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Abstract—A new breast cancer detection approach is proposed as an 

accurate, non-invasive Yes-No diagnostic tool without the need for 

breast imaging. The approach is based on the processing of ultra 

wideband (UWB) mono-static radar signals backscattered around 

heterogeneous two-dimensional (2D) and three-dimensional (3D) 

breast models. Suitable data are extracted and input in an artificial 

neural network (ANN) able to detect the presence or absence of the 

tumor for each single radar trace. Then, a diagnostic criterion is 

applied, considering the collective ANN outputs. The best results 

were obtained for tumors positioned outside the fibro-glandular 

tissues. Using 2D breast models and an ideal skin artifact removal 

technique, tumors were detected with 80% accuracy for 2000 testing 

data values. When a realistic model-based skin artifact removal 

technique was applied, 74% accuracy was obtained. Using a realistic 

3D breast model, this technique correctly detected tumors with 

diameters as small as 2 mm located at different distances from the 

chest. Moreover, for the analyzed cases, the application of the 

diagnostic criterion showed an accuracy of 100%. The ANN 

processing technique applied to radar systems realizes a simple, fast, 

and highly accurate breast cancer diagnostic criterion with low 

computational burden. 

 

Keywords— Artificial neural network, breast cancer detection, 

inverse scattering. 

I. INTRODUCTION  

Breast cancer is the most frequent type of cancer among 

women and it accounts for about one-third of all cancer 

diagnoses [1]. Its early detection is one of the most 

challenging and fundamental aspects in improving treatment 

outcomes and reducing the mortality rate [2]. 

At present, the standard technique for breast cancer 

detection is the use of an X-ray mammogram. However, this 

technique suffers of various problems and limitations. In 

addition to the pain and discomfort of compressing the breast, 

it is well known that exposure to X-rays subjects the women to 

serious health risks and can increase the chances of cancer 

development [3]. Moreover, the X-ray mammogram suffers 

from relatively high numbers of detection failures and shows 

sensitivity values that vary in the range of 66% and 96%; this 

wide variability can be attributed to several factors as reported 

in [4]. 

In order to improve performance, various combination 

modalities consisting of different diagnostic techniques, such 

as the X-ray mammogram, magnetic resonance imaging 

(MRI), ultrasound (US), and clinical examination, were 

studied in [5]. Using these combinations, some interesting 

results were obtained, in particular for sensitivity. 

Nevertheless, the values of overall accuracy, which accounts 

for the values of sensitivity and specificity together, vary in a 

range between 66.6% and 75.6% [5, 6]. 

In addition, in recent decades, the existing contrast 

between the electromagnetic properties of malignant and 

healthy breast tissues [7] has driven the development of 

microwave imaging techniques. Among these, different 

modalities including passive [8, 9], hybrid [10], and active 

approaches [7, 11, 12, 13, 14, 15, 16] have been studied and 

proposed. Among the active techniques, the two most 

promising alternatives are those based on microwave 

tomography and those based on ultra-wide band (UWB) radar 

imaging. 

The microwave tomography approaches are intended to 

provide a quantitative estimation of the spatial profile of the 

breast’s dielectric properties, and they are based on the 

solution of an inverse electromagnetic scattering problem [11, 

12]. However, solving this problem usually involves long 

computation times and heavy computational burden, where 

these two parameters strongly depend on the searched 

resolution accuracy, the microwave frequencies used, the 

signal information, and the problem approximation applied 

(such as the Born and Rytov approximations). 

The UWB radar imaging techniques are focused on 

achieving breast imaging to determine the presence and 

location of significant dielectric scatterers. These techniques 

are based on breast illumination using UWB pulses and on the 

processing of the backscattered signals using a time-domain 

image-formation algorithm (beamformer). Several algorithms 

have been proposed in the literature; they can be classified in 

two main categories: data dependent (DD) beamforming and 

data independent (DI) beamforming. Examples of DD 

algorithms are multistatic adaptive microwave imaging 

(MAMI) [17], multi-input multi-output (MIMO) [18], and 

time-reversal multiple signal classification (TR-MUSIC) [19, 

20]. These techniques can provide high-accuracy resolution in 

the case where the array steering vector corresponding to the 

signal of interest is well known, but when dealing with 

realistic cases, it is difficult to determine this component. 

Otherwise, some promising DI beamforming techniques [21] 

include delay and sum (DAS), delay multiply and sum 

(DMAS), and improved delay and sum (IDAS). These 

algorithms, in order to compensate the signal attenuations and 

dispersions due to the propagation path inside dispersive 

tissues, use an assumed homogeneous dielectric breast model. 

As expected and according to [21], the resulting accuracies are 

high in the case of homogeneous breast models but they 

worsen with increasing breast heterogeneity [21]. 

Moreover, another important issue relating to microwave 

diagnostic techniques is that the total backscattered signals 

contain, in addition to the components due to the presence of 



International Research Journal of Advanced Engineering and Science 
 ISSN: 2455-9024 

 

 

214 

 
S. Caorsi and C. Lenzi, ―A breast cancer detection approach based on radar data processing using artificial neural network,‖ International 

Research Journal of Advanced Engineering and Science, Volume 1, Issue 4, pp. 213-222, 2016. 

both the tumor and the internal tissues, the reflection 

backscattered from the air/skin interface (the so-called artifact 

component) [22]. This last is a predominant component 

because it is several orders of magnitude greater, and because 

it overlaps the internal tissues’ reflections, it can mask the 

presence of tumors [22, 23, 24, 25]. On this issue, various 

methods have been proposed in the literature with the aim of 

reducing the artifact component before signal processing [22, 

23, 24, 25, 26]. 

