Zeros of a Polynomial with Restricted Coefficients

M. H. Gulzar ${ }^{1}$, B. A. Zargar 2, A. W. Manzoor ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, University of Kashmir, Srinagar

Abstract

In this paper we consider a class of polynomials whose coefficients satisfy certain conditions and locate the regions containing all their zeros.

Mathematics Subject Classification: 30C10, 30C15.
Keywords-Coefficients, polynomial, zeros.

I. Introduction

The following theorem known as the Enestrom-Kakeya Theorem [8], [9] is of great importance in the theory of distribution of zeros of a polynomial:
Theorem A: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that
$a_{n} \geq a_{n-1} \geq \ldots . . \geq a_{1} \geq a_{0}>0$.
Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq 1$.
A lot of generalizations and extensions of this result are available in the literature [1-10]. Recently Gulzar et al [6] proved the following such result:
Theorem B: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}, j=0,1,2, \ldots \ldots, n$ such that for some $\lambda, 0 \leq \lambda \leq n-1$ and for some $k \geq 1, o<\tau \leq 1$,
$k \alpha_{n} \geq \alpha_{n-1} \geq \ldots \ldots \geq \tau \alpha_{\lambda}$
and
$L=\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots .+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|$.
Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in
$\left|z+\frac{(k-1) \alpha_{n}}{a_{n}}\right| \leq \frac{k \alpha_{n}-\tau \alpha_{\lambda}+(1-\tau)\left|\alpha_{\lambda}\right|+L+2 \sum_{j=0}^{n}\left|\beta_{j}\right|}{\left|a_{n}\right|}$

II. Main Results

In this paper we prove the following result:
Theorem 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$,
$j=0,1,2, \ldots \ldots, n$ such that for some $\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$ and for some $k_{1}, k_{2} \leq 1 ; \tau_{1}, \tau_{2} \geq 1$,
$k_{1} \alpha_{n} \leq \alpha_{n-1} \leq \ldots . . \leq \tau_{1} \alpha_{\lambda}$
$k_{2} \beta_{n} \leq \beta_{n-1} \leq \ldots . . \leq \tau_{2} \beta_{\mu}$,
and

$$
\begin{aligned}
L & =\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|, \\
M & =\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots . .+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|,
\end{aligned}
$$

Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in
$\left|z-\frac{\left(1-k_{1}\right) \alpha_{n}+i\left(1-k_{2}\right) \beta_{n}}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left[\tau_{1}\left(\alpha_{\lambda}+\left|\alpha_{\lambda}\right|\right)\right.$
$\left.+\tau_{2}\left(\beta_{\mu}+\left|\beta_{\mu}\right|\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|-k_{1} \alpha_{n}-k_{2} \beta_{n}+L+M\right]$.
For different values of the parameters, we get many interesting results. For example, if we take a_{j} real i.e. $\beta_{j}=0, \forall j=0,1, \ldots ., n ; k_{1}=k, \tau_{1}=\tau$, then we get the following result from Theorem 1:
Corollary 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that for some $\lambda, ; 0 \leq \lambda \leq n-1$ and for some $k \leq 1 ; \tau \geq 1$,
$k a_{n} \leq a_{n-1} \leq \ldots . . \leq \tau a_{\lambda}$
and
$L=\left|a_{\lambda}-a_{\lambda-1}\right|+\left|a_{\lambda-1}-a_{\lambda-2}\right|+\ldots \ldots .+\left|a_{1}-a_{0}\right|+\left|a_{0}\right|$,
Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in
$|z+k-1| \leq \frac{\tau\left(\left|a_{\lambda}\right|+a_{\lambda}\right)-k a_{n}-\left|a_{\lambda}\right|+L .}{\left|a_{n}\right|}$.
If we take $\tau_{1}=\tau_{2}=1 \mathrm{in}$ Theorem 1, we get the following:
Corollary 2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$,
$j=0,1,2, \ldots \ldots, n$ such that for some $\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$ and for some $k_{1}, k_{2} \leq 1,$,
$k_{1} \alpha_{n} \leq \alpha_{n-1} \leq \ldots . . \leq \alpha_{\lambda}$
$k_{2} \beta_{n} \leq \beta_{n-1} \leq \ldots \ldots \leq \beta_{\mu}$,
and
$L=\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|$,
$M=\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|$,
Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in
$\left|z-\frac{\left(1-k_{1}\right) \alpha_{n}+i\left(1-k_{2}\right) \beta_{n}}{a_{n}}\right| \leq \frac{\left.\alpha_{\lambda}+\beta_{\mu}\right)-k_{1} \alpha_{n}-k_{2} \beta_{n}+L+M .}{\left|a_{n}\right|}$.
If we take $k_{2}=\tau_{2}=1$ in Theorem 1, we get the following:
Corollary 3: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$,
$j=0,1,2, \ldots \ldots, n$ such that for some $\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$ and for some $k_{1} \leq 1 ; \tau_{1} \geq 1$,
$k_{1} \alpha_{n} \leq \alpha_{n-1} \leq \ldots . . . \leq \tau_{1} \alpha_{\lambda}$
$\beta_{n} \leq \beta_{n-1} \leq \ldots . . \leq \beta_{\mu}$,
and
$L=\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|$,
$M=\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|$,
Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in
$\left|z+\frac{\left(k_{1}-1\right) \alpha_{n}+i\left(k_{2}-1\right) \beta_{n}}{a_{n}}\right| \leq \frac{\tau_{1}\left(\left|\alpha_{\lambda}\right|+\alpha_{\lambda}\right)+\beta_{\mu}-k_{1} \alpha_{n}-\beta_{n}-\left|\alpha_{\lambda}\right|+L+M .}{\left|a_{n}\right|}$
If we take $k_{1}=k_{2}=\tau_{1}=\tau_{2}=1$ in Theorem 1, we get the following:
Corollary 4: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}$,
$j=0,1,2, \ldots \ldots, n$ such that for some
$\lambda, \mu ; 0 \leq \lambda \leq n-1,0 \leq \mu \leq n-1$,
$\alpha_{n} \leq \alpha_{n-1} \leq \ldots . . \leq \alpha_{\lambda}$
$\beta_{n} \leq \beta_{n-1} \leq \ldots . . \leq \beta_{\mu}$,
and
$L=\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|+\left|\alpha_{\lambda-1}-\alpha_{\lambda-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|$,
$M=\left|\beta_{\mu}-\beta_{\mu-1}\right|+\left|\beta_{\mu-1}-\beta_{\mu-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|$,
Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in
$|z| \leq \frac{\alpha_{\lambda}+\beta_{\mu}-\alpha_{n}-\beta_{n}+L+M}{\left|a_{n}\right|}$.

