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Abstract— The class of natural images that we encounter in our 

daily life is only a small subset of the set of all possible images. This 

subset is called an image manifold. The Adaptive Digital Image 

Processing applications are becoming increasingly important and 

they all start with a mathematical representation of the image. In 

Bayesian restoration methods, the image manifold is encoded in the 

form of prior knowledge that express the probabilities that specified 

combinations of pixel intensities can be experiential in an image. 

Because image spaces are high-dimensional, one often isolates the 

manifolds by decomposing images into their components and by 

fitting probabilistic models on it. The construction of a Bayesian 

network involves prior knowledge of the probability relationships 

between the variables of interest. Learning approaches are widely 

used to construct Bayesian networks that best represent the joint 

probabilities of training data. In practice, an optimization process 

based on a heuristic search technique is used to find the best 

structure over the space of all possible networks. However, the 

approach is computationally intractable because it must explore 

several combinations of dependent variables to derive an optimal 

Bayesian network. The difficulty is resolved in this paper by 

representing the data in wavelet domains and restricting the space of 

possible networks by using certain techniques, such as the “maximal 

weighted spanning tree”. With the use of biorthogonal wavelets, the 

perceptual quality of the reconstructed image has been improved. 

Three wavelet properties - sparsity, cluster, and motion can be 

oppressed to reduce the computational complexity of learning a 

Bayesian network. 

 

Keywords— Adaptive Bayesian network; biorthogonal wavelet 

transform; image denoising. 

I. INTRODUCTION  

During the last decades, multi resolution image 

representations, like wavelets, have received much attention 

for the construction of Bayesian networks, due to their 

sparseness which manifests in highly non-Gaussian statistics 

for wavelet coefficients. Marginal histograms of wavelet 

coefficients are typically leptokurtic and have heavy tails [8], 

[9]. In literature, many wavelet-based image denoising 

methods have arisen exploiting this property, and are often 

based on simple and elegant shrinkage rules. In addition, joint 

histograms of wavelet coefficients have been studied in taking 

advantage of correlations between wavelet coefficients either 

across space, scale or orientation, additional improvement in 

denoising performance is obtained. The Gaussian Scale 

Mixture (GSM) model, in which clusters of coefficients are 

modelled as the artifact of a Gaussian random vector and a 

positive scaling variable, has been shown to produce outcome 

that are appreciably better than marginal models [10] sharing 

the significant features still present in the degraded image, but 

with the artifacts censored. Image denoising is an important 

image processing assignment, both as a process itself, and as a 

module in other processes. There exists several ways to 

denoise an image or a set of records. The main properties of an 

excellent image denoising model are that it will eliminate 

noise while preserving edges. Generally linear models have 

been used. One common technique is to use a Gaussian filter, 

or homogeneously solving the heat-equation with the noisy 

image as input-data, i.e. a linear, 2nd order PDE-reproduction. 

For some purposes this kind of denoising is sufficient. One 

large advantage of linear noise removal models is the speed. 

But a drawback of the linear models is that they do not 

preserve edges in an excellent way. Edges, which are 

recognized as discontinuities in the image, are dirty out. 

Nonlinear models on the other hand can handle edges in a 

much better way than linear models. TV filter is very good at 

preserving edges, but smooth unstable regions in the input 

image are transformed into piecewise constant regions in the 

output image. Using the TV-filter as a denoiser leads to solve 

a 2nd order nonlinear PDE. Since smooth regions are 

transformed into piecewise constant regions when using the 

TV-filter, it is desirable to generate a model for which 

smoothly changeable regions are transformed into smoothly 

unreliable regions, and yet the edges are preserved. This can 

be done for example by solving a 4th order PDE instead of the 

2nd order PDE from the TV-filter. Result show that the 4th 

order filter produces better results in smooth regions, and 

unmoving preserves edges in a very excellent way. Image 

denoising algorithms may be the oldest in image processing. 

Various methods, in spite of implementation, share the similar 

basic plan noise reduction through image blurring. Blurring 

can be done nearby, as in the Gaussian smoothing model or in 

anisotropic filtering; by calculus of variations; or in the 

frequency domain, such as Weiner filters. But a universal best 

approach has yet to be found.  

