alternate Interior angles equal to the angle $<\mathrm{K}_{1} \mathrm{~K} \mathrm{~K}_{2}$ of Sides. When triangle $00_{\mathrm{k}} \mathrm{K}_{1}$ changes from K_{1} to K_{2} position then, the right angled triangles $\mathrm{K}_{1} \mathrm{O}_{\mathrm{k}}, \mathrm{K} \mathrm{K}_{2} \mathrm{O}_{\mathrm{k}}$ are directed on $\mathrm{K} \mathrm{K}_{1}, \mathrm{~K} \mathrm{~K}_{2}$, lines and in the ($\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}_{2}$) circle as $\mathrm{K}_{1} \mathrm{~V}_{1}, \mathrm{~K}_{2} \mathrm{~V}_{2}$, segments, because these lie on perpendicular Segments, while the Inverted (Backing Formation) circles [$\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{a}} \mathrm{K}_{1}=\mathrm{O}_{\mathrm{a}} \mathrm{P}_{\mathrm{a}}$], [$\mathrm{PO}_{\mathrm{k}}, \mathrm{PO}_{\mathrm{k}} \mathrm{M}_{1}=\mathrm{PO}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$] are constant. Inversion of circles happens in infinite through the Trapezium, in where,
a.. Triangles $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}} \mathrm{O}, \mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}} \mathrm{P}_{\mathrm{a}}$ are of equal area, because lie on the common Segment $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}$, and the common height $K_{1} M_{1}$. Since triangle $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}} \mathrm{K}_{2}$ is common to both triangles therefore the remaining triangles $\mathrm{K}_{2} \mathrm{O}_{\mathrm{k}} \mathrm{O}, \mathrm{K}_{2} \mathrm{P}_{\mathrm{a}} \mathrm{P}_{\mathrm{k}}$ are of equal area , and point K_{2} is a constant point to this mechanism . Since also triangles $\mathrm{K}_{2} \mathrm{O}_{\mathrm{k}} \mathrm{O}, \mathrm{K}_{2} \mathrm{P}_{\mathrm{a}} \mathrm{P}_{\mathrm{k}}$ lie on opposites of line $\mathrm{O}_{\mathrm{k}} \mathrm{K}_{2} \mathrm{P}_{\mathrm{a}}$ position then are Inverted on this line. (the Alternate Inverted triangles)
The Inversion of the circles happens because Diameter $\mathrm{K}_{7} \mathrm{OM}_{7}$ is the Mid - perpendicular to the opposite Side of the Odd in the middle point M_{7} in contradiction to Diameter $\mathrm{K}_{2} \mathrm{OM}_{2} \equiv \mathrm{OK}_{2} \rightarrow \mathrm{P}_{\mathrm{k}}$ which passes through the vertices of the Even-Regular-Polygon forming angle $<\mathrm{K}_{1} \mathrm{OK}_{2}=2 . \mathrm{K}_{1} \mathrm{KK}_{2}$
b.. Because at point K_{1} of chord $O_{k} K_{1} \perp K_{1}$, infinite points P_{k} exist on $O_{k} K_{1}$ for all points $K_{2} \equiv K_{1}$ and circle of radius $K_{1} K_{2}=0$, Therefore separately must issue and for chord $O_{k} K_{2}$. But since is $\mathrm{K}_{1} \mathrm{~K}_{2} \neq 0$ then Chords $\mathrm{KK}_{1}, \mathrm{KK}_{7}, \mathrm{KK}_{2}$ are all projected on the $\left(\mathrm{K}_{\mathbf{1}}, \mathrm{K}_{\mathbf{1}} \mathrm{K}_{\mathbf{2}}\right)$ circle, and Diameter $P_{k} \mathrm{M}_{1}$ is Inverted to Diameter $\mathrm{P}_{\mathrm{a}} \mathrm{K}_{1}$ with their circles. The edges of Segments $\mathrm{K}_{1} \mathrm{~V}_{1}, \mathrm{~K}_{2} \mathrm{~V}_{2}$, are on $\mathrm{KK}_{1}, \mathrm{KK}_{2}$ lines, so all triangles of Parallel sides of Trapezium, occupy the point \mathbf{K}, as the same Orthocenter for all the Regularly-Revolving triangles $\mathrm{KO}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}, \mathrm{KO}_{\mathrm{k}} \mathrm{K}_{\infty \rightarrow 7}, \mathrm{KO}_{\mathrm{k}} \mathrm{P}_{\mathrm{a}}$, with the Sides $\mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}} \rightarrow \mathrm{O}_{\mathrm{k}} \mathrm{P}_{7} \rightarrow \mathrm{O}_{\mathrm{k}} \mathrm{P}_{\mathrm{a}}$, and the Inverted Circles [$\left.\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{a}} \mathrm{K}_{1}=\mathrm{O}_{\mathrm{a}} \mathrm{P}_{\mathrm{a}}\right]$, $\left[\mathrm{PO}_{\mathrm{k}}, \mathrm{PO}_{\mathrm{k}} \mathrm{M}_{1}=\mathrm{PO}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}\right]$.
c.. That Inverted circle $\left[\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{a}} \mathrm{K}_{1}=\mathrm{O}_{\mathrm{a}} \mathrm{P}_{\mathrm{a}}\right],\left[\mathrm{PO}_{\mathrm{k}}, \mathrm{PO}_{\mathrm{k}} \mathrm{M}_{1}=\mathrm{PO}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}\right]$ intersecting the circle $\left(\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}_{2}\right)$ between the points V_{1}, V_{2} defines the Inverted Position, i.e. that of the Odd-Regular-Polygon.
In F. 20 - A , For $\mathbf{n}=\mathbf{6}$, then $\mathrm{K} \mathrm{K}_{1}$ is the Side of the Even - Regular - Hexagon

