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. INTRODUCTION

The following theorem known as the Enestrom-Kakeya
Theorem [8], [9] is of great importance in the theory of
distribution of zeros of a polynomial:

Theorem A: Let P(z) = Zajzj be a polynomial of degree n
j=0

such that

a, za, ; >...2a =a,>0.

Then all the zeros of P(z) lie in |Z| <1.

A lot of generalizations and extensions of this result are
available in the literature [1-10]. Recently Gulzar et al [6]
proved the following such result:

Theorem B: Let P(z) =) a;z’ be a polynomial of degree N

i=0
with Re(aj) =aj,lm(aj) =£4.,j=012,....,n such that for
some A4,0<A4<n-1 and forsome k>10<7<1,

ka2, 2.2 10,

and

Then all the zeros of P(z) lie in

ka, -7, +(1—r)|a1|+ L+ 2i|ﬂj|
=0

Z+ (k=Ya, <
a | 2]

n

Il.  MAIN RESULTS
In this paper we prove the following result:

n
Theorem 1: Let P(z) = Zaj z' be a polynomial of degree
j=0
n with Re(a;) =«;, Im(a;) =4,
j=0,12,.....,n such that for
A,1,0<4<n-,0<u<n-1 and for
k,,k, <Lz,7, 21,
ka,<a,,<...<na,
KBy < Bys < ST8,,
and

some
some

M :|ﬂy _ﬂy4|+|ﬂy71_ﬂﬂ72|+ ------ +|ﬂ1_ﬂo|+|ﬂo|1
Then all the zeros of P(z) lie in

1-k)e, +i1-k,) S,
_( 1) ( 2);3 S—[Tl(a/1+|0!4|)

a, | fa]

0,08, +|B.) || =[ B, -k, ~ k., + L+ M].
For different values of the parameters, we get many interesting
results. For  example, if we take areal
i.e./}j =0,vj=01,.....,n;k =k, 7, =7,
following result from Theorem 1:

z

a;

then we get the

Corollary 1: Let P(z):Zajzj be a polynomial of degree

j=0

Nsuch that for some A4,;0<A<n-1 and for some
k<lr=>1,

ka,<a, ,<...<r7a,

and

L=|ag—az_1|+|al_1—al_2|+ ...... +|ai—a0|+|a0|,
Then all the zeros of P(z) lie in
7(|a,|+a,) —ka, —|a,|+ L.

.

If we take 7, =7, =1in Theorem 1, we get the following:

|z+k-1<

Corollary 2: Let P(z) = > a;z' be a polynomial of degree n

j=0
with Re(a;) =¢;, Im(a;) =B,
j=0,142,.....,n such that for
A, 4,0 2<n-1,0< x<n-1 and for some Kk, k, <1,,
ka,<a,,<....<q,

KBy < By S < BB,,

some

and
L=|ai—aﬁfl|+|alfl—a472|+ ...... +|a1—ao|+|ao|,
M = |ﬂﬂ _ﬂ;,71| +|ﬁ;,71 _ﬁy—2| Fon +|ﬁ1 _ﬂo| +|:Bo|!
Then all the zeros of P(z) lie in
~(@A-k)e, +id-k,) B, <& +p,)-ka, —k,B, +L+M.
a, - 2
If we take K, =7, =1in Theorem 1, we get the following:

z

Corollary 3: Let P(z) = Zajzj be a polynomial of degree n
i=0

with Re(a;) =¢;, Im(a;) =4,
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j=012,....,n such that for some
A, 1;0£21<n-1,0< g <n-1 and for some k, <17, >1,
ka,<a,,<...<na,

B<P <SP,

and

L:|ai_ai—l|+|al—1_al—2|+ ...... +|a1—a0|+|a0|,

M :|ﬂ,,_ﬁ/471|+|ﬂy71_ﬁﬂ72|+ ''''' +|ﬁ1_ﬂo|+|ﬂo|'

Then all the zeros of P(z) lie in

y o =Dy +itk, =4, nla|+a) + B, —ka, —fy o[+ L+ M.

a, | a
If we take K, =K, =7, =7, =1in Theorem 1, we get the
following:

Corollary 4: Let P(z) = > a;z! be a polynomial of degree n

j=0
with Re(a;) =¢;, Im(a;) =B,
j=012,....,n such that for some

A, 14,0£4<n-14,0< u<n-1,

a, <o, <..2q,

ﬁn Sﬂn—l <. '"'Sﬂp’

and

L:|ai_ai—l|+|al—1_al—2|+ ...... +|a1—a0|+|a0|,
M :|ﬂ,,_ﬁ/471|+|ﬂy71_ﬁﬂ72|+ ''''' +|ﬁ1_ﬂo|+|ﬂo|'
Then all the zeros of P(z) lie in
|z|£al+ﬂ”_a|;_|ﬂ"+L+M

Ill.  PROOF OF THEOREM 1

Consider the polynomial
F(z)=@Q-2)P(2)

=(1-2)(a,2" +a, 2"+ raz+a,)

n+l A+l

=-a,2" +(a,-a,,)2" +...+(a,,-a,)2"" +(a, —a, ,)7"

+et (8, —8,)Z + 8,
=-a 2" - (k,-De, 2" + (ka, —a, ,)2"
+Ha,  —a, )" e+ (ay,, —1,2,)2
+Hr, -Da, 2" +(a, —a, )"+t (a, — )2
+o, + {8, - B,)2" — (K, —D)B.2" +.cco..+ (B, — 7, 8,) 7"
+Hz, DB, + (B, = Bt + e+ (B = By) 2+ B}

For |z| >1so0 that ﬁ<l,Vj =1,2,.....,n, we have, by using
z

the hypothesis

175
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|F(2)| 2|a,z+ (k —Der, +i(k, DA, ||z]

O A | A |2 S A v'a |
+[r =Ylev[[2]
et — |7+ |t | Ko B, — Bo 2]

B =Bl e +|,6’”+1 —rzﬂﬂ||z|"+l

o, B[ +|B, = B2+ H1B- Bo| 2]+ B[]

= |Z|n [|a'nZ + (kl _1)an + I(k2 _1)ﬁn| _{]kan _an—1|

A+l A
+la, —a, 4|7

a,,—na, (-Dla a,—a,
el Bt et

|a1—a0| +M

...... +|Z|T |Z|n
Brs— B |B.s—7:8.]
+|k2ﬂn—ﬁn71|+| n 1|Z| n 2|+ ...... + H|+zl|n”21 al
(z,-)|A.] B-B| |B
+—2|z|"” A, +—| |lz|“o|+%}]

= |Z|n [|anZ + (kl _l)an + '(kz _l)ﬂn| _{]kan _an—1|

+|0‘/1+1 _71a1|+ (7, -D|a, +|0(/1 _a171|
+|k2ﬂn _ﬂn—1| +|ﬂn—l - ﬂn—2|+ ------ + |,By+1 - Tzﬂ;,|
+(r, =V)|B.|+| B, = Bos|+ o+ B = Bl + | A1

=77 [,z + (k, ~Der, +ilk, ~ D]

_{an—l - kian ta, ,—o,

Frt T, — 0y + (1 D) |, | +le, —a, |
vty = |+ ||+ By — Ko B+ Brs — By
Frot T8, = B + (T, —1)|ﬂ#|+|,3,, —ﬁ,,_1|
et | B = Bo| + | B

=1z|"ll7]" la,z + (k, —Der, +i(k, ~D |

~n(a, +a, ) +2,(8, +|A.)

—|e|-|8,| -k, =k, B, + L+ M}]
>0

if
|anz +(k, —De, +i(k, —1)ﬂn| >7,(a, +|%|)
+7,(B, +|B.) ~le: |- | B, |- kit —k, B, + L+ M

ie. if
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,_A-k)a, +il-k,)p, <i[fl(al+|ai|)

a, | Jail

+7,(B, +|B.) ~le, |- |B.| -k, ~k, B, + L+ M].
This shows that those zeros of F(z) whose modulus is greater
than 1 lie in
1-k)e, +i1-k,) S, 1
Z—( 1) ( Z)ﬂ S_[Tl(al+|al|)
a, | [a

+7,(B, +|B.) | =B, -k, —ko 8, + L+ M].

Since the zeros of F(z) whose modulus is less than or equal to
1 already satisfy the above inequality and since the zeros of
P(z) are also the zeros of F(z) , it follows that all the zeros of
P(z2) lie in

7— (1_ kl)an + i(l_ kz)ﬂn
a,

n

a;

a;

|Sm[71(0% +|a/1|) |

+7,(B, +|ﬁ#|)—|al|—|ﬁ#|—klan -k, +L+M].
That proves Theorem 1.
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