In this paper, we propose a UWB radar technique for 

breast cancer detection based on the use of artificial neural 

networks (ANNs). The main purpose is not to image the 

cancerous breast, but to propose a new diagnostic tool as an 

aid to the work of a medical clinician operator in order to 

determine the presence or absence of a tumor independent of 

its depth and width. The use of ANNs provides several 

advantages, such as short computation times, low 

computational burden, and the opportunity to recast the 

problem by considering only a few unknowns of interest. 

To assess our proposed approach for a significant scenario, 

we used two-dimensional (2D) and three-dimensional (3D) 

realistic breast models that were derived from the database 

made available by the numerical breast phantom repository of 

the University of Wisconsin cross-disciplinary 

electromagnetic laboratory (UWCEM) [27]. Because of the 

importance of removing the predominant reflections due to the 

presence of the skin, our ANN-based approach was assessed 

and tested using both an ideal skin artifact removal technique 

and a model-based one [26]. 

This paper first presents a detailed description of the main 

parts that constitute the proposed method. Second, by using 

realistic 2D breast models and applying an ideal cleaning 

technique, we present the results obtained in the case of 

tumors positioned both outside and inside the fibro-glandular 

tissues. Moreover, during these first analyses, the use of two 

different UWB pulses is assessed. In the third part, because of 

the best results obtained especially for tumors located outside 

the fibro-glandular tissues, we focused on this problem by 

considering a more generic and realistic scenario of testing 

data. In particular, we assessed the performance in the case 

where a realistic model-based skin artifact removal technique 

[26] was used. Moreover, some test on a realistic 3D breast 

model with ideally cleaned radar signals were also performed. 

Finally, the improvements introduced by the application of the 

proposed diagnostic criterion are presented, and a conclusions 

section closes the paper. 

II. MATERIALS AND METHOD 

In this section, the main issues and characteristics of the 

proposed approach are described through the following five 

topics: geometries and system configuration, signal pre-

processing, ANN processing, diagnostic criterion, and analysis 

of single backscattered radar signals. 

A. Geometries and System Configuration 

We assumed the patient lying in the prone position. The 

acquisition system consists of a mono-static radar system that 

collects the backscattered signals in different space locations. 

The measurement points are situated along a circumference 

around the breast and at different distances from the chest. 

In this context, to assess the performance of our ANN-

based radar data processing approach, we considered a set of 

2D healthy and cancerous breast geometries. In order to work 

with the most significant possible scenario, these geometries 

were derived from the 3D realistic breast models that are 

freely provided by the UWCEM database [27]. Each of these 

geometries distinguishes eight different typologies of healthy 

breast tissue, namely, the skin, three types of adipose tissue, a 

transitional tissue, and three different typologies of fibro-

glandular tissue. 

In the present work, starting from such models, we built 

different 2D breast geometries taking into account different 

cross sections. In order to describe a broader set of breasts 

characterized by different densities, the values for the 

dielectric characterization of each internal tissue, according to 

the Debye parameters, namely the static relative permittivity 

(εs), the relative permittivity at infinite frequency (ε∞), the 

conductivity (σ), and the relaxation time (τ), were randomly 

chosen within the range of the values provided by [27]. In 

conclusion, each healthy breast geometry was built by 

randomly choosing the UWCEM model, the section, and the 

Debye parameters (εs, ε∞, σ, τ) for the dielectric 

characterization of the internal tissues. The cancerous 

geometries were built by starting with new healthy geometries, 

chosen in the same randomly way, in which we inserted a 

dielectric anomaly of different width, with random diameter 

values chosen between 0.2 cm and 1 cm, and different depths 

randomly chosen between 0.5 cm from the outer skin surface 

and the center of the probing line. The Debye parameters for 

the tumor were obtained by minimizing a suitable cost 

function [28] from the Cole-Cole representation provided in 

[29]. In particular, it was characterized by an εs of 61.6, ε∞ of 

14.5, σ of 0.7 S/m, and a τ of 13 ps. 

For each radar angular position, the breast geometry is 

illuminated with a UWB pulse, and the time wave of the 

backscattered signal is obtained through numerical simulation 

performed by means of the finite-difference time-domain 

(FDTD)-based open source software GprMax [30]. Following 

the latest proposals in the literature [15, 16, 23, 25, 31], the 

illuminating signal consists of a differentiated Gaussian pulse 

(DGP). Compared to the simple Gaussian pulse, the DGP 

provides a higher backscattered signal strength and, 

consequently, it is more suitable in detecting deep targets that 

are sparsely distributed [32]. 

 

 
Fig. 1. UWB pulses used as incident signals: (a) DGP of 1 ns and central 
frequency 2 GHz; (b) DGP of 0.3 ns and central frequency 6 GHz. 

 

In the present work, the performance of two different DGP 

pulses was assessed, namely, a DGP with a duration of 0.3 ns 
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and central frequency 6 GHz, and a DGP with a duration of 1 

ns and central frequency 2 GHz. A graphic representation of 

these pulses is shown in Fig. 1. 

