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I. INTRODUCTION  

At present, there has been a significant amount of work done 

in the theory of fractional differential equations and a number 

of researchers are concetrating in this promising area due to its 

significant potential in applications related to Fluid Flow, 

Dynamical Processes in Self-Similar and Porous Structures, 

Diffusive Transport, Electrical Networks, Probability and 

Statistics, Control Theory of Dynamical Systems, 

Viscoelasticity, Electrochemistry of Corrosion, Optics and 

Signal Processing etc. The works of Podlubny [1], Kilbas et al. 

[2], Lakshmikantham et al. [3] and the references [4-9] project 

the continued interest in this area. 

A lot of scope for the development of the theory of hybrid 

systems or impulsive differential systems has come due to the 

invaluable contribution of Lakshmikantham et al. [10]. This is 

due to the fact that many evolution processes are characterized 

by the fact that they experience a change of state in a very 

short duration of time. This abrupt change can be considered 

as short term perturbations whose duration is negligible. Thus 

we assume that these perturbations act instantaneously in the 

form of impulses. Hence hybrid systems form a better model 

to represent physical phenomena.  

Combining these two areas of interest, we consider hybrid 

fractional differential equations and propose to study existence 

of solutions. Further the method of Quasilinearization [11] is a 

flexible mechanism that gives a sequence of iterations that 

converge quadratically to a solution. In [12] Quasilinearization 

for IVP of fractional differential equations has been studied 

and in [13] Generalized Quasilinearization has been developed 

for IVP of fractional differential equations with local holder 

continuity. Following the observations in [14] that the results 

in fractional differential equations can be studied with the 

weakened hypothesis of pC  or 
qC  continuity. 

Thus in this paper, we give an exposition of the 

Quasilinearization and Generalized Quasilinearization method 

for existence and uniqueness of the solutions of an IVP of 

Hybrid Caputo Fractional Differential Equation with the 

weakened hypothesis [16], [17].  

II. PRELIMINARIES  

In this section, the basic definitions and results concenring 

the existence and stability for Hybrid Caputo fractional 

differential equations with fixed movemnets of Impulse are 

presented. 

We begin with the definition of the class ].],,[[ 0 TtC p  

Definition 2.1  m is said to be pC  continuous if 

]],,[[ 0 TtCm p  that is ]],,[( 0 TtCm  and 

]],,[[)()( 00 TtCtmtt p   with 1.=qp  

Definition 2.2  For ],],,[[ 0 TtCm p  the Riemann-

Liouville derivative of )(tm  is defined as  

.)()(
)(

1
=)( 1

0

dssmst
dt

d

p
tmD p

t

t

q 
   (2.1) 

We next state a lemma that is vital for our main result.  

 

Lemma 2.3  Let ].],,[[ 0 TtCm p  Suppose that for any 

],[ 01 Ttt  , we have 0=)( 1tm  and 0<)(tm  for 

10 < ttt  , then it follows that 

0.)( 1 tmDq
 (2.2) 

We next state the fundamental fractional differential 

inequality result in the set up of Riemann-Liouville fractional 

derivative, with a weaker hypothesis from [14]. 

 

Theorem 2.4  Let 

],],[[  ],],,[[, 00   TtCfTtCwv p  and  

))(,()( )( tvtftvDi q   

and  

)),(,()()( twtftwDii q   
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,<0 Ttt   with one of the inequalities )(i  or )(ii  being 

strict. Then ,< 00 wv  where 
0

=

1

0

0 |))((= tt

qtttvv   and 

0
=

1

0

0 |))((= tt

qtttww   implies that  

.  ),(<)( 0 Ttttwtv   (2.3) 

The next result deals with the inequality theorem for non 

strict inequalities.  

 

Theorem 2.5  Let 

],],[[  ],],,[[, 00   TtCfTtCwv p  and  

))(,()( )( tvtftvDi q   

and  

)),(,()()( twtftwDii q   

.<0 Ttt   Assume f  satisfies the Lipschitz condition  

0.>  ,    ),(),(),( LyxyxLytfxtf   (2.4) 

 Then, ,< 00 wv  where 
0

=

1

0

0 |))((= tt

qtttvv   and 

,|))((=
0

=

1

0

0

tt

qtttww   implies 

],[  ),()( 0 Ttttwtv  .  

We now define a 
qC -continuous function.  

