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I. INTRODUCTION  

In [7], using the technique in [6] generalized fractional 

hyperbolic functions are obtained as solutions of 2
nd

 order 

CFDE involving a parameter „a‟. In this paper we consider 3
rd

 

order and higher order CFDEs of the same family and obtain 

their solutions using the approach in [7]. The properties of 

these solutions are also studied. 

II. PRELIMINARIES  

To obtain the main results in this paper we need to 

introduce definitions and concepts related to fractional 

derivatives. These definitions run parallel to the definitions of 

ordinary derivatives. In this context we first begin with a 

generalization of the exponential function known as Mittag - 

Leffler function which was discovered in 1903 [4, 8]. 

 

Definition 2.1: The Mittag - Leffler function of one 

parameter, ( )qE z  is defined by 
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where the symbol   denotes Gamma function. 

 

Definition 2.2: The Mittag - Leffler function of two 

parameters, , ( )qE z  is defined by   
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  (2.2) 

The definitions of fractional derivatives for a series introduced 

by Riemann and Caputo [3] are given below. 

 
Definition 2.3: Riemann - Liouville fractional derivative for 

series.   

If 
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Definition 2.4: Caputo fractional derivative for series. 

If 
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 (2.4) 

Next we proceed to present the definitions of the fore 

mentioned derivatives in terms of the integrals. 

 

Definition 2.5: Riemann - Liouville derivative of  x t is 

given by   

0

1
( ) ( ) ( ) , ( ).

(1 )

t

q q

t

d
D x t t s x s ds t

q dt

  
    (2.5) 

 

Definition 2.6: Caputo derivative of x(t) is given by 

0

1
( ) ( ) ( ) , ( )

(1 )

t

c q q

t

D x t t s x s ds t
q

   
    (2.6) 

The initial value problem for Riemann - Liouville 

fractional differential equation (RLFDE) and the initial value 

problem for Caputo fractional differential equation (CFDE) 

have a basic difference. The RLFDE has a singularity at the 

initial point and is given by 
0 1

0 0( ) ( , ( ))  ,   ( )( ,) /q qD x t f t x t x x t t t t t     

and  the CFDE is given by 

0 0( ) ( , ( ))  ,   ( ) .c qD x t f t x t x t x   

There exists a relation between the CFDE and RLFDE 

which is given by 

0( ) [ ( ) ].c q qD x t D x t x   

It has been shown in [2, 5] that the results which hold for 

the initial value problem of RLFDE are also true for CFDE. 

On basis of this result we give the existence and uniqueness 

results for linear 
thn  order RLFDE and for systems and 

propose that they can be naturally extended for linear CFDE. 

We now introduce the q  - exponential function which is 

needed to define the solution of the linear Reimann - Liouville 

fractional differential equation.  
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Definition 2.7: The q - exponential function 
z

qe
is defined by 

1

, ( )z q q

q q qe z E z   (2.7) 

where   ( \{0},  ( ) 0)z C R q   and .C  

 

Definition 2.8: We define the function ,

z

q ne
 as 

1

,

0

( )! ( )
.

[( 1) ] !

q k
z q

q n

k

k n z
e z

k n q k

 







  
  (2.8) 

Consider the linear fractional differential equation (LFDE). 
1

0

[ ( )]( ) : ( ) ( ) ( ) ( ) 0
n

nq kq

nq ka a
k

L y t D y t a D y t 





    (2.9) 

where the coefficients 
1

1{ }n

jja 

  are real constants.   

Then we assume that the solution of  (2.9) is of the form  
( )( ) ,t a

qy t e C    

and  obtain the characteristic equation as 
1

1

( ) , .
n

n k

n k

k

P a C   




    (2.10) 

Please refer to [5] for lemmas and theorems that are 

necessary to obtain the existence and uniqueness result for 

LFDE (2.9). 

We denote 


 as the set of all non-negative real numbers. 