 

 
Fig. 2. Comparison between a backscattered radar trace and its cleaned 

version. (a), (c) DGP with central frequency 2 GHz. (b), (d) DGP at 6 GHz. 

(a), (b) Waveforms of the total backscattered radar signals measured on a 

cancerous geometry. (c), (d) The radar signals after the application of the ideal 
cleaning technique, where the tumor signal contribution is marked in red. 

B. Signal Pre-Processing 

Once the backscattered radar signals are collected, suitable 

and significant data are extracted in order to train and test 

ANNs to detect the presence of a tumor. Unfortunately, as 

mentioned previously, the backscattered signals do not contain 

only the reflections due to the presence of the healthy and 

malignant internal breast tissues; they also contain those due 

to the presence of the skin. This is a problem because the 

predominant nature of the skin artifact component makes it 

difficult to choose suitable data that best characterize the 

presence of a tumor. 

In order to better focus on this problem, Fig. 2 shows a 

comparison between the radar signals obtained before and 

after the application of an ideal cleaning technique that 

consists of the removal of the known skin response. In 

particular, the ideally cleaned radar signal is obtained by 

subtracting, from the total backscattered signal, the signal 

measured on a geometry with equal shape and dimensions but 

formed by only the skin and adipose tissue. Fig. 2(a) and 2(c) 

show the signals measured by using the DGP incident pulse 

with central frequency 2 GHz, whereas Fig. 2(b) and 2(d) 

show the signals obtained with the DGP at 6 GHz. Fig. 2(a) 

and 2(b) show the total backscattered radar signals measured 

on a realistic geometry, and Fig. 2(c) and 2(d) present the 

same radar signals after the application of the ideal cleaning 

technique. The total radar signals were measured on a 2D 

realistic cancerous breast geometry in which a dielectric 

anomaly, with a diameter of 6 mm, was inserted at a depth of 

1.5 cm from the outer skin surface. 

Comparing the cleaned signals with the corresponding 

total ones, it is possible to observe that the skin artifact 

component is predominant and of different orders of 

magnitude higher with respect to the other signal components. 

Moreover, it overlaps the reflections of the internal tissues, 

masking the contribution of the signal that contains the 

information inside the breast geometry. These considerations 

highlight the necessity to apply a cleaning technique in order 

to extract significant information on the presence of dielectric 

anomalies. 

Finally, because of the non-circular shapes of the 2D 

realistic breast geometries, the distance between the antenna 

and the skin is not constant, and the times of arrival and the 

amplitudes of the measured backscattered signals change 

because of the varying mono-static radar position. In order to 

reduce this space-temporal error, we equalized the times and 

amplitudes. With a cross-correlation technique, the time of 

arrival of the total backscattered signal is computed for each 

radar position, and the resulting values are used to choose a 

zero reference time for all the recorded radar signals. 

Moreover, the signal amplitude is multiplied by a coefficient 

that considers the temporal shift. 

C. ANN Processing 

Starting from the cleaned and equalized radar signals, we 

propose to use the amplitudes (A1, … Ai, … AN) and the arrival 

times (t1, … ti, … tN) of N suitable local maxima and minima 

as significant data to train and test the artificial neural 

network. 

The ANN used in the present method is a multilayer feed-

forward fully connected network [33]. It is formed by an input 

layer, an output layer, and one or more hidden layers. 

Moreover, each node of each layer is connected to every one 

of the adjacent layers. The number of nodes that we used for 

the input layer and for the hidden ones will be discussed in the 

following sections. For the purposes of the diagnostic method, 

it is instead important to note that we always used ANNs 

having as the output layer only a single node that provides a 

signal of type Yes/No, depending on the presence (Yes) or 

absence (No) of the tumor. 

D. Analysis of Single Backscattered Radar Signals 

The mandatory objective of our approach is first to 

develop an accurate algorithm that can detect cancer by 

working on a single radar trace. In this context, a fundamental 

step is to choose the information contained in the radar signal 

in order to extrapolate data that best characterize the presence 

of the tumor. To this end we analysed many radar signals 

obtained for several healthy breast geometries in which a 

dielectric anomaly was inserted under different conditions. 

The reached conclusions can be described considering the 

situations reported in Fig. 3. 

Fig. 3(a), 3(c), and 3(e) show the signals measured by 

illuminating the geometry with the DGP with central 

frequency 2 GHz, whereas Fig. 3(b), 3(d), and 3(f) show the 

signals obtained with the DGP at 6 GHz. In particular, Fig. 

3(a) and 3(b) present the cleaned radar signals measured on 

the breast geometry in absence of the tumor. Fig. 3(c) and 3(d) 

show the radar signals measured, on the same healthy 

geometry, in the case where a dielectric anomaly of diameter 6 

mm is inserted at 1.5-cm depth from the outer skin surface and 

outside the fibro-glandular tissues. Fig. 3(e) and 3(f) report the 

radar signals measured in the case where the same dielectric 

anomaly has been inserted at 1-cm depth inside the fibro-
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glandular tissues, corresponding to 3-cm depth from the skin 

surface. 

Comparing Fig. 3(a) and 3(b) with Fig. 3(c) and 3(d), 

shows that, if the tumor is positioned outside the fibro-

glandular tissues, the only the first part of the cleaned radar 

signal is more influenced by its presence. In fact, the greatest 

differences occur in the time interval between 0.5 ns and 1.5 

ns. 