THE REGULAR - POLYGONS

In F. 15 - (Page 68) , Is shown the Geometrical construction of the Regular - Triangle , Through the Regular \rightarrow Digone and Tetragon .
In F.18-B - (Page 66), Is shown the Geometrical construction of the Regular - Pentagon, Through the Regular \rightarrow Tetragon and Hexagon .
In F. 20 - (Page 69), Is shown the Geometrical construction of the Regular - Heptagon , Through the Regular \rightarrow Hexagon and Octagon .
In F. 21 - (Page 70) , Is shown the Geometrical construction of the Regular - Ninegone, Through the Regular \rightarrow Octagon and Decagon .
In F. 22 - (Page 71) , Is shown the Geometrical construction of the Regular - Endekagone, Through the Regular \rightarrow Decagon and Dodecagon .
In F. 23 - (Page 72), Is shown the Geometrical construction of the Regular - Dekatriagone, Through the Regular \rightarrow Dodecagon and Dekatriagone .

F. 20 - B \rightarrow In circle (O, OK) $=\left(\mathrm{O}, \mathrm{OO}_{\mathrm{k}}\right)$ and $\left[\mathrm{O}_{\mathrm{a}}, \mathrm{O}_{\mathrm{a}} \mathrm{K}_{1}=\mathrm{O}_{\mathrm{a}} \mathrm{P}_{\mathrm{a}}\right],\left[\mathrm{PO}_{\mathrm{k}}, \mathrm{PO}_{\mathrm{k}} \mathrm{M}_{1}=\mathrm{PO}_{\mathrm{k}} \mathrm{P}_{\mathrm{k}}\right],\left(\mathrm{K}_{1}, \mathrm{~K}_{1} \mathrm{~K}_{2}\right)$

For $\mathbf{n}=\mathbf{6}$, then $\mathbf{K K}_{\mathbf{1}}$ is the Side of the Odd - Regular - Hexagon ,
For $\mathbf{n}=\mathbf{8}$, then $\mathbf{K K}_{\mathbf{2}}$ is the Side of the Odd - Regular - Octagon ,
For $\mathbf{n}=\mathbf{7}$, then $\mathbf{K ~ K}_{\mathbf{7}}$ is the Side of the Even-Regular - Heptagon.
$5 / 8 / 2017$