 

Definition 2.6  u is said to be 
qC  continuous that is 

]],,[[ 0 TtCu q  iff the Caputo derivative of u  denoted 

by uDqc
 exists and satisfies  

.)()(
)(1

1
=)(

0

dssust
q

tuD q

t

t

qc 




  (2.5) 

We note that the Caputo and Riemann-Liouville 

derivatives are related as follows:  

)].()([=)( 0txtxDtxD qqc   (2.6) 

We choose to work with the Caputo fractional derivative, 

since the initial conditions for fractional differential equations 

are of the same form as those of ordinary differential 

equations. Further, the Caputo fractional derivative of a 

constant is zero, which is useful in our work. Consider the IVP 

for the Caputo fractional differential equation given by  

,=)(   ),,(= 00 xtxxtfxDqc
 (2.7) 

for 1,<<0 q ].,],[[ 0

nnq TtCf   

If ]],,[[ 0

nq TtCx   satisfies (2.7),  then it also 

satisfies the Volterra fractional integral  

,))(,()(
)(

1
=)( 1

0

0 dssxsfst
q

xtx q

t

t




   (2.8) 

for .0 Ttt   

We now state the comparison theorem for the Caputo 

fractional differential equation using the same weaker 

hypothesis. 

 

Theorem 2.7  Assume that ]],,[[ 0 TtCm q  and  

,   )),(,()( 0 TtttmtgtmDqc   

where ].,],[[ 0  TtCg  Let )(tr  be the maximal 

solution of the IVP  

,=)(  ),,(= 00 utuutguDqc
 (2.9) 

existing on ],[ 0 Tt  such that .)( 00 utm   Then we have 

.   ),()( 0 Ttttrtm   

III. IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS  

In this section, we begin with the basic definitions given in 

[15], where in the existence and stability results for hybrid 

Caputo fractional differential equation with fixed moments of 

impulse are studied.  

Definition 3.1  Let ...<<...<<<0 210 ktttt  and 

kt  as k  . Then we say that 

],[ nn

pPCh     if 
nn

kk tth   ],(: 1  is 

pC  - continuous on 
n

kk tt  ],( 1  and for any 
nx   

),(=),(lim
),(),(

xthyth k
x

k
tyt





 

 exists for 1.1,2,...,= nk  

 

Definition 3.2  Let ...<<...<<<0 210 ktttt  and 

kt  as k . Then we say that 

],[ nnqPCh     if ],(: 1 kk tth 

nn    is 

qC  - continuous on 
n

kk tt  ],( 1  and for any 
nx   

),(=),(lim
),(),(

xthyth k
x

k
tyt





 

 exists for 1.1,2,...,= nk  

Consider the hybrid Caputo fractional differential system 

defined by 

0 0

= ( , ), ,

( ) = ( ( )), = 1,2,3,..., 1,

( ) = ,

c q

k

k k k

D x f t x t t

x t I x t k n

x t x



 






 (3.1) 

where 

],[= ,: ],,[ 0 TtItIIPCf nn

k

nn   , 

1.1,2,...,= nk
 

 

Definition 3.3  By a solution of the system (3.1),  we mean a 

qPC  continuous function ]],,[[ 0

nq RTtPCx  such that  
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 (3.2) 

where Ttttt n  1210 <...<<<0  and ),,( 

kkk xttx  is 

the solution of the IVP of the fractional differential equation 





 )).((=)(=

),,(=

kkkk

qc

txItxx

xtfxD
 

Now we state the basic differential inequality result in this 

set up from [15], and follow it up with a lemma that 

guarantees the existance of a unique solution. 

 

Theorem 3.4  Let u,w ]],,[[ 0 TtPC q  with  
















,)(

1,1,2,3,...,= )),(()(

, )),(,()(

00 xtv

nktvItv

tttvtftvD

kkk

k

qc

 

 and  
















,)(

1,1,2,3,...,= )),(()(

, )),(,()(

00 xtw

nktwItw

tttwtftwD

kkk

k

qc

 

 where ],[ nnIPCf   and f satisfies the hypothesis  

0> , ),(),(),( LyxyxLytfxtf   

and kI  is a monotonically nondecreasing function of x. Then 

00 < wv  implies that ],[ ),()( 0 Ttttwtv  .  

 

Lemma 3.5  The linear non-homogeneous hybrid Caputo 

fractional differential equation  














,=)(

1,1,2,3,...,= )),((=)(

, ),,()(=

00 xtx

nktxItx

ttytfyxMxD

kkk

k

qc

 

 has a unique solution on the interval ].,[ 0 Tt  

We begin with the definition of lower and upper solutions 

for the hybrid Caputo fractional differential equation given by 














,=)(

1,1,2,...,= )),((=)(

, ,),(=

00 xtx

nktxItx

ttxtfxD

kkk

k

qc

 (3.3) 

where 

11,2,3,...,= , ; ],,[   nkIPCf nn

k

nn 

 and ],[ 0 Ttt .  