III. Proof of Theorem 1

Consider the polynomial
$F(z)=(1-z) P(z)$
$=(1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots . .+a_{1} z+a_{0}\right)$
$=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots . .+\left(a_{\lambda+1}-a_{\lambda}\right) z^{\lambda+1}+\left(a_{\lambda}-a_{\lambda-1}\right) z^{\lambda}$

$$
\begin{aligned}
& \quad+\ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0} \\
& =-a_{n} z^{n+1}-\left(k_{1}-1\right) \alpha_{n} z^{n}+\left(k_{1} \alpha_{n}-\alpha_{n-1}\right) z^{n} \\
& +\left(\alpha_{n-1}-\alpha_{n-2}\right) z^{n-1} \ldots \ldots+\left(\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right) z^{\lambda+1}
\end{aligned}
$$

$+\left(\tau_{1}-1\right) \alpha_{\lambda} z^{\lambda+1}+\left(\alpha_{\lambda}-\alpha_{\lambda-1}\right) z^{\lambda}+\ldots \ldots+\left(\alpha_{1}-\alpha_{0}\right) z$
$+\alpha_{0}+i\left\{\left(k_{2} \beta_{n}-\beta_{n-1}\right) z^{n}-\left(k_{2}-1\right) \beta_{n} z^{n}+\ldots \ldots+\left(\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right) z^{\mu+1}\right.$
$\left.+\left(\tau_{2}-1\right) \beta_{\mu} z^{\mu+1}+\left(\beta_{\mu}-\beta_{\mu-1}\right) z^{\mu}+\ldots \ldots .+\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right\}$

For $|z|>1$ so that $\frac{1}{|z|^{j}}<1, \forall j=1,2, \ldots \ldots, n$, we have, by using the hypothesis

$$
\begin{aligned}
& |F(z)| \geq\left|a_{n} z+\left(k_{1}-1\right) \alpha_{n}+i\left(k_{2}-1\right) \beta_{n}\right||z|^{n} \\
& -\left[\left|k_{1} \alpha_{n}-\alpha_{n-1}\right||z|^{n}+\left|\alpha_{n-1}-\alpha_{n-2}\right||z|^{n-1} \ldots . .+\left|\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right||z|^{\lambda+1}\right. \\
& \quad+\left|\tau_{1}-1\right|\left|\alpha_{\lambda}\right||z|^{\lambda+1}+\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right||z|^{\lambda} \\
& \quad+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right||z|+\left|\alpha_{0}\right|+\left\{\left|k_{2} \beta_{n}-\beta_{n-1}\right||z|^{n}\right. \\
& \quad+\left|\beta_{n-1}-\beta_{n-2}\right||z|^{n-1} \ldots \ldots+\left|\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right||z|^{\mu+1} \\
& \left.\quad+\left|\tau_{2}-1\right|\left|\beta_{\mu}\right|^{\mu}+\left|\beta_{\mu}-\beta_{\mu-1}\right||z|^{\mu-1}+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right||z|+\left|\beta_{0}\right|\right]
\end{aligned}
$$