In contrast, if a tumor is positioned inside the fibro-

glandular tissues, the first part of the cleaned radar signal does 

not change significantly. In Fig. 3(a) and 3(e), namely in the 

case of the DGP with a 2-GHz central frequency, the major 

differences are contained in the time interval between 1.5 ns 

and 2.5 ns. Similarly, in Fig. 3(b) and 3(f), with the DGP at 6 

GHz, the major differences are contained in the time interval 

between 1 ns and 2 ns. 
 

 
Fig. 3. Ideally cleaned and equalized radar signals measured on a healthy 

geometry in which a dielectric anomaly is inserted under different conditions. 

(a), (c), (e) DGP with central frequency 2 GHz. (b), (d), (f) DGP at 6 GHz. (a) 

and (b) Healthy breast geometry in absence of the tumor. (c) and (d) Tumor of 
6-mm diameter positioned outside the fibro-glandular tissues at 1.5-cm depth 

from the skin surface. (e) and (f) Same tumor positioned 1 cm inside the fibro-

glandular tissues and at 3-cm depth from the outer skin surface. The signal 
tumor contribution is marked in red. 

 

 
Fig. 4. Schematic flow chart of the detection algorithm applied to each 

single radar trace. The total backscattered radar signal is first pre-processed 

and suitable radar data, I1 and I2, are extracted. Then, I1 and I2 are processed 

by the corresponding ANN in order to detect the presence of tumors 
respectively located outside and inside the fibro-glandular tissues. 

These considerations suggest we research the tumors that 

are located outside and inside the fibro-glandular tissues 

separately. In this way, a process able to detect tumors 

positioned outside the fibro-glandular tissues is separately 

applied using only the first part of the cleaned radar signal, 

whereas another process is applied using the second part of the 

same signal in order to detect the presence of internal tumors. 

Fig. 4 shows a schematic flow chart of the detection 

algorithm that we propose for single radar trace processing. 

Following this representation, from the cleaned and equalized 

radar signals, two sets of data, I1 and I2, are extracted and 

provided to their properly specialized ANNs. These ANNs are 

described in detail in the next section. 

E. Diagnostic Criterion 

As previously described, the first key step of the present 

approach is to extract useful and suitable information from any 

single radar trace recorded for each different angular position. 

Nevertheless, in order to improve the detection accuracy, we 

propose a diagnostic criterion based on a collective analysis of 

all the obtained results. 

Because our approach provides only a Yes/No answer for 

each single radar position, and each answer may be a false-

positive or a false-negative result, we aim to assess the 

capability to reach a reliable diagnostic response by giving 

credibility to a Yes answer only when such output is obtained 

consecutively for a given arc, or for a given percentage of Yes 

inside it, and not to isolated positive detection positions. The 

same procedure is applied for the negative tumor diagnosis. 

Based on this idea, it will be possible not only to improve 

the specificity and sensitivity values of the whole diagnostic 

process, but also to better localize the angular sector where the 

tumor is located. 

III. RESULTS AND DISCUSSION 

A. Tumors Positioned Outside the Fibro-glandular tissues 

In this section, we present the ANN architecture designed 

for the detection of tumors located outside the fibro-glandular 

tissues. As mentioned in Section II.D, in these situations, it is 

valid to assume that the information on the tumor presence is 

contained in the first part of the cleaned and equalized radar 

signal. Following these considerations, as shown in Fig. 5, we 

exploited the information contained in the first two local 

maxima/minima of the cleaned radar signals. In particular, 

Fig. 5(a) highlights the first two peaks of the cleaned signal 

measured by using the DGP with central frequency 2 GHz, 

whereas Fig. 5(b) presents the case of the DGP at 6 GHz. 

In this section, with the aim of preliminarily assessing the 

capabilities of our ANN-based detection approach, we 

obtained the cleaned radar signals by applying an ideal 

cleaning technique. As mentioned in Section II.B, it consists 

of subtracting, from the total backscattered radar signal, the 

signal that is measured on a geometry with equal shape and 

dimension but formed by only the skin and adipose tissues, 

where these two tissues have the same Debye dielectric 

characterization of the respective realistic geometry. 

We used an ANN architecture of type 4-8-1. It receives 

four input data, namely the amplitudes and arrival times of the 
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first two maxima/minima measured on the ideally cleaned 

radar signals, and provides one output of type Yes/No, 

depending on the presence or absence of the tumor. This ANN 

has one hidden layer of eight nodes. According to the number 

of degrees of freedom of the ANN 4-8-1, the network is 

trained with 100 training data, namely 50 measured on healthy 

geometries (NT) and 50 measured on cancerous geometries 

(T). Using this ANN architecture, we trained two different 

networks: the first by using the radar signals measured in the 

case of the DGP at 2 GHz (hereafter named ANN-4-8-1-Text-

2-GHz), and the second by using the DGP at 6 GHz (hereafter 

named ANN-4-8-1-Text-6-GHz). 

For the purposes of training the ANN, we positioned the 

anomaly by respecting one constraint: the anomaly must be 

the first internal discontinuity that the radar signal encounters 

within the geometry of the breast. An example of such a 

geometry is shown in Fig. 6. 

The results on the training data gave a tumor detection 

accuracy of 100%. This means that the ANN was able to 

match all the given pairs of input-output examples correctly. 