Parallel to the definition of Wronskian in ordinary 

differential equations [2] we define Wronskian corresponding 

to fractional differential equations as follows: 

 
Definition 2.9: (Wronskian). 

Let 1 2, , , n   be n real or complex valued functions 

defined on some nonempty interval I  in  each having 

derivatives of order ,   .nq n N    Then the fractional 

Wronskian of these n functions is the determinant matrix of 

the W of order n defined on I and whose value at t I is 

1 2 3

1 2

1 2

( 1) ( 1) ( 1)

1 2

( ) ( , , ,..., )( )
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c q c q c q
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c n q c n q c n q
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W t W t

t t t

D t D t D t

D t D t D t

   

  

  

    





 

(2.11) 

III. GENERALIZED FRACTIONAL HYPERBOLIC LIKE 

FUNCTIONS THROUGH THIRD ORDER CFDE  

In [8] many results pertaining to 2
nd

 order CFDE are stated 

and proved. In this section we state and prove important 

results corresponding to 3
rd

 order CFDE using the theory of 

fractional differential equations. 

We now state and prove a theorem in which generalized 

fractional hyperbolic like functions are obtained.   

Consider the (3 )thq  order, 
2

1
3

q


 


 
 

 homogeneous Caputo 

fractional IVP 
3 ( ) ( ) 0,c q qD x t a x t   (3.1) 

2(0) 1,   (0) 0,   (0) 0c q c qx D x D x    (3.2) 

where ,  0t a   is a real number. 

 

Theorem 3.1. The general solution of the CFDE (3.1) is given 

by    1 2c t   c t   x y   3c tz
1 2( c ,  c  and 3c  being 

arbitrary constants ) where    t , tx y  and ( )z t  are 

infinite series solutions of the form 

33
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  (3.5) 

 
Proof. We transform the given IVP to a system of equations 

of 
thq  order 

2
1

3
q   as 

3

3 3

( ) ( ) ( ),   

  ( ) ( ) ( ),    ( ) ( ) ( )

c q q

c q q c q q

D x t a z t

D y t a x t D z t a y t



 
 (3.6) 

with  initial conditions  

     0   1, 0   0, 0   0 .x y z    (3.7) 

Let  

0 0 0

( ) ,    ( ) ,    ( )kq kq kq

k k k

k k k

x t a t y t b t z t c t
  

  

      (3.8) 

be solutions of the system (3.6) - (3.7) where a ,  bk k  and 

kc s are unknown constants and .t   We proceed to find 

a  ,  bk k  and kc s  as follows. Using the initial conditions 

(3.7) in (3.8), we obtain 0 01, 0a b   and  0 0c  .  

Using the fact that  

3( ) ( ) ( )c q qD x t a z t  

and substituting (3.8) in the above equation we get 

3
1

0 0

(1 ( 1) )
   ( ) .

(1 )

q

kq kq

k k

k k

k q
a t a c t

kq

 



 

  


 
   

Comparing the coefficients of the same power on both 

sides we obtain 

3

1

( ) (1 )
  ,   for    0,1,2, .

(1 ( 1) )

q

k k

a kq
a c k

k q
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Similarly by using the equations 
3( ) ( ) ( )c q qD y t a x t  and 

3( ) ( ) ( ),c q qD z t a y t  we get 

3
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( ) (1 )

(1 ( 1) )
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and 
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3 3 3For    2,   we have    ,    0,    0.
(1 3 )

qa
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By continuing this process successively, we finally get the 

solutions as 
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The proof is complete. 

 
We next provide another method to verify the same result 

as in the Theorem 3.1. 

 
Verification.  

Consider the IVP (3.1) - (3.2). Let the solutions of the IVP 

(3.1) - (3.2) be given by 
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To verify them, we consider 
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Differentiating both sides using the Caputo derivative, we get 
2 4 3 7

2 ( )
(1 ) (1 4 ) (1 7 )

q q q q q q
c q a t a t a t
D x t

q q q
   
     

  

Again differentiating both sides using the Caputo 

derivative, we obtain 
2 3 3 6
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or                         
3 ( ) ( ) 0.c q qD x t a x t   

Also the initial condition   (0) 1x    is satisfied. 