References

[1] Matrix Structure of Analysis by J.L.MEEK library of Congress Catalog 1971.
[2] Der Zweck im Rect by Rudolf V. Jhering 1935.
[3] The great text of J. L.Heisenberg (1883-1886) English translation by Richard Fitzpatrick.
[4] Elements Book 1.
[5] Wikipedia.org, the free Encyclopedia.
[6] Greek Mathematics, Sir Thomas L.Heath - Dover Publications, Inc, New York. 63-3571.
[7] [T] Theory of Vibrations by William T. Thomson (Fourth edition).
[8] A Simplified Approach of Squaring the circle, http://www.scribd.com/mobile/doc/33887739
[9] The Parallel Postulate is depended on the other axioms, http://vixra.org/abs/1103.0042
[10] Measuring Regular Polygons and Heptagon in a circle, http://www.scribd.com/mobile/doc/33887268
[11] The Trisection of any angle ,http://vixra.org/abs/1103.0119
[12] The Euclidean philosophy of Universe, http://vixra.org/abs/1103.0043
[13] Universe originated not with BIG BANG, http://www.vixra.org/pdf/1310.0146v1.pdf
[14] Complex numbers Quantum mechanics spring from Euclidean Universe, http://www.scribd.com/mobile/doc/57533734
[15] Zeno`s Paradox, nature of points in quantized Euclidean geometry, http://www.scribd.com/mobile/doc/59304295 [16] The decreasing tunnel, by Pr. Florentine Smarandashe, http://vixra.org/abs/111201.0047 [17] The Six-Triple concurrency line - points, http://vixra.org/abs/1203.0006 [18] Energy laws follow Euclidean Moulds, http://vixra.org/abs/1203.006 [19] Higgs particle and Euclidean geometry, http://www.scribd.com/mobile/doc/105109978 [20] Higgs Boson and Euclidean geometry, http://vixra.org/abs/1209.0081 [21] The outside relativity space - energy universe, http://www.scribd.com/mobile/doc/223253928 [22] Quantization of Points and of Energy, http://www.vixra.org/pdf/1303.015v21.pdf [23] Quantization of Points and Energy on Dipole Vectors and on Spin, http://www.vixra.org/abs/1303.0152 [24] Quaternion`s, Spaces and the Parallel Postulate, http://www.vixra.org/abs/1310.0146
[25] Gravity as the Intrinsic Vorticity of Points, http://www.vixra.org/abs/1401.0062
[26] The Beyond Gravity Forced fields, http://www.scribd.com/mobile/doc/203167317
[27] The Wave nature of the geometry dipole, http://www.vixra.org/abs/1404.0023
[28] Planks Length as Geometrical Exponential of Spaces, http://www.vixra.org/abs/1406.0063
[29] The Outside Relativity Space - Energy Universe, http://www.scribd.com/mobile/doc/223253928
[30] Universe is built only from Geometry Dipole, Scribd : http://www.scribd.com/mobile/doc/122970530
[31] Gravity and Planck’s Length as the Exponential Geometry Base of Spaces, http://vixra.org/abs/1406.0063
[32] The Parallel Postulate and Spaces (IN SciEP)
[33] The fundamental Origin of particles in Planck`s Confinement. On Scribd \& Vixra (FUNDAPAR.doc) [34] The fundamental particles of Planck`s Confinement. www.ijesi.com (IJPST14-082601)
[35] The origin of The fundamental particles www.ethanpublishing.com(IJPST-E140620-01)
[36] The nature of fundamental particles, (Fundapa.doc).www.ijesit.com-Paper ID:IJESIT ID: 1491
[37] The Energy-Space Universe and Relativity IJISM, www.ijism.org-Paper ID: IJISM - 294 [V2,I6,2347-9051]
[38] The Parallel Postulate, the other four and Relativity (American Journal of modern Physics ,
Science PG - Publication group USA) ,1800978 paper .
[39] Space-time OR, Space-Energy Universe (American Journal of modern Physics, science PG Publication group USA) 1221001- Paper.
[40] The Origin of,Maxwell`s-Gravity`s, Displacement current . GJSFR (Journalofscience.org), Volume 15-A, Issue 3 , Version 1.0
[41] Young`s double slit experiment [Vixra: 1505.0105] Scribd : https://www.scribd.com/doc/265195121/
[42] The Creation Hypothesis of Nature without Big-Bang. Scribd : https://www.scribd.com/doc/267917624 /
[43] The Expanding Universe without Big-Bang. (American Journal of modern Physics and Applications Special issue: http://www.sciencepublishinggroup.com/j / Science PG-Publication group USA - 622012001- Paper.
[44] The Parallel Postulate and the other four, The Doubling of the Cube, The Special problems and Relativity. https://www.lap-publishing.com/. E-book. LAMBERT Academic Publication.
[45] The Moulds for E-Geometry Quantization and Relativity, International Journal of Advances of Innovative Research in Science Engineering and Technology IJIRSET : http://www.ijirset.com/..Markos Georgallides
[46] [M] The Special Problems of E-geometry and Relativity http://viXra.org/abs/1510.0328
[47] [M] The Ancient Greek Special Problems as the Quantization Moulds of Spaces. www.submission.arpweb.com(ID-44031-SR-015.0
[48] [M] The Quantization of E-geometry as Energy monads and the Unification of www.ijera Space and Energy.com(ID-512080.0
[49] [51] The Why Intrinsic SPIN (Angular Momentum) $1 / 2-1$,Into Particles . www.oalib.com(ID-1102480.0
[50] [M] The Kinematic Geometrical solution of the Unsolved ancient -Greek Problems and their Physical nature http:www.jiaats.com/paper/3068.ISO 9001
[51] [M] The Nature of Geometry the Unsolved Ancient-Greek Problems and their Geometrical solution www.oalib.com(paper. ID-1102605.0
http:www.oalib.com/Journal:paper/1102605
[52] E-Geometry, Mechanics-Physics and Relativity, http:gpcpublishing.com/GPC :
volume 4, number 2 journal homepage
[53] [M] Material-Geometry and The Elements of the Periodic-Table.
www.ijerm.com(ID-0306031.0)
[54] The Material-Geometry Periodic Table of Particles and Chemistry . http://ijemcs.in/
[54] The Material-Geometry A-Periodic Table of Particles and Chemistry. www.iosriournals.org)
[55] Material-Geometry, the Periodic Table of Particles, and Physics. http://ephjournal.com
[56] Big-Bang or the Glue-Bond of Space, Anti-space ??. (www.TechnicalDean.org.
[57] The Eternal Glue-Bond of Space, Anti-space, Chemistry and Physics www.globaljournals.org.
[58]Big-Bang or the Rolling Glue-Bond of Space, Anti-space, book @ scirp.org ,http://www.scirp.org/
[59] STPL Mechanism is the Energy - Space Generator . http://viXra.org/abs/1612.0299
[60] The Chaos becomes Discrete through the STPL mechanism which is Energy-Space Generator.

