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Abstract— In this paper a mathematical model for the cart triple 

inverted pendulum system is first presented using Lagrange equation 

in details. This model is then used to design a controller based on the 

LQR method to maintain the triple inverted pendulum on a cart 

around its unstable equilibrium position using single control input. 

The stability, controllability and observability are investigated and 

the choice of weights in LQR also discussed. Main focus is to 

introduce how to build the mathematical model and the analysis of 

the system’s performance. The system is simulated in MATLAB 

environment and the simulation results establish the satisfactory 

performance of LQR controller in stabilizing the system. 

 

Keywords—Linear quadratic regulator, triple link inverted 

pendulum, matlab, system performance. 

I. INTRODUCTION 

The inverted pendulum is a classical bench mark problem in 

dynamics and control theory. Its dynamics is similar to many 

real world systems for instance humanoid robots, missile 

launchers, human walking, Segway, automatic aircraft landing 

system, biped locomotive machines, flexible space structures 

and many more industrial applications. Control of the Inverted 

pendulum system has been one of the challenging topics in 

control theory [1].It is highly unstable, highly nonlinear, non-

minimum phase and under actuated system. Because of these 

features it reveals many interesting system theoretic 

properties. Additionally we consider inverted pendulum 

mounted on a cart. So, the physical constraints on the track 

position, control voltage etc. adds up to the complexity of the 

design. It is widely used as benchmark problem for testing 

control algorithms. A variation on this problem includes 

multiple links. The complexity increases as the number of link 

increases. 

There are various types of pendulum such as, the simple 

inverted pendulum, the rotary inverted pendulum, double 

inverted pendulum, the rotary double inverted pendulum [2].In 

this paper we have considered a triple link inverted pendulum 

mounted on a cart. The TLIP system is a SIMO (Single input 

multi Output) system. This kind of pendulum system is 

difficult to control due to the inherent instability and nonlinear 

behavior. In this paper, a continuous time linear quadratic 

regulator (LQR) with degree of stability is used for stabilizing 

the triple link inverted pendulum. The main aim of our work is 

to improve the overall performance of the cart TLIP system. a 

state space design approach is used as it well suited to the 

control of multiple outputs as we have. The concept of 

stability, controllability and observability is also discussed. 

We will attempt to control both the pendulum’s angle and 

cart’s position. The rest of the paper deals with section 2 

explain the mathematical modeling of the cart TLIP system. 

Section 3 is associated with designing of LQR controller with 

degree of stability, section 4 with simulation and results and 

section 5 with conclusion. 

II. MATHEMATICAL MODELING 

The mathematical model of the cart TLIP system is 

obtained by Euler’s Lagrange equation. [4], [5] The schematic 

of the system is shown below. The pendulum consists of three 

links of different lengths which are mounted on a cart., u is 

external action; x is displacement of cart; θ1, θ2, θ3 are the 

angles of the lower, middle, and upper pendulum bars 

respectively with respect to the vertical line; m0 is the mass of 

the cart; m1, m2, m3 are the Centre masses of the lower, 

middle, upper pendulum bar respectively; L1,L2,L3 are the 

length of the lower, middle ,upper pendulum 

respectively.l1,l2,l3 are the centroid of the lower, middle, 

upper pendulum bar respectively f0 is the friction factor of cart 

and track, f1 is the friction factor of lower pendulum and 

cart,f2 is the friction factor of middle and lower pendulum,f3is 

the friction factor of middle and upper pendulum; J1, J2, J3 are 

the rotary inertia of lower, middle and upper pendulum bar 

respectively, Ks is the overall system’s input conversion gain 

 
Fig. 1. Schematic of cart TLIP. 
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The generalized Euler-Lagrange equation is given as  
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Where, Lagrange function (Lagrangian), 

L = T – V 

T = Total Kinetic energy of the system 

V = Total Potential energy of the system 

W = Work done against friction (Dissipative forces) 

q1, q2……………, qs are the generalized coordinates of the system 

The kinetic, potential and friction dissipation energies are 

given as follows: the kinetic energy is 
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The total potential energy of the system is 
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The Lagrange function of Triple Link Inverted Pendulum 