In order to assess the generalization capabilities of the two 

ANNs, we generated two new sets of 100 test data, namely 50 

T and 50 NT. The first set was obtained by using the DGP at 2 

GHz, and the other by using the DGP at 6 GHz. The test data 

were simulated by always respecting the constraint on the 

tumor’s position. Table I shows the results in terms of the 

confusion matrix for ANN-4-8-1-Text-2-GHz, and Table II 

shows the results obtained for ANN-4-8-1-Text-6-GHz. Table 

I shows that, in the case of the DGP at 2 GHz, the method can 

detect the presence of the anomaly with a sensitivity of 92%, a 

specificity of 90%, and an accuracy of 91%. By contrast, when 

the DGP at 6 GHz is used, the anomaly is detected with a 

sensitivity of 88%, a specificity of 78%, and an accuracy of 

83%. 
 

 
Fig. 5. Ideally cleaned and equalized radar signal measured on a 2D 

realistic heterogeneous geometry. (a) DGP at 2 GHz. (b) DGP at 6GHz. 
 

 
Fig. 6. Example of a cancerous geometry in which a dielectric anomaly of 

diameter 4 mm is located outside the fibro-glandular tissues at a depth of 0.5 
cm from the skin surface. The blue colors indicate the three typologies of 

fibro-glandular tissue, the green parts represent the intermediate tissue, and 

the red colors indicate the three typologies of adipose tissue. 
 

TABLE I. Confusion matrix, ANN-4-8-1-Text-2-GHz, 100 testing examples, 

constraints on the T location, and ideal cleaning technique. 
The overall accuracy is 91%. 

Type 
Test 

Number 

ANN Output ANN Performance (%) 

Yes No Sensitivity Specificity 

T 50 46 4 92 / 

NT 50 5 45 / 90 

TABLE II. Confusion matrix, ANN-4-8-1-Text-6-GHz, 100 testing examples, 

constraints on the T location, and ideal cleaning technique. 
The overall accuracy is 83%. 

Type 
Test 

Number 

ANN Output ANN Performance (%) 

Yes No Sensitivity Specificity 

T 50 44 6 88 / 

NT 50 11 39 / 78 

B. Tumors Positioned Inside the Fibro-glandular tissues 

This section focuses on the problem of detecting tumors 

located inside the fibro-glandular tissues. Following the 

concepts explained in Section II.D, in order to best 

characterize the presence of the tumor, we searched for 

suitable information by using the second part of the cleaned 

and equalized radar signals. 

In order to train and test the new ANNs, we built new 

healthy and cancerous geometries with the dielectric anomaly 

positioned inside the fibro-glandular tissues. An example of 

such a geometry is shown in Fig. 7. Starting from the ideally 

cleaned and equalized radar signals, different network 

architectures—having a different number of both hidden 

layers and nodes, and providing only one output node of type 

Yes/No—were trained and tested. In particular, we trained 

different ANNs that receive six input data, namely the 

amplitudes and arrival times of the 3
rd

, 4
th

, and 5
th

 

maximum/minimum of the cleaned and equalized radar 

signals. 

 

 
Fig. 7. A cancerous geometry in which a dielectric anomaly of diameter 4 

mm is located inside the fibro-glandular tissues at a depth of 3.5 cm from the 

skin surface. The blue colors indicate the three typologies of fibro-glandular 
tissue, the green parts represent the intermediate tissue, and the red colors 

indicate the three typologies of adipose tissue. 

 
TABLE III. Confusion matrix, DGP at 2 GHz, 100 testing examples, and ideal 

cleaning technique. The overall accuracy is 68%. 

Type 
Test 

Number 

ANN Output ANN Performance (%) 

Yes No Sensitivity Specificity 

T 50 37 13 74 / 

NT 50 19 31 / 62 

 
TABLE IV. Confusion matrix, DGP at 6 GHz, 100 testing examples, and ideal 

cleaning technique. The overall accuracy is 51%. 

Type 
Test 

Number 

ANN Output ANN Performance (%) 

Yes No Sensitivity Specificity 

T 50 28 22 56 / 

NT 50 27 23 / 46 

 

In order to test the ANNs, we generated two new sets of 

100 test data, each with 50 T and 50 NT; the first obtained by 

using the DGP at 2 GHz and the second with the DGP at 6 

GHz. Table III and Table IV show the best results in terms of 

the confusion matrix obtained respectively for the DGP at 2 

GHz and at 6 GHz. Unfortunately, comparing the Tables III 

and IV shows that only the use of the DGP at 2 GHz had 

acceptable results by providing a tumor detection accuracy of 

68%. 
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C. Robustness Assessment Study of ANN-4-8-1-Text-2-GHz 

In the previous sections, we showed the best results, 

reported in Table I, obtained by using ANN-4-8-1-Text-2-

GHz. This network is specialized for the detection of tumors 

located outside the fibro-glandular tissues by working on the 

input data that are extracted from the cleaned radar signals 

measured by using the DGP at 2 GHz. Because the previous 

analyses were performed considering a limited scenario and 

ideally cleaned radar signals, in this section, we present a 

robustness assessment study of such a network. 

First, we will consider a larger data set for which the tumor 

is positioned without the constraint before used (see Section 

III.A). For this dataset we introduced also the case when the 

anomaly is positioned in contact with the outer surface of the 

fibro-glandular tissues. Moreover, an analysis of the 

sensitivity, when varying both the depth and dimensions, is 

presented. 