Hence  

33
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kq
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at
x t t

kq







 
 

  

is the solution of IVP (3.1) - (3.2). 

Similarly we can verify that 

(3 1)3

0
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k q
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at
y t t

k q







 
  

  

and  

(3 2)3

0

( )
( ) ,    

(1 (3 2) )

k q

k

at
z t t

k q







 
  

  

are the solutions of the IVP (3.1) - (3.2). 

This completes the verification. 

In this setup, the Wronskian property is as follows: 

 

Theorem 3.2.  Let ( ), ( )  and  ( )x t y t z t  be three solutions 

of the CFDE (3.1). These three solutions are linearly 

independent on    if and only if the Wronskian 

( , , )( ) 0,    for every    t .W x y z t    

 

Proof. Let the Wronskian of the solutions  

( ), ( )  and  ( )x t y t z t  of the CFDE (3.1), be such 

that ( ) 0.W t   We show that    t , tx y  and ( )z t are 

linearly independent solutions. If possible, assume that  
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( ), ( )x t y t  and ( )z t  are linearly dependent. Then there 

exists a linear combination of solutions as 

     t t t   0, , ,ax by cz a b c    and t   

where  , ,a b c  are not simultaneously zero. Suppose  0.a   

 Then  

( ) ( ) ( ).
b c

x t y t z t
a a

    

By setting               and     ,    we get
b c

h l
a a

     

   t t  ( ) .x hy lz t   

Now consider the Wronskian  
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Hence  W t   0 , which is a contradiction. Therefore the 

solutions  ( ), ( )x t y t  and ( )z t  are linearly independent. 

To obtain a sufficient condition assume that ( ), ( )x t y t  

and ( )z t  are linearly independent solutions. We show that 

( ) 0.W t   

If possible     ( ) 0W t      for some     .t   

Then   
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Then there exists a linear combination of columns as  
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where ,a b  and c  are not simultaneously zero. 

If    0a      then    ( ) ( ) ( ).
b c

x t y t z t
a a

    

This implies that ( ), ( )x t y t and  ( )z t  are linearly 

dependent, which is a contradiction as the assumption is that 

these solutions are linearly independent.  

Hence           ( ) 0.W t   

This completes the proof. 

The following theorem gives a relation between the 

solutions of the CFDE (3.1). 

 

Theorem 3.3. Let  ( ), ( )x t y t  and ( )z t  be three linearly 

independent increasing solutions of the CFDE (3.1) on the 

interval  0 t ,  T .  Then the Wronskian 

0
0 0
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Proof. Since ( ), ( )x t y t  and ( )z t  are three linearly 

independent increasing solutions of the CFDE (3.1), we have 
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Operating Caputo fractional differential operator 
c qD  on both 

sides, we get 
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The above inequalities follow from the fact that 
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and 
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0
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q

q

q
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This completes the proof. 

From the above result we deduce the following Corollary. 

Corollary 3.4. If ( ), ( )x t y t  and ( )z t  are linearly 

independent increasing solutions of the CFDE (3.1) on the 

interval   0 ,  T ,  then 

3 3 3 3( ) ( ) ( ) 3 ( ) ( ) ( ) 1 3
q

x t y t z t x t y t z t a    

 

 2 2 2( ) ( ) ( ) ( ) ( ) ( ) .
qt

x T z T y T x T z T y T
q

   

Proof. The result follows by taking 0t  0  in the Theorem 

3.3. 

Now we present the addition formulae for solutions of third 

order CFDE (3.1). 