 

Definition 3.6 ]],,[[, 0

nq TtPC   are said to be 

lower and upper solutions of equation (3.3),  if and only if 

they satisfy the following inequalities  
















,)(

1,...,,1,2,3= )),(()(

, ,),(

00 xt

nktIt

tttfD

kkk

k

qc







 (3.4) 

and  
















,)(

1,...,,1,2,3= )),(()(

, ,),(

00 xt

nktIt

tttfD

kkk

k

qc







 (3.5) 

respectively.  

 

Lemma 3.7  Suppose that 

(i) )(0 tv  is the lower solution of the hybrid Caputo fractional 

differential equation (3.3).  

(ii)Let )(1 tv  be the unique solution of the linear non-

homogeneous hybrid Caputo fractional differential equation  














.=)(

1,1,2,3,...,= )),((=)(

, ),( ),(),(=

001

11

01001

xtv

nktvItv

ttvvvtfvtfvD

kkk

kx

qc

 (3.6) 

(iii) kI  is a nondecreasing function in x , for each 

k=1,2,3,...,n-1. 

(iv) xf  is continuous and Lipschitz on ].,[ 0 Tt  

Then ],[   ),()( 010 Ttttvtv  .  

We next state the following lemma without proof. 

 

Lemma 3.8  Suppose that in Lemma 3.7,  the assumption (i) 

and (ii) are replaced by (i) )(0 tw  be the upper solution of the 

hybrid Caputo fractional differential equation (3.3)  and (ii) 

)(1 tw  be the unique solution of the linear non-homogeneous 

hybrid Caputo fractional differential equation 
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, ),( ),(),(=

001
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01001

xtw

nktwItw

ttwwwtfwtfwD

kkk

kx

qc

 

 and the assumptions (iii) and (iv) of Lemma 3.7  hold. 

Then ].,[ ),()( 001 Ttttwtw   

IV. GENERALIZED QUASILINEARIZATION  

In this section, we consider hybrid Caputo fractional 

differential equation where the function on right hand side of 

the hybrid caputo fractional differential equation is a sum of 

two functions, one satisfying convex like condition and the 

other satisfying concave like condition and present the results 

studied in [17]. 

We consider the hybrid Caputo fractional differential 

equation given by 














,=)(

1,1,2,3...,= )),((=)(

, ,),(),(=

00 xtx

nktxItx

ttxtgxtfxD

kkk

k

qc

 (4.1) 

where    ; ],],,[[ , 0 k

q ITtPCgf  for each 

11,2,3,...,= nk . 

We begin with the definition of natural lower and upper 

solutions for (4.1) .  

 

Definition 4.1 ]],,[[, 0 TtPC q  are said to be lower 

and upper solutions of equation (4.1),  if and only if they 

satisfy the following inequalities,  
















,)(

1,1,2,...,= )),(()(

, ,),(),(

00 xt

nktIt

tttgtfxD
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k

qc







 (4.2) 

and 
















,)(

1,1,2,3...,= )),(()(

, ,),(),(

00 xt

nktIt

tttgtfD

kkk

k
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(4.3) 

respectively.  

We first state a couple of Lemmmas that are necessary in 

the proof of our theorem. 

 

Lemma 4.2  The linear non-homogeneous hybrid Caputo 

fractional differential equation  














,=)(

1,1,2,3,...,= )),((=)(

, ),,(),()(=

00 xtx

nktxItx

ttytgytfyxMxD

kkk

k

qc

 

has a unique solution on the interval ].,[ 0 Tt  

 

Lemma 4.3  Suppose that 

(i) )(0 t  and )(0 t  are lower and upper solutions of the 

hybrid Caputo fractional differential equation (4.1).  

(ii) Let )(1 t  and )(1 t  be the unique solutions of the linear 

non-homogeneous hybrid  

Caputo fractional differential equations  

1 0 0 1 0

0 0 1 0

1 0

1 0 0

= ( , ) ( , ) ( )

( , ) ( , ) ( ), ,

( ) = ( ( )), = 1,2,3,..., 1,

( ) = ,

c q

x

x k

k k k

D f t f t

g t g t t t

t I t k n

t x

    

   

 





   


  







 (4.4) 

 and  

1 0 0 1 0

0 0 1 0

1 0

1 0 0

= ( , ) ( , ) ( )

( , ) ( , ) ( ), ,

( ) = ( ( )), = 1,2,3,..., 1,

( ) = .

c q

x

x k

k k k

D f t f t

g t g t t t

t I t k n

t x

    

   

 





   


  







 (4.5) 

(iii) kI  is nondecreasing function in x  for each k=1,2,3,...,n-

1. 