$$
=|z|^{n}\left[\left|a_{n} z+\left(k_{1}-1\right) \alpha_{n}+i\left(k_{2}-1\right) \beta_{n}\right|-\left\{\left|k \alpha_{n}-\alpha_{n-1}\right|\right.\right.
$$

$$
+\frac{\left|\alpha_{n-1}-\alpha_{n-2}\right|}{|z|}+\ldots \ldots
$$

$$
+\frac{\left|\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right|}{|z|^{n-\lambda-1}}+\frac{\left(\tau_{1}-1\right)\left|\alpha_{\lambda}\right|}{|z|^{n-\lambda-1}}+\frac{\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|}{|z|^{n-\lambda}}
$$

$$
+\ldots \ldots+\frac{\left|\alpha_{1}-\alpha_{0}\right|}{|z|^{n-1}}+\frac{\left|\alpha_{0}\right|}{|z|^{n}}
$$

$$
+\left|k_{2} \beta_{n}-\beta_{n-1}\right|+\frac{\left|\beta_{n-1}-\beta_{n-2}\right|}{|z|}+\ldots \ldots+\frac{\left|\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right|}{|z|^{n-\mu-1}}
$$

$$
\left.\left.+\frac{\left(\tau_{2}-1\right)\left|\beta_{\mu}\right|}{|z|^{n-\mu}}+\ldots \ldots+\frac{\left|\beta_{1}-\beta_{0}\right|}{|z|^{n-1}}+\frac{\left|\beta_{0}\right|}{|z|^{n}}\right\}\right]
$$

$$
=|z|^{n}\left[\left|a_{n} z+\left(k_{1}-1\right) \alpha_{n}+i\left(k_{2}-1\right) \beta_{n}\right|-\left\{\left|k \alpha_{n}-\alpha_{n-1}\right|\right.\right.
$$

$$
+\left|\alpha_{n-1}-\alpha_{n-2}\right|+\ldots \ldots
$$

$$
+\left|\alpha_{\lambda+1}-\tau_{1} \alpha_{\lambda}\right|+\left(\tau_{1}-1\right)\left|\alpha_{\lambda}\right|+\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|
$$

$$
+\ldots \ldots .+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|
$$

$$
+\left|k_{2} \beta_{n}-\beta_{n-1}\right|+\left|\beta_{n-1}-\beta_{n-2}\right|+\ldots \ldots+\left|\beta_{\mu+1}-\tau_{2} \beta_{\mu}\right|
$$

$$
\left.\left.+\left(\tau_{2}-1\right)\left|\beta_{\mu}\right|+\left|\beta_{\mu}-\beta_{\mu-1}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|\right\}\right]
$$

$$
=|z|^{n}\left[| z | ^ { n } \left[\left|a_{n} z+\left(k_{1}-1\right) \alpha_{n}+i\left(k_{2}-1\right) \beta_{n}\right|\right.\right.
$$

$$
-\left\{\alpha_{n-1}-k_{1} \alpha_{n}+\alpha_{n-2}-\alpha_{n-1}\right.
$$

$$
+\ldots \ldots+\tau_{1} \alpha_{\lambda}-\alpha_{\lambda+1}+\left(\tau_{1}-1\right)\left|\alpha_{\lambda}\right|+\left|\alpha_{\lambda}-\alpha_{\lambda-1}\right|
$$

$$
+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|+\beta_{n-1}-k_{2} \beta_{n}+\beta_{n-2}-\beta_{n-1}
$$

$$
+\ldots \ldots+\tau_{2} \beta_{\mu}-\beta_{\mu+1}+\left(\tau_{2}-1\right)\left|\beta_{\mu}\right|+\left|\beta_{\mu}-\beta_{\mu-1}\right|
$$

$$
\left.\left.+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|\right\}\right]
$$

$$
=|z|^{n}\left[| z | ^ { n } \left[\left|a_{n} z+\left(k_{1}-1\right) \alpha_{n}+i\left(k_{2}-1\right) \beta_{n}\right|\right.\right.
$$