 

Addition Formulae. We show that the solution  

       t ,  t ,  t x y z  of CFDS (3.6) possesses the 

properties 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,x t x x t z y t y z t        (3.13) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,y t y x t x y t z z t        (3.14) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) , ,   .z t z x t y y t x z t t         
 

(3.15) 

To prove these properties we use the method of linear 

algebra. 

If        t ,  t ,  t x y z  is a solution of the CFDS (3.6) 

then ( ( ),  ( ),  ( )),x t y t z t         also satisfies 

CFDS (3.6) with different initial conditions. Now these 

solutions can be expressed in terms of  

      t ,  t  and z  t x y   in the following form 

1 2 3( )   ( ) ( ) ( ),x t p x t p y t p z t     (3.16) 

1 2 3( )   ( ) ( ) ( ), y t q x t q y t q z t     (3.17) 

1 2 3( )   ( ) ( ) ( ),z t r x t r y t r z t     (3.18) 

where 1 2 3 1 2 3 1 2p ,  p ,  p ,  q ,  q ,  q ,  r ,  r  and 3r  are constants 

to be chosen appropriately for a given value of   0.   

Consider 

1 2 3( ) ( ) ( ) ( ).x t p x t p y t p z t     

For  

10    we get     ( ).t p x    

Also  

1 2 3( )   ( ) ( ) ( ).c q c q c q c qD x t p D x t p D y t p D z t     

This implies  

1 2 3( ) ( ) ( ) ( ).z t p z t p x t p y t     

For  

20    we get     ( ).t p z    

Operating Caputo fractional differential operator 
c qD  on 

both sides we get 

1 2 3( )   ( ) ( ) ( ).c q c q c q c qD z t p D z t p D x t p D y t     

This gives  

1 2 3( ) ( ) ( ) ( ).y t p y t p z t p x t     

For  

30    we get     ( ).t p y    

Here we have used the initial conditions (3.7). Substituting the 

values of 1 2p ,  p  and  3p  in (3.16) we get 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .x t x x t z y t y z t        

Similarly we can show that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,y t y x t x y t z z t        

and 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) .z t z x t y y t x z t        

From these relations, by taking  t   we get  

2

2

(2 ) ( ) 2 ( ) ( ),

(2 ) ( ) 2 ( ) ( ),

x t x t z t y t

y t z t x t y t

 

 
 

and 
2(2 ) ( ) 2 ( ) ( ),   ,    .z t y t z t x t t     

These results may be easily used to obtain the values of  

   3t , 3tx y  and (3 )z t  and many similar relations. 

Similar to the Euler's formulae for the second order CFDE 

[7], we can obtain the Euler's formulae for the third order 

CFDE (3.1). 

 

Euler’s Formulae. The solutions of the CFDE (3.1) are 

3 3( ), ( )
q q

q q

q qE a t E a t  and 
23( )

q

q

qE a t  where  

23 3 3
1 3

, ,
2

q q q
i

a a a  
  

  
 

 are the roots of the 

characteristic equation 
3 0 ( 0).qa a     We express 

3 3( ), ( )
q q

q q

q qE a t E a t  and 
23( )

q

q

qE a t  in terms of 

3,0 3,1( , ), ( , )q qN t a N t a  and 3,2 ( , )qN t a  respectively as 

follows: 

3
3

0

2

2 33 3

4 5

4 5 2 63 3

( )  ( ) ,    
(1 )

1
(1 ) (1 2 ) (1 3 )

(1 4 ) (1 5 ) (1 6 )

kq
q kq

q

q

k

q q

q q q q

q q

q q q q

a t
i E a t t

kq

a t a t a t

q q q

a t a t a t

q q q







 
 

    
     

  
     



 3 2 6 3

4 2 5

4 2 53 3 3

1
(1 3 ) (1 6 ) (1 )

(1 4 ) (1 2 ) (1 5 )

q

q q q q q

q q q

q q q

a t a t a t

q q q

a t a t a t

q q q

     
     

   
     

 

3 (3 1)3 3

0 0

(3 2)3

0

3,0 3,1 3,2

( ) ( )