(iv) ,xf xg  are continuous and Lipschitz on ].,[ 0 Tt  

Then )()()()( 0110 tttt    on ].,[ 0 Tt  

We now state the main result of our paper and give a 

summary of the proof. 

 

Theorem 4.4  Assume that  

(i) ],],[[, 0  TtPCgf  and 

]],,[[, 000 TtPC q  be the natural lower and upper 

solutions of the IVP for the hybrid Caputo fractional 

differential equation (4.1) such that 

),()( 00 tt   ].,[ 0 Ttt  

(ii) ),( xtf x  exists, ),( xtf x  is increasing in x for each t,  

yxyxytfytfxtf x   ),)(,(),(),(  and 

,|||),(),(| 1 yxLytfxtf xx   

and further suppose that ),( xtgx  exists, ),( xtgx  is 

decreasing in x for each t,  

yxyxytgytgxtg x   ),)(,(),(),(  and 

.|||),(),(| 2 yxLytgxtg xx    

(iii) kI  is increasing and lipschitz in x, for each 

1.1,2,3...= nk  

Then there exist monotone sequences { n },{ n } such 

that rnn   , n  uniformly and 
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monotonically to the unique solution xr ==  of IVP 

(4.1)  on ],[ 0 Tt  and the convergence is quadratic.  

 

Proof. Consider the linear hybrid Caputo fractional 

differential equation given by,  

1 1

1

1

1 0 0

= ( , ) ( , ) ( )

( , ) ( , ) ( ), ,

( ) = ( ( )), = 1,2,3,..., 1,

( ) = .

c q

k k x k k k

k x k k k k

k k k k k

k

D f t f t

g t g t t t

t I t k n

t x

    

   

 



 









  

   








 (4.6) 

 and  

1 1

1

1

1 0 0

= ( , ) ( , ) ( )

( , ) ( , ) ( ), ,

( ) = ( ( )), = 1,2,3,..., 1,

( ) = .

c q

k k x k k k

k x k k k k

k k k k k

k

D f t f t

g t g t t t

t I t k n

t x

    

   

 



 









  

   








 (4.7) 

Then it follows from Lemma 4.2 that the linear hybrid 

fractional differential equations (4.6) and (4.7) have unique 

solutions 1k  and 1k  respectively, whenever k  and k  

are known lower and upper solutions of the IVP (4.1). 

Further by setting 0=k  in the above system, we apply 

Lemma 4.3 to obtain that 0110    on ],[ 0 Tt  

Observe that 0  and 0  are lower and upper solutions of 

(4.1) and hence the Lemma can be applied.  

 We now claim that  

0 1 1 1

1 0 0

... ...

  [ , ].

k k k k

on t T

     

 

      

 
 (4.8) 

 on ].,[ 0 Tt  

Since the result is already proved for 0=n , we assume 

that the result holds for kn =  and prove it for 1= kn , 

this means that  

,11   kkkk   (4.9) 

 and that k  and k  are solutions of the IVP’s  

1 1

1 1

1

0 0

= ( , ) ( , ) ( )

( , ) ( , ) ( ), ,

( ) = ( ( )), = 1,2,3,..., 1,

( ) = .

c q

k k x k k k

k x k k k k

k k k k k

k

D f t f t

g t g t t t

t I t k n

t x

    

   

 



 

 





   


  







 (4.10) 

 and  

1 1

1 1

1

0 0

= ( , ) ( , ) ( )

( , ) ( , ) ( ), ,

( ) = ( ( )), = 1,2,3,..., 1,

( ) = .

c q

k k x k k k

k x k k k k

k k k k k

k

D f t f t

g t g t t t

t I t k n

t x

    

   

 



 

 





  

   








 (4.11) 

Now, using the relations (4.8), (4.9) and the hypothesis 

(ii), we get,  

),()( ),(),(= 111   kkkkxkk

qc tgtftfD 

)( ),( 1 kkkx tg     

       ),(),( kk tgtf    

 and  

))(())(()( 1 kkkkkkkk tItIt   


 

 since kI  is an increasing function for each k. 