As the second step, we assess the performance in the case 

when the skin response is suppressed by using a realistic 

model-based skin artifact removal technique. 

Finally, the network is tested by using the data ideally 

cleaned but measured on a realistic 3D breast model. 

a) Generic testing data without constraints on the tumor 

position 

In order to test the ANN in a more general way, we 

generated 2000 new realistic geometries, 1000 T and 1000 

NT, with the anomaly positioned outside the fibro-glandular 

tissues but without any constraint. An example of such a 

cancerous geometry is shown in Fig. 8. The cleaned radar 

signals were obtained by applying the ideal cleaning technique 

discussed in Section II.B. 

Table V shows the results in terms of the confusion matrix. 

The table shows that the network detected the tumor with a 

sensitivity of 81%, a specificity of 79%, and an accuracy of 

80%. 

Fig. 9 shows a histogram that summarizes the sensitivity 

when considering, among the 1000 T cases used for Table V, 

different single classes according to the depth and dimension 

of the tumor. The depth is measured from the outer surface of 

the skin. The figure shows that in the case where the tumor’s 

depth ranges between 0.5 cm and 1.5 cm, the sensitivity is 

71% in the case of tumors diameter between 2 mm and 4 mm, 

94% for diameters between 4 mm and 6 mm, 88% for 

diameters between 6 mm and 8 mm, and 79% for diameters 

between 8 mm and 10 mm. In contrast, for tumor depths 

greater than 1.5 cm, the sensitivity is 77% for tumor diameters 

between 2 mm and 4 mm, 71% for 4-mm–6-mm diameters, 

74% for 6-mm–8-mm diameters, and 9% for 8-mm–10-mm 

diameters. It worth noting that, if the analysis is limited to 

tumors with depths ranging between 1,5 cm and 2.5 cm, the 

sensitivity reaches the 70%. Moreover, if among the 1000 T 

cases used for Table V we exclude the tumors with depth 

greater than 2.5 cm, the global sensitivity increases to 83%. 

 

 
Fig. 8. Example of a cancerous geometry used for the general test with 

2000 examples. A tumor of diameter 4 mm is positioned at a depth of 1 cm 

from the skin surface. 
 

TABLE V. Confusion matrix, ANN-4-8-1-Text-2-GHz, 2000 testing 

examples, no constraints on the T location, and ideal cleaning technique. 
The overall accuracy is 80%. 

Type 
Test 

Number 

ANN Output ANN Performance (%) 

Yes No Sensitivity Specificity 

T 1000 810 190 81 / 

NT 1000 214 786 / 79 
 

 
Fig. 9. The sensitivity for different classes of the depth and dimension of 

the tumor. The 1000 cancerous geometries used for Table V were here 
considered. 

 

b) Application of a model-based skin artifact removal 

technique 

In the previous sections, ANN-4-8-1-Text-2-GHz was 

assessed by using input data measured on ideally cleaned radar 

signals. The analysis of the network’s performance when 

applied to an ideal scenario is important in order to provide a 

baseline performance of the algorithm. However, a review of 

the literature on the topic of skin suppression techniques [22, 

23, 24, 25], suggests that effective skin response suppression 

is a challenging task. In fact, in a realistic scenario, the skin 

response suppression algorithm may suppress the skin 

response, but significant residual effects may be present after 

the algorithm is applied. Moreover, the skin response 

suppression algorithm may alter the tumor response and 

degrade the performance of the detecting technique. In this 

section, we present an analysis of the performance of our 

ANN-based approach in the case where the backscattered 

fields are processed with a realistic model-based skin artifact 

removal algorithm, already proposed by the authors [26]. 

This technique includes the use of a reference cleaning 

model to obtain the backscattered signal to be used as the 

cleaning signal. This last is subtracted from the total real one 

in order to obtain the cleaned signal. The reference model 

consists of a bi-layered cylinder (skin and adipose tissue) 

characterized by suitable dielectric Debye parameters for each 

of these two tissues. Other important parameters for its 

characterization are the skin thickness, the radius, and the 

distance between the skin interface and the radar antenna. 

In [26], the introduced signal distortions were found to be 

minimized in the case where a reference cleaning model with 

a radius of 11 cm is used by placing it at the same real 

distance between the skin and the antenna. Moreover, the best 
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results were obtained under the hypothesis of knowing the real 

values of the skin thickness and the static dielectric 

permittivity (εs) of both the skin and adipose tissue, while the 

other dielectric parameters (ε∞, σ, and τ) are fixed at average 

standard values. These last were obtained by averaging the 

range of values provided in the literature [27]. 

Respecting these constraints, we configured the reference 

cleaning models and applied the model-based skin artifact 

removal algorithm to the 2000 realistic models used and 

described in Section III.C.a. After the cleaned signals were 

obtained, the amplitudes and arrival times of the first two 

maxima/minima were measured and tested on the ANN-4-8-1-

Text-2-GHz. The resulting confusion matrix is reported in 

Table VI, and it shows that the network detected the tumor 

with a sensitivity of 78%, a specificity of 74%, and an 

accuracy of 76%. 