(1 3 ) (1 (3 1) )

( )

(1 (3 2) )

( , ) ( , ) ( , ).

kq k q

k k

k q

k

q q q

at at

kq k q

at

k q

N t a N t a N t a

 

 





  
    

  

  

 

  

 

3
3

0

2

2 2 3 33 3

4 5

4 4 5 5 2 6 63 3

3 2 6

4

43 3

( )  ( ) ,    
(1 )

1
(1 ) (1 2 ) (1 3 )

(1 4 ) (1 5 ) (1 6 )

1
(1 3 ) (1 6 )

 
(1 ) (1

kq
q k kq

q

q

k

q q

q q q q

q q

q q q q

q q q q

q q

q q

a t
ii E a t t

kq

a t a t a t

q q q

a t a t a t

q q q

a t a t

q q

a t a t

q




  

  









 
 

   
     

   
     

   
   

 
  



2 5

2 53 3
2

3 (3 1)3 3

0 0

(3 2)3
2

0

2

3,0 3,1 3,2

4 )

(1 2 ) (1 5 )

( ) ( )
 

(1 3 ) (1 (3 1) )

( )

(1 (3 2) )

( , ) ( , ) ( , ).

q q

q q

kq k q

k k

k q

k

q q q

q

a t a t

q q

at at

kq k q

at

k q

N t a N t a N t a







 

 

 





 
 
  
 

  

 
 
 
 
 
   

 
    


  

  

 



23
23

0

2

2 4 2 6 33 3

4 5

8 4 10 5 2 12 63 3

( )  ( ) ,   
(1 )

1
(1 ) (1 2 ) (1 3 )

(1 4 ) (1 5 ) (1 6 )

kq
q k kq

q

q

k

q q

q q q q

q q

q q q q

a t
iii E a t t

kq

a t a t a t

q q q

a t a t a t

q q q




  

  







 
 

   
     

   
     



3 2 6

4

43 3
2

2 5

2 53 3

1
(1 3 ) (1 6 )

(1 ) (1 4 )

(1 2 ) (1 5 )

q q q q

q q

q q

q q

q q

a t a t

q q

a t a t

q q

a t a t

q q
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3 (3 1)3 3
2

0 0

(3 2)3

0

2

3,0 3,1 3,2

( ) ( )

(1 3 ) (1 (3 1) )

( )

(1 (3 2) )

( , ) ( , ) ( , ).

kq k q

k k

k q

k

q q q

at at

kq k q

at

k q

N t a N t a N t a





 

 

 





 
    


  

  

 

  

Thus we obtain the following relations 

3
3,0 3,1 3,2( , ) ( , ) ( , )( )

q

q q q q

qE a t N t a N t a N t a    (3.19) 

23
3,0 3,1 3,2( ) ( , ) ( , ) ( , )

q

q q q q

qE a t N t a N t a N t a    
 

(3.20) 

and   

2 23
3,0 3,1

3,2

( ) ( , ) ( , )

( , ),   .

q

q q q

q

q

E a t N t a N t a

N t a t

 

 

 

 
 

(3.21) 

The equations (3.19), (3.20) and (3.21) are three Euler's 

forms for the solutions of the CFDE (3.1). 

By solving (3.19), (3.20) and (3.21) we obtain 

3 3
3,0

23

1 1
( , ) ( ) ( )

3 3

1
( ) ,

3

q q

q q q

q q

q

q

q

N t a E a t E a t

E a t





 


 

(3.22) 

2

3 3
3,1

23

1
( , ) ( ) ( )

3 3

( ) ,
3

q q

q q q

q q

q

q

q

N t a E a t E a t

E a t







 


 

(3.23) 

3 3
3,2

2
23

1
( , ) ( ) ( )

3 3

         ( ) ,  .
3

q q

q q q

q q

q

q

q

N t a E a t E a t

E a t t R





 

 

 
 

(3.24) 

Here the three solutions of the CFDE (3.1) are expressed in 

terms of Mittag - Leffler's forms. 

