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I. INTRODUCTION  

The following theorem known as the Enestrom-Kakeya 

Theorem [8], [9] is of great importance in the theory of 

distribution of zeros of a polynomial: 

Theorem A: Let 
0

( )
n

j

j

j

P z a z


 be a polynomial of degree n  

such that 

1 1 0...... 0n na a a a     . 

Then all the zeros of P(z) lie in 1z . 

A lot of generalizations and extensions of this result are 

available in the literature [1-10]. Recently Gulzar et al [6] 

proved the following such result: 

Theorem B: Let 
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with  Re( ) , Im( ) , 0,1,2,......,j j j ja a j n     such that for 

some ,0 1n     and for some 1, 1k o    ,  
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and   

1 1 2 1 0 0......L                    . 

Then all the zeros of P(z) lie in 
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II. MAIN RESULTS  

In this paper we prove the following result: 

Theorem 1: Let 
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Then all the zeros of P(z) lie in 
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For different values of the parameters, we get many interesting 

results. For example, if we take ja real 

i.e. 1 10, 0,1,....., ; ,j j n k k       , then we get the 

following result from Theorem 1: 

Corollary 1: Let 
0

( )
n

j

j

j

P z a z


 be a polynomial of degree 

n such that for some ,;0 1n     and for some 

1; 1k   ,  

1 ......n nka a a    

and  

1 1 2 1 0 0...... ,L a a a a a a a              

Then all the zeros of P(z) lie in 

( ) .
1

n

n

a a ka a L
z k

a

      
    . 

If we take 121  in Theorem 1, we get the following: 

Corollary 2: Let 
0

( )
n

j

j

j

P z a z


 be a polynomial of degree n  

with Re( ) ,j ja   Im( ) ,j ja     

0,1,2,......,j n  such that for some 

, ;0 1,0 1n n          and for some ,1, 21 kk ,  
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2 1
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and  

1 1 2 1 0 0...... ,L                     

1 1 2 1 0 0...... ,M                     

Then all the zeros of P(z) lie in 

1 21 2
) .(1 ) (1 ) n nn n

n n

k k L Mk i k
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   . 

If we take 122 k in Theorem 1, we get the following: 

Corollary 3: Let 
0

( )
n

j

j

j

P z a z


 be a polynomial of degree n  

with Re( ) ,j ja   Im( ) ,j ja     
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If we take 12121  kk in Theorem 1, we get the 

following: 

Corollary 4: Let 
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 be a polynomial of degree n  

with Re( ) ,j ja   Im( ) ,j ja     
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III. PROOF OF THEOREM 1  

Consider the polynomial  
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For 1z  so that 
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   , we have, by using 

the hypothesis        
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 This shows that those zeros of F(z) whose modulus is greater 

than 1 lie in  
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Since the zeros of F(z) whose modulus is less than or equal to 

1  already satisfy the above inequality and since the zeros of 

P(z) are also the zeros of F(z) , it follows that all the zeros of 

P(z) lie in  
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, 

That proves Theorem 1. 
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