Moreover, in [26], satisfactory results were achieved also 

in the case where more generic reference cleaning models 

were used. These last are characterized by average standard 

values for all the Debye dielectric parameters (εs, ε∞, σ, and τ) 

of both the skin and adipose tissue. The standard values are 

obtained by averaging the range of values provided in [27]. 

Because better results are obtained where the network is 

trained using training data measured on radar signals cleaned 

by using the generic reference cleaning models [26], we 

trained a new network, named ANN-4-8-1-Text-2-GHz-

Generic-Model-Based, by using the generic reference cleaning 

models made up of dielectric standard values. Table VII 

shows the results obtained by testing the new network by 

using the same 2000 realistic breast models described in 

Section III.C.a, and the generic model-based cleaning 

technique. 

Table VII shows that the tumor is detected with a 

sensitivity of 74%, a specificity of 73%, and an accuracy of 

74%. 

This last result is highly interesting because it means that a 

satisfactory accuracy can be reached also in the case when a 

skin suppression algorithm is applied without any a priori 

knowledge of both the dielectric and geometric properties of 

the skin and the adipose tissue, as happens in practical 

situations. The only parameter that was assumed to be known 

is the skin thickness. 

c) Test with a 3D realistic cancerous breast model 

In this section, we present the results obtained by testing 

ANN-4-8-1-Text-2-GHz with data obtained in the case of a 

realistic 3D breast model available on the UWCEM database. 

In particular, in our simulations we used the breast phantom, 

identified in such a database by ID 010204, which belongs to 

the so called scattered fibro-glandular class. The Debye 

parameter values used for the dielectric characterization of the 

healthy tissues are reported in Table VIII [27]. 
 

TABLE VI. Confusion matrix, ANN-4-8-1-Text-2-GHz, 2000 testing 
examples, no constraints on the T location, and model-based cleaning 

technique. The overall accuracy is 76%. 

Type 
Test 

Number 

ANN Output ANN Performance (%) 

Yes No Sensitivity Specificity 

T 1000 784 216 78 / 

NT 1000 257 743 / 74 

TABLE VII. Confusion matrix, ANN-4-8-1-Text-2-GHz-Generic-Model-

Based, 2000 testing examples, no constraints on the T location, and generic 
model-based cleaning technique. The overall accuracy is 74%. 

Type 
Test 

Number 

ANN Output ANN Performance (%) 

Yes No Sensitivity Specificity 

T 1000 742 258 74 / 

NT 1000 267 733 / 73 

 

The tumor was dielectrically characterized with a static 

relative permittivity (εs) of 61.6, a relative permittivity at 

infinite frequency (ε∞) of 14.5, a conductivity (σ) of 0.7 S/m, 

and a relaxation time (τ) of 13 ps. 

The network was tested for different tumor situations 

obtained by positioning the anomaly always at a depth of 1.5 

cm from the skin surface but at three different distances from 

the chest (2 cm, 5 cm, and 8 cm). For each position, we 

considered tumors of different diameters: 2 mm, 4 mm, 6 mm, 

8 mm, and 10 mm. Fig. 10 shows a sagittal section of the 3D 

model in the case where a tumor with a diameter of 4 mm is 

positioned at a depth of 1.5 cm from the skin and at a distance 

of 5 cm from the chest. 

In order to suppress the skin reflections, we applied the 

ideal technique described in Section II.B. Starting from the 

ideally cleaned radar signal, we extracted both the amplitudes 

and arrival times of the first two maxima/minima, and we used 

them to test the network previously trained and tested for 2D 

geometries (ANN-4-8-1-Text-2-GHz). 

From all the obtained results, we found that this network 

correctly detected tumors positioned at a depth of 1.5 cm and 

characterized by a diameter as small as 2 mm. 

D. Diagnostic Criterion Assessment 

In this section, we report some numerical results that were 

obtained by applying the diagnostic criterion described in 

Section II.E. Because our aim is to preliminarily assess the 

improvements that can be reached, we choose to present the 

performance introduced in the case when the algorithm is 

applied to an ideal scenario, namely, when the cleaned radar 

signals are obtained by using the ideal cleaning technique 

described in Section II.B. 

In this context, we considered the case of tumors 

positioned outside the fibro-glandular tissues when the DGP at 

2 GHz is used, and we analyzed 10 2D realistic breast models 

(five T and five NT) chosen from the 2000 models described 

in Section III.C.a. For each of these we collected 72 different 

radar signals by positioning the mono-static radar antenna in 

72 different angular positions around the breast geometry. 

Starting from the ideally cleaned and equalized radar signals, 

the amplitudes and arrival times of the first two 

maxima/minima were measured, and ANN-4-8-1-Text-2-GHz 

was tested. In fact, applying the diagnostic criterion on the 

outcomes provided by the network, we obtained highly 

satisfactory results. 

In the case of the NT geometries, even if the network 

wrongly detected the anomaly as malignant in isolated angular 

positions, by applying the diagnostic criterion the definitive 

outcomes of our ANN-based detection approach furnished 

only true-negative results. Moreover, for the T geometries, the 

obtained results prove that the ANN produced Yes answers in 
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some isolated angular positions but also consecutively inside a 

cone of approximately 30° centered on the tumor's location. 

 
TABLE VIII. Values of the Debye parameters used for dielectric 

characterization of healthy breast tissues. 