IV. EXTENDED GENERALIZED FRACTIONAL HYPERBOLIC 

LIKE FUNCTIONS THROUGH 
thn  ORDER CFDE 

The results obtained in Section 3 can be generalized to 
thn  

order CFDE. In this section we study the solutions of the 
thn  

order CFDE. 

Consider the ( )thnq  order, 
1

1
n

q
n


    fractional IVP of 

the form 

( ) ( ) 0c nq qD x t a x t   (4.1) 

with initial conditions   
2 ( 1)(0) 1,    (0) 0,    (0), , (0) 0c q c q c n qx D x D x D x   

 
(4.2) 

where ( 1) ,   n nq n n N            fixed. 

Theorem 4.1. The general solution of the CFDE (4.1) is given 

by   1 1 2 2( ) ( ) ( )n nc x t c x t c x t   where 

1 2, , , nc c c  are arbitrary constants and 

1 2( ), ( ), , ( )nx t x t x t  are infinite series solutions of the 

form 
1

1

0

1

( 1)

2

0

1

( ( 1))

0

( )
(1 )

( )
(1 ( 1) )

                     

( ) ,     .
(1 ( ( 1)) )

( )

( )

( )

nkqn

k

nk qn

k

nk n qn

n

k

a t
x t

nkq

a t
x t

nk q

a t
x t t

nk n q









 






 


  

 
   







 (4.3) 

 

Proof. We transform the IVP (4.1) - (4.2) to a system of 

equations of 
thq  order, 

1
1 

n
q

n


   by taking nq   

and setting 

1 2

1 3

2 1

( ) ( ),    ( )

( ), ( )

( ), , ( ) ( ).

q

c q c qn
n

q

c qn

q q

c qn n
n n

D x t a x t D x t

a x t D x t

a x t D x t a x t





  

 
(4.4) 

 

with initial conditions 

1 2(0) 1,    (0) 0, , (0) 0.nx x x     (4.5) 

 

Let 

1 2

0

2

0 0

( ) , ( )

, , ( )

kq

k

k

kq kq

k n nk

k k

x t a t x t

a t x t a t





 

 



  



   

(4.6) 

where , 1,2, , , 0,1, ,ika s i n k       are unknown 

constants and .t   

From the initial conditions (4.5) we have  

10 20 01, 0, , 0.na a a     

Now consider the equation 

1( ) ( ).
q

c q n
nD x t a x t  

Substituting (4.6) in the above equation we get 

1

0 0

q

c q kq kqn
k nk

k k

D a t a a t
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which  gives  

1( 1)

0 0

(1 ( 1) )
.

(1 )

q

kq kqn
k nk

k k

k q
a t a a t

kq

 



 

  


 
   

Further comparison of the coefficients of the same power 

yields 

1( 1)

(1 )
    for     0,1,2, .

(1 ( 1) )

q

n

k nk

a kq
a a k

k q


 
  
  

 

Similarly using 

2 1 3

2 1

( ) ( ),    ( )

( ), , ( ) ( )

q

c q c qn

q q

c qn n
n n

D x t a x t D x t

a x t D x t a x t



  
 

we get 

2( 1) 1 3( 1)

2 ( 1)

( 1)

(1 )
,   

(1 ( 1) )

(1 )
, ,

(1 ( 1) )

(1 )
   for    0,1, 2, .

(1 ( 1) )

q

n

k k k

q

n

k n k

q

n

n k

a kq
a a a

k q

a kq
a a

k q

a kq
a k

k q

 





 

  

 
 
  

 
  
  

 

Using the above recursive relations, we obtain the values 

of 11 12 21 22 1 2, , , , , , , ,n na a a a a a   and finally the 

solutions are given by 

 

1

1 ,0

0

1

( 1)

2 ,1

0

1

( ( 1))

,

0

( ) ( , )   ( )
(1 )

( ) ( , )   ( )
(1 ( 1) )

                                               

( )
(1 ( ( 1)) )

( )

( )

( )

nkqn
q

n

k

nk qn
q

n

k

nk n qn

n n n

k

a t
x t N t a say

nkq

a t
x t N t a say

nk q

a t
x t N

nk n q









 



 
 

 
  

 
   





 1( , )   ( ).q t a say

(4.7) 

The proof is complete. 