Novel adaptive and patch-based approach [13] is proposed 

for image denoising and representation. The method is based 

on a point wise selection of small image patches of fixed size 

in the variable neighborhood of each pixel. My involvement is 

to associate with each pixel the weighted sum of data points 

within an adaptive neighborhood, in a manner that it balances 

the exactness of approximation and the stochastic error, at 

each spatial location. This method is general and can be 

applied under the assumption that there exist repetitive 

patterns in a local neighborhood of a point. By introducing 

spatial adaptively, I expand the work earlier described by 

Bauds et al. which can be measured as an addition of bilateral 

filtering to image patches. Finally, a nearly parameter-free 

algorithm for image denoising is recommended. The scheme is 

applied to both artificially despoiled (white Gaussian noise) 

and real images and the performance is extremely close to, and 

in some cases yet surpasses, that of the already published 

denoising schemes. A novel adaptive and exemplar-based 
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approach is proposed for image restoration and representation. 

The method is based on a point wise selection of small image 

patches of fixed size in the variable neighbourhood of each 

pixel. The core idea is to associate with each pixel the 

weighted sum of data points within an adaptive 

neighbourhood. This method is general and can be applied 

under the assumption that the image is a locally and fairly 

stationary process. This paper is a spotlight on the problem of 

the adaptive neighbourhood selection in a manner that it 

balances the accuracy of approximation and the stochastic 

error, at each spatial location. Thus, the new proposed point 

wise estimator mechanically adapts to the degree of 

underlying smoothness which is unidentified with minimal a 

priori assumptions on the function to be recovered [14]. 

Consider the image denoising difficulty, where zero-mean 

white and homogeneous Gaussian additive noise is to be 

detached from a given image. The steps taken is based on 

sparse and redundant representations over trained dictionaries. 

Using the K-SVD algorithm, a dictionary that describes the 

image content effectively is achieved. Two training options 

are measured: using the corrupted image itself, or training on 

an amount of high-quality image database. Since the K-SVD 

is limited in management small image patches, I expand its 

deployment to arbitrary image sizes by defining a global 

image prior that forces sparsity over patches in every location 

in the image. I here illustrate how such Bayesian treatment 

leads to a simple and effective denoising algorithm. This lead 

to a state-of-the-art denoising presentation, equivalent and 

sometimes surpassing recently published leading alternative 

denoising methods. The planned method is based on local 

operations and involves sparse decompositions of each image 

block under one fixed over-complete dictionary, and a simple 

average calculation. The content of the dictionary is of main 

importance for the denoising method. I have shown that a 

dictionary trained for natural real images, as well as an 

adaptive glossary trained on patches of the noisy image itself, 

both present very well [16]. 

II. ADAPTIVE WAVELET BAYESIAN NETWORK  

In this approach, the denoising problem is basically a prior 

probability modeling and estimation that exploits a hidden 

Bayesian system [1], constructed from wavelet coefficients, to 

model the previous probability of the original image. Then, we 

use the belief propagation (BP) method [1], which estimates a 

coefficient based on all the coefficients of an image, as the 

maximum-a-posterior (MAP) estimator to develop the 

denoised wavelet coefficients. It is also explained that if the 

network is a spanning tree, the standard BP algorithm can 

execute MAP estimation competently. The experiment results 

demonstrate that, in conditions of the peak-signal-to-noise-

ratio and perceptual quality, the projected approach out 

performs state-of-the-art algorithms on various images, 

particularly in the textured regions, with various amounts of 

White Gaussian noise [20]. 

Noisy input image

Decomposing using undecimated biorthogonal wavelet transform

Estimating the maximum a posterior coefficients or denoised coefficient

Reconstructing the image using inverse biorthogonal wavelets

 
Fig. 1. Basic flow chart. 