This yields that k  is a lower solution of (4.1) and further 

by Lemma 4.2, we obtain that 1k  is a unique solution of 

(4.10) on ],[ 0 Tt  and hence an application of the Lemma 4.3 

yields that 1 kk   on ],[ 0 Tt  

Similarly, it can be shown that k  is an upper solution of 

(4.1) and by Lemma 4.2, that 1k  is a unique solution of 

(4.11) on ],[ 0 Tt  and hence an application of the Lemma 4.3 

gives that kk  1  on ],[ 0 Tt . 

Further working in the lines of the Lemma 4.3, we obtain 

that 11   kk   on ],[ 0 Tt  

Hence by the principle of mathematical induction, we 

deduce the relation (4.8) and our claim holds. Clearly the 

sequences are piecewise uniformly bounded by relation (4.8), 

this also yields that the sequences { n

qc D  } and { n

qc D  } 

are also piecewise uniformly bounded. By Lemma 2.3.2 in [3] 

we obtain that the sequences { n } and { n } are 

equicontinuous in each subinterval ],( 1kk tt  and therefore by 

using Ascoli-Arzela Theorem, we conclude that there is a 

subsequence that converges uniformly on each subinterval 

].,( 1kk tt  Now since kI  is a continuous function (as lipschitz 

implies continuity) for each k , this convergence also holds at 

end points. Thus we obtain a sequence of piecewise 
qC -

continuous functions { )(tn } that converge uniformly to 

)(t  on each subinterval ],( 1kk tt  and further ))(( 

kkk tI   

converges uniformly to )).(( 

kk tI   Similarly, the sequence 

of iterations { )(tn } converge uniformly to )(tr  in each 
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subinterval ],( 1kk tt  and further ))(( 

kkk tI   converges 

uniformly to )).(( 

kk trI  

Consider the corresponding hybrid Volterra fractional 

integrals, we can show that   and r  are solutions of the 

IVP(4.1) 

Since ,xf xg  exists and is bounded on ],,[ 0 Tt  we obtain 

that f  and g  are Lipschitz and hence the solution is unique.  

Thus rx ==  on ].,[ 0 Tt  

To prove that the convergence is quadratic, we set  

11 =   nn xp   

Thus for ,ktt   

11  =   n

qcqc

n

qc DxDpD   

= ( , ) ( , ) ( , ) ( , )

[ ( , ) ( , )]

n n

x n x n

f t x g t x f t g t

f t g t
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x n x n x n
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f t p g t p f t
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 where xn   and nx    

Now using the increasing nature of xf  and the decreasing 

nature of xg , we get that for ,ktt   

1

2

01 ||   nnn

qc MppLpD  

 where ),(= 21 MMMaxM  with 1 |),(| Mtf nx  , 

2 |),(| Mtg nx   and |,|= 21 LLMaxL  

for ktt = ,  

)( )( 11 knkn tpKtp 



   

Therefore kknkn tttKptp = ),()( 11 



  . 

Since 0,=(0)1np  we arrive at the hybrid Caputo 

fractional differential equation. Thus we have the hybrid 

Caputo fractional differential equation  

, ,||= 1

2
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Now using the solution of the linear non homogeneous 

fractional differential equation on each subinterval, we get 
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This implies the quadratic convergence of the sequence 

)]([ tn . 

Similarly, we can prove the quadratic convergence of the 

sequence )}({ tn  to the solution )(tx  of IVP (4.1). 

By taking 0g  in (4.1), we get the hybrid Caputo 

fractional differential equation (3.3) and the main result 

reduces to the following theorem which gives us the method 

of Quasilinearization as in [16].  

 

Theorem 4.5  Suppose that  

(i) 00 ,  be lower and upper solutions of equation (3.3)  

such that 00   on ].,[ 0 Tt  

(ii) ],],[[ 0  TtPCf  

and

;  ))(,(),(),( 00   xyforyxytfytfxtf x

(iii) kI  is continuous and nondecreasing in x, 

1.1,2,3...= nk  

(iv) xf  is continuous and Lipschitz on ].,[ 0 Tt  

Then there exist monotone sequences { n },{ n } such 

that rnn   , n  uniformly and 

monotonically to the unique solution xr ==  of IVP 

(3.3)  on ],[ 0 Tt  and the convergence is quadratic. 
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Remark: It can be observed that if we set 0kI  for all k , 

then IVP(4.1) reduces to Caputo fractional differential 

equation and generalized quasilinearization for there equations 

has been studied in [13]. Thus these results hold with the 

weakened hypothesis of 
qC -continuity. 
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