At this stage, we consider a suitable notation to 

conveniently represent such infinite series. The notation is as 

follows. 
1

( )

,

0

( , ) ,
(1 ( ) )

0,1,2, , ( 1),   ,   .

( ) nk r qn
q

n r

k

a t
N t a

nk r q

r n n N t








  

    

  

These solutions are called as extended generalized 

fractional hyperbolic like functions. 

Now we state and prove a theorem which relates the 

Wronskian and the solutions of the CFDE (4.1). 

Theorem 4.2. Let  1 2( ), ( ), , ( )nx t x t x t  be n  solutions of 

the CFDE (4.1). These n  solutions are linearly independent 

on   if and only if the Wronskian  ( ) 0W t   for every 

.t   

 

Proof. Let there be a point  1t   in   such that 1( ) 0.W t   

Assume that there are  n  constants 1 2, , nc c c   such that  

1 1 2 2( ) ( ) ( ) 0, .n nc x t c x t c x t t      

To show that 1 2( ), ( ), , ( )nx t x t x t  are linearly 

independent, we must show that  1 2 0.nc c c    At  

1t t  in   we have 

1 1 1 2 2 1 1

1 1 1 2 2 1 1

( 1) ( 1) ( 1)

1 1 1 2 2 1 1

( ) ( ) ( ) 0

( ) ( ) ( ) 0

                                                       

( ) ( ) ( ) 0

n n

c q c q c q

n n

c n q c n q c n q

n n

c x t c x t c x t

c D x t c D x t c D x t

c D x t c D x t c D x t  

  

  

  

These are n  simultaneous homogeneous equations in 

1 2, , nc c c  as unknown coefficients. Since the determinant 

formed by the coefficients of the n  equations  1( ) 0,W t   it 

is clear that 1 2 0.nc c c    Therefore the solutions are 

linearly independent. 

To obtain a sufficient condition assume that the solutions  

1 2( ), ( ), ,  ( )nx t x t x t  are linearly independent. We show 

that Wronskian ( ) 0.W t   

Suppose if possible that  W t   0  for some .t   

Then  

 

1

( 1) ( 1) ( 1

1

)

2

2

21

( ) ( ) ( )

( ) ( ) (

t ( ) ( )

0.

)

c q c q c q

n

c n q c n q c n q

n

n

D x t D x t D x t

D x t D x t D x t

x x t x t

  



 

Then there exists a linear combination of columns as 

1 2

( 1) ( 1)

1 2

1

1 2

( 1)

2

( ) ( )

( ) (

( ) ( )

( )

0

)

( )

( )

c q c q

c n q c n q

c q

n

c n

n

q

n

n

x t x t

c c
D x t D x t

D x t D x t

D x t

x

c

x t

t

D
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where  1 2, , , nc c c  are not simultaneously zero. If 1 0c   

then  32
1 2 3

1 1

( ) ( ) ( )
cc

x t x t x t
c c

    
1

( ).n
n

c
x t

c
  This 

implies that 1 2( ), ( ), , ( )nx t x t x t  are linearly dependent 

solutions, which is a contradiction. Thus ( ) 0.W t   

This completes the proof. 

V. CONCLUSION  

This paper deals with a family of specific type of CFDE 

involving a parameter „a‟. The solutions of the 3
rd

 order and 

n
th

 order CFDEs are obtained analytically. Inequality results 

between the solutions of the 3
rd

 order CFDE are obtained.  

Further properties of these solutions are studied. 
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