 

A Bayesian network, denoted as B = (V, E, P), comprises a 

set of random variables and their conditional dependencies 

represented by a directed acyclic graph in which the nodes 

represent the elements in V[1]. Each edge element in E takes 

the form of a directed arc x → y, where x and y ∈ V. The 

likelihood p(y | x) ∈ P of an edge x → y ∈ E is the conditional 

probability of observing y given that x exists. The Bayesian 

networks constructed in wavelet domains is called Wavelet 

Bayesian Networks (WBNs). The primary objective of this 

paper is to construct a WBN from the undecimated Discrete 

Wavelet Transform (DWT) of a single image. 

Initially, wavelet decomposition of an image F yields three 

images of wavelet coefficients with horizontal, vertical, and 

diagonal orientations respectively, and one approximate image 

of F. Then, at the next scale, the approximated image is 

further decomposed to obtain three images of the wavelet 

coefficients and one coarser approximate image of F. Let wh,j 

F(u,v), wv,j F(u,v), and wd,j F(u,v) denote, respectively, the 

horizontal, vertical, and diagonal images of the wavelet 

coefficients at scale 2 j; and let AjF(u, v) represent the 

approximated image at the same scale. If the undecimated 

DWT is decomposed J times, we will have wavelet 

coefficients wh,j F, wv,j F, and wv,j F with j = 1…… J and the 

coarsest approximate image. To construct a WBN, first group 

sub-bands with the same orientation together to obtain a 

horizontal-group, a vertical-group, and a diagonal-group of 

wavelet coefficients. Then, construct a Bayesian network B for 

each group. Let Bh = (Vh, Eh, Ph ), Bv = (Vv , Ev , Pv ), and 

Bh = (Vd , Ed , Pd ) denote the Bayesian networks constructed 

from the horizontal-group, vertical-group, and diagonal-group 

of wavelet coefficients respectively. The WBN, B = (V, E, P) 

is derived from Bh, Bv, and Bd by V = V h ∪ V v ∪ V d (4) E = 

Eh ∪ Ev ∪ Ed and (5) P = Ph ∪ Pv ∪ Pd .(6) Next, explain 

how to construct the Bayesian network Bu(Vu, Eu, Pu ) that  

corresponds to the u-orientation, where u ∈ {h, v, d}[2]. 
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Fig. 2. Constructing a multilayer hidden network. (a) Two subbands, with 

the coarser subband on top. (b) Procedure creates two wavelet patches, each of 

which is associated with a subgraph. Subband coefficients are assigned to the 
nodes, as specified in Fig. 1(c). (c) Nodes in the two-layer network are linked 

by intra-scale (solid) arcs and inter-scale (dashed) arcs. (d) To derive the prior 

probability. 

 

The normal distribution is immensely useful because of the 

central limit theorem, which states that, under mild conditions, 

the mean of many random variables independently drawn 

from the same distribution is distributed approximately 

normally, irrespective of the form of the original distribution. 

Physical quantities that are expected to be the sum of many 

independent processes (such as measurement errors) often 

have a distribution very close to the normal. Moreover, many 

results and methods (such as propagation of uncertainty and 

least squares parameter fitting) can be derived analytically in 

explicit form when the relevant variables are normally 

distributed. 

III. ADAPTIVE DATA FITTING WITH NORMAL PROBABILITY 

DISTRIBUTION 

Some special properties define why the normal distribution 

(or Gaussian) is used for fitting the random data input. 

• The value of the probability density function approaches 

zero as input random variable approaches positive and 

negative infinity. 

• The probability density function is centered at the mean, 

and the maximum value of the function occurs at when 

random variable become equal to mean 

• The probability density function for the normal 

distribution is symmetric about the mean. 

The posterior probabilities of each of the different 

components in the Gaussian mixture distribution defined by 

object for each observation in the data. Figure 3 shows the 

posterior map with respect to the data network. 

TABLE I. Data fitting with normal probability distribution. 

 

 

 
Fig. 3. Approximation, diagonal, horizontal and vertical data fitting. 

 

 
Fig. 4. Posterior probability map. 

IV. DENOISING ALGORITHM AND EXPERIMENTAL RESULT 

This section present the proposed denoising algorithm, its 

implementation, and its performance comparison with that of 

other methods.  