Breast Tissue εs ε∞ σ [S/m] τ [ps] 

Fibrogland-1 54.690 14.200 0.824 13.00 

Fibrogland-2 49.360 13.810 0.738 13.00 

Fibrogland-3 37.390 12.990 0.397 13.00 

Intermediate 22.461 8.4890 0.239 13.00 

Adipose-1 7.532 3.987 0.080 13.00 

Adipose-2 4.708 3.116 0.050 13.00 

Adipose-3 3.952 2.848 0.005 13.00 

Skin 39.760 15.930 0.831 13.00 

 

 
Fig. 10. Sagittal section of the used 3D model. A tumor of 4-mm diameter 

is positioned at a depth 1.5 cm from the skin and at a distance 5 cm from the 
chest. 

 

Because the true-positives were detected under angles of 

approximately 30° of consecutive malignant positive 

detections, and the true-negatives were detected under larger 

angles of consecutive non-malignant negative detections, we 

found it acceptable to give credibility only to arcs of at least 

30° of consecutive Yes, or at least containing a percentage of 

them greater than a fixed threshold. For the analyzed cases, 

such a percentage was always at least 70% for angles of 30°. 

As examples, in Fig. 11, 12, and 13, we show three of the 10 

studied geometries. 

In particular, Fig. 11 shows an NT geometry on which, for 

all the angular positions, the outcomes of the ANN are 

reported. The isolated false-positives are highlighted in red as 

Yes points. The correct diagnosis is obtained by giving 

credibility only on the arcs of negative detections (the black 

points). 

Fig. 12 shows the outcomes obtained by testing a 

cancerous geometry. All the malignant detections are 

highlighted as Yes points. The figure shows that the tumor is 

detected as malignant under an angle of approximately 30° of 

consecutive Yes points. 

Finally, Fig. 13 shows the case of a T geometry for which, 

inside the arc of Yes, there is a single isolated No answer. In 

this case, by giving more credibility to the arc of Yes, we 

avoid failure in the case of a false-negative result. 

The above considerations highlight the importance of 

applying the diagnostic criterion in order to provide high 

values of sensitivity and specificity, reaching for the cases 

here presented an accuracy of 100%, but also the possibility of 

correctly localizing the angular position of the detected tumor. 

 
Fig. 11. Representation of a healthy breast geometry for which the ANN 

detects the presence of a malignant tumor only on single isolated angular 

positions (marked in red). 

 

 
Fig. 12. Representation of a cancerous breast geometry for which the 

ANN identifies the anomaly as malignant in a cone of different positions 

centered on the location of the T and in other single isolated positions (marked 
in red). The tumor is correctly detected under a 30° angle of 100% 

consecutive single malignant detections. 

 

 
Fig. 13. Representation of a cancerous geometry for which there is one 

isolated incorrect result inside the arc of Yes detections. The tumor is 
correctly detected under a 30° angle with 85% of single malignant detections 

(marked in red). 

IV. CONCLUSIONS 

In this paper, we presented a new UWB radar technique 

for breast cancer detection based on the use of artificial neural 

networks. Our purpose was not to achieve imaging of 

cancerous breasts, but to provide a Yes/No diagnostic tool 

with the highest possible accuracy. The first key step is the 

ANN processing of any single radar trace recorded around the 

breast to determine the presence or absence of a tumor. Then, 

a diagnostic criterion is applied on the basis of a collective 

evaluation. 

The numerical assessments were conducted by using 2D 

and 3D healthy and cancerous breast geometries derived from 

the models of the UWCEM database. A mono-static radar 

configuration was assumed to measure the simulated 

backscattered signals along a circular line around the breast 

and at different distances from the chest. 

First, by using realistic 2D breast models and an ideal skin 

artifact removal technique, we studied the cases of tumors 

located both outside and inside the fibro-glandular tissues. 

Moreover, two different UWB incident pulses were assessed. 

The best results were obtained by using the differentiated 
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Gaussian pulse with a central frequency of 2 GHz: in the case 

of tumors located outside the fibro-glandular tissues, an 

overall accuracy of 91% on 100 testing data was achieved, 

whereas for the tumors positioned inside the fibro-glandular 

tissues the accuracy was 68%. 

Because of the successful results obtained in the case of 

tumors located outside the fibro-glandular tissues, we focused 

on this topic and presented a robustness assessment study by 

using a more generic and realistic scenario of testing data. 

First, the ANN was tested by considering a larger and more 

generic set of examples consisting of 2000 2D breast 

geometries. The results showed the ability to detect tumors 

with a sensitivity of 81%, a specificity of 79%, and an overall 

accuracy of 80%. Moreover, when excluding tumors with 

depth from the outer skin surface greater than 2.5 cm, the 

sensitivity increases to 83%. Second, we assessed the 

performance in the case where a realistic model-based skin 

artifact removal technique is used in order to remove the 

strong skin reflections. In this situation, the tumor was 

detected with a sensitivity of 74%, a specificity of 73%, and 

an accuracy of 74%. Moreover, the ANN was tested by using 

a realistic 3D breast model. In this realistic case, our proposed 

technique correctly detected tumors characterized by 

diameters as small as 2 mm, located at different distances from 

the chest, and at a depth of 1.5 cm from the skin surface. 

Finally, we applied the proposed diagnostic criterion to 10 

realistic 2D geometries. For the cases here considered, we 

found that it reduces incorrect diagnostic responses completely 

to zero, furnishing in the same time the exact angular position 

of the tumor. 
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