The Unsolved Ancient - Greek Problems of E-geometry
[61] The How Energy from Chaos, becomes Discrete Monads . http://www.ephjournal.net/)
[62-A] The Geometrical Solution of All Odd - Regular - Polygons , and the Special Greek problems http://www.irjaes.com/)
[63] [M] The unification of Energy-monads, Black Holes ,with Geometry-Monads, Black Matter , through the Material-Geometry - monads .
[64] [M] Material Geometry and, The origin of Black-holes, Black-matter .
[65] [M] The origin of SPIN of the fundamental Particles and their Eternal motion.
[66] [M] The Doubling of the Cube. The Squaring of the circle.
[67] [M] The origin of, Maxwell's Postulates.
[68] [M] The Quantization of Points and Potential and the Unification of Space and Energy with the universal principle of Virtual work, on Geometry Primary dipole dynamic hologram .
by Markos Georgallides.

Markos Georgallides comes from Cyprus and currently resides in the city of Larnaca, after being expelled from his home town Famagusta by the Barbaric Turks in August 1974. He works as a consultant civil and architect engineer having his own business. He is also the author of numerous scholarly articles focusing on Euclidean and Material Geometry and mathematical to physics related subjects . He obtained his degree from the Athens, National Technical, Polytechnic University [NATUA] and subsequently studied in Germany, Math theory of Photoelasticity.

[^0]: Markos Georgallides, "The Geometrical solution, of the Regular n-Polygons and the Unsolved Ancient Greek Special Problems," International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 120-203, 2017

[^1]: Markos Georgallides, "The Geometrical solution, of the Regular n-Polygons and the Unsolved Ancient Greek Special Problems," International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 120-203, 2017

[^2]: Markos Georgallides, "The Geometrical solution, of the Regular n-Polygons and the Unsolved Ancient Greek Special Problems," International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 120-203, 2017

[^3]: Markos Georgallides, "The Geometrical solution, of the Regular n-Polygons and the Unsolved Ancient Greek Special Problems," International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 120-203, 2017

[^4]: Markos Georgallides, "The Geometrical solution, of the Regular n-Polygons and the Unsolved Ancient Greek Special Problems," International Research Journal of Advanced Engineering and Science, Volume 2, Issue 3, pp. 120-203, 2017