Input 
Mean & 
variance 

Approximation Horizontal Vertical Diagonal 

 
Lena 

Mean 259.8 -1.46 0.37 0.60 

Variance 25.21 26.4 22.1 17.9 

http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Mean
http://en.wikipedia.org/wiki/Random_variables
http://en.wikipedia.org/wiki/Measurement_error
http://en.wikipedia.org/wiki/Propagation_of_uncertainty
http://en.wikipedia.org/wiki/Least_squares
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The proposed algorithm is summarized. The steps are as 

follows: Step (1) calculates the undecimated DWT of the input 

image; Steps (2) to (5) construct the WBN B[1]; and Steps (6) 

to (8) create the WBN Bn [1] used for denoising purposes; In 

Step (9), the wavelet coefficient are estimated from Bn by 

applying the adaptive max-product algorithm to the factor 

graph Fn for each realization of Bn. Here I use Bior4.4 filters 

to process the undecimated DWT. Because Bior4.4 filters are 

close to orthogonal wavelet filters, the noise variance of 

subbands at all scales can be set at σ
2
n, which is the image 

noise variance. The variance σ
2
n is used in the Wiener filtering 

in Step (2) as well as in deriving the MAP estimation of the 

wavelet coefficients in Step (9). The frequency count in Step 

(4) indicates the number of wavelet coefficients in a 

quantization bin. The size of a subband’s quantization bin is 

set at 14 of the standard deviation, measured from the wavelet 

coefficients in the subband. 

 
TABLE II. Comparison of low and high edge images with different variance. 

Image Variance 
PSNR(dB) SSIM 

MRF OUR MRF OUR 

Lenna 

512x512 

0.01 25.555 32.275 0.695 0.903 

0.02 25.007 29.803 0.695 0.868 

0.05 22.517 26.799 0.704 0.779 

0.09 19.234 24.300 0.681 0.725 

Baboon 
256x256 

0.01 19.156 21.550 0.579 0.613 

0.02 16.029 17.858 0.369 0.433 

0.05 11.849 13.716 0.255 0.266 

0.09 10.803 11.718 0.179 0.189 

 

From table II it is understood that the noise variance change 

is gradually affect the proposed method i.e. the proposed 

method preserve edges more compared with the existing 

method [1]. 

V. IMPLEMENTATION OF CURRENT ALGORITHM FOR RGB 

IMAGE 

The current algorithm can be extend for  denoising of color 

images. Figure 5 and figure 6 shows the execution result of the 

current algorithm in color images, Table III shows the 

different color images with PSNR and SSIM evaluation 

results. 
 

 
Fig. 5. Noisy input. 

 
Fig. 6. Denoised output. 

 
TABLE III. Evaluation of PSNR and SSIM for color images. 

Image PSNR(dB) SSIM 

Lenna 31.5875 0.896 

Brick house 27.3958 0.7334 

Leaf 26.7192 0.7024 

VI. CONCLUSION  

The Bayesian formula indicates that the denoising problem 

is essentially a prior probability modeling and estimation task. 

The constructive data-adaptive procedure that derives a hidden 

graph structure from the wavelet coefficients. The graph is 

then used to model the prior probability of the original image 

for denoising purposes. 

The existing Wavelet Bayesian Network Image Denoising 

[1] performs the denoising algorithm effectively. With the use 

of spanning tree approach on wavelet domain make the MAP 

estimation easily. The posterior probability estimation 

preserve the edges significantly compared with the MRF [2] 

approach. 

The modified Wavelet Bayes Adaptive Image Denoising 

algorithm use the Gaussian spanning tree approach, it preserve 

the edges effectively and also can use the current algorithm for 

color image denoising.  

REFERENCES 

[1] J. Ho and W.-L. Hwang, ―Wavelet Bayesian network image demising,‖ 

IEEE Trans.  Image Process, vol. 22, no. 4, 2013. 
[2] B. Goossens, A. Pizurica, and W. Philips, ―Image denoising using 

mixtures of projected Gaussian scale mixtures,‖ IEEE Trans. Image 

Process., vol. 18, no. 8, pp. 1689–1702, 2009.  
[3] A. Srivastava, A. B. Lee, E.P. Simoncelli, and S-C. Zhu, ―On advances 

in statistical modeling of natural images,‖ Journal of Mathematical 

Imaging and Vision, vol. 18, pp. 17–33, 2003.  
[4] J. Ho and W.-L. Hwang, ―Wavelet Bayesian network image denoising,‖ 

IEEE Trans. Image Process., vol. 22, no. 4, 2013.  