$$
-\left\{\tau_{1}\left(\alpha_{\lambda}+\left|\alpha_{\lambda}\right|\right)+\tau_{2}\left(\beta_{\mu}+\left|\beta_{\mu}\right|\right)\right.
$$

$$
\left.\left.-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|-k_{1} \alpha_{n}-k_{2} \beta_{n}+L+M\right\}\right]
$$

$$
>0
$$

if

$$
\begin{aligned}
& \qquad\left|a_{n} z+\left(k_{1}-1\right) \alpha_{n}+i\left(k_{2}-1\right) \beta_{n}\right|>\tau_{1}\left(\alpha_{\lambda}+\left|\alpha_{\lambda}\right|\right) \\
& \quad+\tau_{2}\left(\beta_{\mu}+\left|\beta_{\mu}\right|\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|-k_{1} \alpha_{n}-k_{2} \beta_{n}+L+M \\
& \text { i.e. if }
\end{aligned}
$$

$\left|z-\frac{\left(1-k_{1}\right) \alpha_{n}+i\left(1-k_{2}\right) \beta_{n}}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left[\tau_{1}\left(\alpha_{\lambda}+\left|\alpha_{\lambda}\right|\right)\right.$
$\left.+\tau_{2}\left(\beta_{\mu}+\left|\beta_{\mu}\right|\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|-k_{1} \alpha_{n}-k_{2} \beta_{n}+L+M\right]$.
This shows that those zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is greater than 1 lie in
$\left|z-\frac{\left(1-k_{1}\right) \alpha_{n}+i\left(1-k_{2}\right) \beta_{n}}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left[\tau_{1}\left(\alpha_{\lambda}+\left|\alpha_{\lambda}\right|\right)\right.$
$\left.+\tau_{2}\left(\beta_{\mu}+\left|\beta_{\mu}\right|\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|-k_{1} \alpha_{n}-k_{2} \beta_{n}+L+M\right]$.
Since the zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is less than or equal to 1 already satisfy the above inequality and since the zeros of $\mathrm{P}(\mathrm{z})$ are also the zeros of $\mathrm{F}(\mathrm{z})$, it follows that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in
$\left|z-\frac{\left(1-k_{1}\right) \alpha_{n}+i\left(1-k_{2}\right) \beta_{n}}{a_{n}}\right| \leq \frac{1}{\left|a_{n}\right|}\left[\tau_{1}\left(\alpha_{\lambda}+\left|\alpha_{\lambda}\right|\right)\right.$,
$\left.+\tau_{2}\left(\beta_{\mu}+\left|\beta_{\mu}\right|\right)-\left|\alpha_{\lambda}\right|-\left|\beta_{\mu}\right|-k_{1} \alpha_{n}-k_{2} \beta_{n}+L+M\right]$.
That proves Theorem 1.

REFERENCES

[1] A. Aziz and Q. G. Mohammad, "Zero-free regions for polynomial s and some generalizations of Enestrom-Kakeya theorem," Canadian Mathematical Bulletin, vol. 27, pp. 265-272, 1984.
[2] A. Aziz and B. A. Zargar, "Some extensions of Enestrom-Kakeya theorem," Glasnik Mathematicki, vol. 51, pp. 239-244, 1996.
[3] Y. Choo, "On the zeros of a family of self-reciprocal polynomials," International Journal of Mathematical Analysis, vol. 5, issue 36, pp. 1761-1766, 2011.
[4] N. K. Govil and Q. I. Rahman, "On Enestrom-Kakeya theorem," Tohoku Mathematical Journal, vol. 20, issue 2, pp. 126-136, 1968.
[5] M. H. Gulzar, "Some refinements of Enestrom-Kakeya theorem," International Journal of Mathematical Archive, vol. 2, issue 9, pp. 15121529, 2011.
[6] M. H. Gulzar, B. A. Zargar and A. W. Manzoor, "On the zeros of a family of polynomials," International Journal of Engineering Technology and Management, vol. 4, issue 1, pp. 07-10, 2017.
[7] A. Joyal, G. Labelle, and Q. I. Rahman, "On the location of the zeros of a polynomial," Canadian Mathematical Bulletin, vol. 10, pp. 53-63, 1967.
[8] M. Marden, Geometry of Polynomials, Math. Surveys No. 3, American Mathematical Society, 1966.
[9] Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[10] B. A. Zargar, "On the zeros of a family of polynomials," International Journal of Mathematical Sciences and Engineering Applications, vol. 8 no. 1, pp. 233-237, 2014.