System is: 

 (            ̇   ̇   ̇   ̇)                                           (4) 
The work done against friction 
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The mathematical model of the triple inverted pendulum is 

constructed based on the Lagrange equations [12] 
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The non-linear model described by (6) is linearized about 

upright position i.e. 
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Where, the coefficients are given as: 
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The linear model of the triple link inverted pendulum is 

represented in state-space form as follows:  
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Where,       
            

           
      

The state vector is defined by: 

   X = ,                 ̇  ̇    ̇     ̇ -
T                                                                 

 (9) 

The coefficient matrices of state equation (8) of cart triple 

inverted pendulum after putting the parameter values 

mentioned in APPENDIX are as follows: 
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III. CHARACTERISTICS ANALYSIS 

After obtaining the mathematical model of the system 

features, we need to analyze the stability; controllability and 

observability of system’s in order to further understand the 

characteristics of the system 

A. Stability Analysis  

If the closed loop poles are all located in the left half of the 

s-plane, the system must be stable, otherwise the system is 

unstable. In MATLAB to strike a linear time invariant system, 

the characteristics roots can be obtained by eig(A,B) 

 
TABLE 2. Eigen values of open loop system. 

S. No. Eigen Values of Unstable System 

1 0 

2 16.9833 

3 -18.2763 

4 7.3830 

5 3.8938 

6 -9.0828 

7 -1.9199 

8 -4.9833 
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The eigen values of the system matrix A for the system are 

given in table II. The system is unstable as it has positive 

Eigen values. The model is simulated in MATLAB and the 

step response of the open loop TIPS  

B. Controllability Analysis 

Linear time-invariant controllability systems necessary and 

sufficient condition is: 

Rank (C) =n Where C is controllability matrix given by  

C= [B AB A
2 
B……. A

n-1
B] 

The dimension of the matrix A is n. In MATLAB, the 

function ctrb(a,b) is used to test the controllability of matrix 

,through the calculation we can see that the system is 

controllable. 

C. Observability Analysis 

Linear time-invariant observability systems necessary and 

sufficient condition is: 

Rank (O)=n where O is observability matrix given by 

O= [C CA CA
2
……CA

n-1
]

 T
 

In MATLAB, the function obsv(a,b) is used to test the 

observability of matrix ,through the calculation we can see 

that the system is observable. 

IV. Design Of LQR Controller  

Our LTI plant model with directly measurable state   is 

given as 

 ̇                                                                             (11) 

For the controlled system described the quadratic 

performance index is given by: 
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Where Q is appositive semi definite matrix, R is positive 

definite matrix. For our work we have incorporated degree of 

stability α. All closed-loop poles are to the left of −𝛼. So we 

define a new performance index cost function 
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Where R =                       are weight 

matrixes.So defining a new state variable and control 
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Where, K is Kalman gain, P(t) is positive definite matrix is the 

optimal solution of matrix differential Riccati equation (DRE) 

 ̇( )  
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The Riccati matrix equation or algebraic Riccati equation 

(ARE) is given as;  

                                                         (17) 

Since we have incorporated degree of stability α, our 
equation will be modified as follows: 

 (  𝛼 )  (  𝛼 )                             (18) 

Using the LQR method, the effect of optimal control 

depends on the selection of weighting matrices Q and R, if Q 

and R selected not properly, it make the solution cannot meet 

the actual system performance requirements. In general, Q and 

Rare taken the diagonal matrix, the current approach for 

selecting weighting matrices Q and R is simulation of trial, 

after finding a suitable Q and R, it allows the use of computers 

to find the optimal gain matrix K easily.  

V. Simulation Results  

First we have chosen Q matrix as  Q =       

Q 1= diag ([1 0 1 0 1 0 1 0]), R=1 and Degree of stability α = 

0.1 

The optimal feedback gain matrix is 

K =   [-0.7392   -78.3976   192.3977   -145.2670   -3.8914   -

1.0185    7.8722   -20.8247] 

The step response of this system is shown in fig 2(a), 2(b), 

2(c) and 2(d) 
 

 
Fig. 2 (a). Step response of cart position. 