[5] G. F. Cooper and E. Herskovits, ―A Bayesian method for the induction 
of probabilistic networks from data,‖ Mach. Learn., vol. 9, no. 4, 

pp.309–347, 1992. 

[6] D. Heckerman, D. Geiger, and D. M. Chickering, ―Learning Bayesian 
networks: The combination of knowledge and statistical data,‖ Mach. 

Learn., vol. 20, no. 3, pp. 197–243, 1995.  

[7] D. Heckerman, ―A tutorial on learning Bayesian networks,‖ Microsoft 

Research, Mountain View, CA, Tech. Rep. MSR-TR-95-06, 1995. 



International Research Journal of Advanced Engineering and Science 
 ISSN: 2455-9024 

 

 

110 

 
Abhijith S, ―Wavelet Bayes adaptive image denoising,‖ International Research Journal of Advanced Engineering and Science, Volume 2, 

Issue 1, pp. 106-110, 2017. 

[8] D. M. Chickering, D. Heckerman, and C. Meek, ―A Bayesian approach 

to learning Bayesian networks with local structure,‖ in Proc. 13th Conf. 

Uncertainty Artif. Intell., pp. 80–89, 1997.  
[9] D. J. Field, ―Relations between the statistics of natural images and the 

response properties of cortical cells,‖ J. Opt. Soc. Am. A, vol. 4, no. 12, 

pp. 2379–2394, 1987. 
[10] S. Mallat, ―Multifrequency channel decomposition of images and 

wavelet models,‖ IEEE Trans. Acoust., Speech, Signal Proc., vol. 37, 
no. 12, pp. 2091–2110, 1989. 

[11] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, ―Image 

denoising using Gaussian Scale Mixtures in the Wavelet Domain,‖ IEEE 
Trans. Image Processing, vol. 12, no. 11, pp. 1338–1351, 2003.  

[12] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, ―Non-local sparse models 

for image restoration,‖ in Proc. IEEE Int. Conf Comput. Vis., Kyoto, 
Japan, pp. 2272–2279, 2009.  

[13] G. Chang, B. Yu, and M. Baraniuk, ―Spatially adaptive wavelet 

thresholding with context modeling for image denoising,‖ IEEE Trans. 

Image Process., vol. 9, no. 9, pp. 1522–1531, 2000. 

[14] M. Elad and M. Aharon, ―Image denoising via sparse and redundant 

representations over learned dictionaries,‖ IEEE Trans. Image Process., 
vol. 15, no. 12, pp. 3736–3745, 2006. 

[15] C. Kervrann and J. Boulanger, ―Optimal spatial adaptation for 

patchbased image denoising,‖ IEEE Trans. Image Process., vol. 15, no. 

10, pp. 2866–2878, 2006 
[16] A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, ―A joint inter- 

and intrascale statistical model for Bayesian wavelet based image 

denoising,‖ IEEE Trans. Image Process., vol. 11, no. 5, pp. 545–557, 
2002. 

[17] M. Elad and M. Aharon, ―Image denoising via sparse and redundant 
representations over learned dictionaries,‖ IEEE Trans. Image Process., 

vol. 15, no. 12, pp. 3736–3745, 2006.  

[18] G. Chang, B. Yu, and M. Baraniuk, ―Spatially adaptive wavelet 
thresholding with context modeling for image denoising,‖ IEEE Trans. 

Image Process., vol. 9, no. 9, pp. 1522–1531, 2000. 

[19] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, ―Image denoising 
by sparse 3-D transform-domain collaborative filtering,‖ IEEE Trans. 

Image Process., vol. 16, no. 8, pp. 2080–2095, 2007 

[20] B. Goossens, A. Pizurica, and W. Philips, ―Image denoising using 

mixtures of projected Gaussian scale mixtures,‖ IEEE Trans. Image 

Process., vol. 18, no. 8, pp. 1689–1702, 2009. 

 