 

 
Fig. 2(b). Step response of 1st angle. 

 

 
Fig. 2(c). Step response of 2nd angle. 



International Research Journal of Advanced Engineering and Science 
ISSN: 2455-9024 

 

 

151 

 

Kalyani Sharma and Vikas Sahu, “Modeling and stabilization of cart triple link inverted pendulum using LQR controller incorporating 

degree of stability,” International Research Journal of Advanced Engineering and Science, Volume 1, Issue 4, pp. 148-152, 2016. 

 
Fig. 2(d). Step response of 3rd angle. 

 

The settling time and rise time are too large. To minimize 

the rise time and settling time we have changed the value of 

the diagonal matrix Q. This is done by iteration method.  

Replace the element of matrix (Q) by 

Q2 = diag ([1400 1200 400 200 0 0 0 0]), R = 1, Degree of 

stability α=0.1 

[K, P, E] = lqr(A, B,Q, R)  where E is the open loop eigen 

value 

Now, the optimal feedback gain matrix is 

K= [-42.1825   -93.3181  355.7447  -566.4401  -51.9743   -

17.6816  

       -9.3716    -95.9650] 
 

TABLE II. Eigen values of closed loop system. 

S. No. Eigen Values of stable system 

1 -18.3087+10.9661i 

2 -18.3087-10.9661i 

3 -13.3256+4.7427i 

4 -13.3256-4.7427i 

5 -5.3860+1.4948i 

6 -5.3860-1.4948i 

7 -2.3955+1.2390i 

8 -2.3955-1.2390i 

 

From table 2 it is clear that the closed loop system is stable 

since all poles have negative real parts i.e. all poles lie in left 

half of the s plane. After using LQR controller i.e. Adding 

gain K and matrix B the system is stable in nature. The 

improved step response of the system is shown in fig 3(a), 

3(b), 3(c), 3(d). 
 

 
Fig. 3(a). Improved step response of cart position. 

 
Fig. 3(b): Improved step response of 1st angle. 

 

 
Fig. 3(c): Improved step response of 2nd angle. 

 

 
Fig. 3(d). Improved step response of 3rd angle. 

 

TABLE III. Reference tracking performance. 

 

Parameters of TLIP System 

Settling time 

(seconds) 

Rise time 

(seconds) 

Q1 Q2 Q1 Q2 

Cart Position 7.6997 2.0892 0.0036 1.1587e-12 

1st  pendulum angle 5.1592 2.4597 0.0215 0.0050 

2nd pendulum angle 5.9175 2.8133 0.1399 0.0635 

3rd pendulum angle 6.3556 3.0724 0.3162 0.2617 
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VI. CONCLUSION  

In this paper a LQR controller is successfully designed for 

a cart triple link inverted pendulum successfully. From table it 

is clear that LQR controller for modified value of diagonal 

matrix Q2 is better than default value of diagonal matrix Q1. 

The settling time for our controller (Q2) for cart position, first, 

second and third pendulum angles are 72.86%, 52.32%, 

52.45% and 51.65% less than default value of Q1. Similarly 

improvement is shown in rise time. The rise time for our 

controller (Q2) for cart position, first, second and third 

pendulum angles are 0.3%, 76.74%, 54.61% and17.23% less 

than default value of Q1 The performance of the proposed 

LQR controller is found to be better and the settling time is 

also small. Simulation results clearly establish the 

effectiveness of the proposed controller as the system 

performance and stability are satisfactory. The performance of 

the proposed LQR controller is found to be good and settling 

time is also small. In this paper the techniques to reduce the 

settling time and rise time of the system is also discussed. 

Simulation results clearly show the effectiveness of the 

proposed controller 

VII. Appendix  

  = 2.4 Kg   

  =1.323 Kg          =1.389 Kg           = 0.8655 Kg 

  =0.402 m,            =0.332 m             =0.72 m 

  =0.2449 m            =0.193 m               =0.3405 m 

  =.0119 Kg          =.0069 Kg           =.0291 Kg   

  =13.611 Nsm        =.0045 Nsm          =0.0045 Nsm 

  =0.0045 Nsm        = 9.722 NV        g=9.81m           [8] 
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