

P2 – Like and P^* –Generalized $\mathcal{B}R$ – Recurrent Space

Fahmi Yaseen Abdo Qasem, Ala'a Abdalnasser Awad Abdallah Dept. of Math., Faculty of Education-Aden, Univ. of Aden, Khormakssar, Aden, Yemen

Abstract— In this paper, we introduced the generalized $\mathcal{B}R$ recurrent Finsler space, i.e. characterized by the following condition $\mathcal{B}_{i} R_{i}^{i} = \lambda R_{i}^{i} + \mu \left(\delta_{i}^{i} q_{i} - \delta_{i}^{i} q_{i}\right) = R_{i}^{i} \neq 0$

 $\mathcal{B}_m R^i_{jkh} = \lambda_m R^i_{jkh} + \mu_m (\delta^i_j g_{kh} - \delta^i_k g_{jh}), \quad R^i_{jkh} \neq 0,$ where \mathcal{B}_m is Berwald's covariant differential operator with respect to x^m , λ_m and μ_m are known as recurrence vectors, which is a P2-like space and P* – space [satisfies their conditions], we called them a P2-like generalized $\mathcal{B}R$ –recurrent space and a P* – generalized $\mathcal{B}R$ – recurrent space, respectively. The purpose of the present paper to develop the above spaces by using the properties of a P2-like space and a P* – space. Also to obtain different theorems for some tensors satisfy in above spaces. Various identities are established in our spaces.

Keywords: a P2 –like generalized BR –recurrent space and a P^{*} – generalized BR – recurrent space

I. INTRODUCTION

R. Verma [13] obtained some results when R^h – recurrent and C – concircularly spaces are P2 – like spaces. S.Dikshit [14] obtained certain identities in a P2 – like R^h –birecurrent space. F.Y.A. Qasem [6] obtained certain identities in a P2like R^h – generalized and P2 – like R^h – special generalized birecurrent spaces of the first and the second kind. F.Y.A. Qasem and A.A.A. Muhib [7] obtained certain identities in a P2 – like R^h – trirecurrent space. A.A.A. Muhib [1] established different identities concerning P2-like R^hgeneralized and $P2 - like R^h - special$ generalized trirecurrent spaces. A.A.M. Saleem [2] discussed P2-like C^{h} – generalized and P2 – like C^{h} – special generalized birecurrent spaces and obtained the necessary and sufficient condition of some tensors to be generalized birecurrent and special generalized birecurrent, also obtained some identities in such spaces. A.M.A. Al - qashbari [3] introduced and discussed P2 –like generalized \hat{H}^h , R^h and K^h – recurrent spaces. A.M.A. Hanballah [4] introduced and studied P2like K^h – generalized and special generalized birecurrent spaces.

R. Verma [13] obtained some results when R^h – recurrent and C – concircularly spaces are P^* – Finsler spaces. C.K. Mishra and G. Lodhi [5] discussed C^h – recurrent Finsler space of second order and obtained different theorems regarding this space when it is P^* – Finsler space. A.A.M. Saleem [2] obtained different theorems in C^h – generalized birecurrent and C^h – special generalized birecurrent spaces when they are P^* – Finsler space. A.M.A. Al – qashbari [3] introduced and discussed P^* – generalized H^h , R^h and K^h – recurrent spaces. A.M.A. Hanballah [4] introducted and studied $P^* - K^h$ – generalized and special generalized birecurrent spaces.

Let F_n be an n – dimensional Finsler space equipped with the metric function F(x,y) satisfying the request conditions [10].

The vector y_i is defined by

(1.1)
$$y_i = g_{ij}(x, y)y^j$$
.

The two sets of quantities g_{ij} and its associative g^{ij} , which are components of a metric tensor connected by

(1.2)
$$g_{ij}g^{ik} = \delta_j^k = \begin{cases} 1 & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

In view of (1.1) and (1.2), we have

(1.3) a) $\delta_k^i y_i = y_k$, b) $\delta_i^i = n$ and c) $\delta_j^i g_{ir} = g_{jr}$. The tensor C_{ijk} is defined by

$$C_{ijk} = \frac{1}{2} \dot{\partial}_k g_{ij}$$

which is positively homogeneous of degree -1 in y^i and symmetric in all its indices and called (*h*)*hv*-torsion tensor [12] and its associative C_{jk}^i is positively homogeneous of degree -1 in y^i and symmetric in its lower indices and called (*v*)*hv*- torsion tensor. According to Euler's theorem on homogeneous functions, these tensors satisfy the following: (1.4) a) $C_{ijk}y^i = C_{kij}y^i = C_{iki}y^i = 0$, b) $C_{ik}^iy^k = 0 = C_{ki}^iy^k$,

c)
$$C_{ir}^{i} = C_r = C_{ri}^{i}$$
, d) $y_i C_{kh}^{i} = 0$
e) $g_{ij} C_{kh}^{i} = C_{jkh}$ and f) $C_{jr}^{i} \delta_k^r = C_{jk}^{i}$

Berwald covariant derivative $\mathcal{B}_k T_j^i$ of an arbitrary tensor field T_i^i with respect to x^k is given by

$$\mathcal{B}_k T_i^i \coloneqq \partial_k T_i^i - (\dot{\partial}_r T_i^i) G_k^r + T_i^r G_{rk}^i - T_r^i G_{rk}^r$$

 $B_k I_j - b_k I_j - (b_r I_j) B_k + I_j B_{rk} - I_r B_{jk}$ The processes of Berwald's covariant differentiation and the partial differentiation, for an arbitrary tensor field T_j^i , commute according to

$$\left(\dot{\partial}_k \mathcal{B}_h - \mathcal{B}_k \dot{\partial}_h\right) T_j^i = T_j^r G_{khr}^i - T_r^i G_{kh}^r$$

Berwald's covariant derivative of the vectors y^i and y_i vanish identically, i.e.

(1.5) a) $\mathcal{B}_k y^i = 0$ and b) $\mathcal{B}_k y_i = 0$. Berwald's covariant derivative of the metric tensor g_{ij} doesn't vanish and given by

(1.6) $\mathcal{B}_k g_{ij} = -2\mathcal{C}_{ijk|h} y^h = -2y^h \mathcal{B}_h \mathcal{C}_{ijk} \ .$

The h - curvature tensor (Cartan's third curvature tensor) is defined by

$$R_{jkh}^{i} = \partial_{h} \Gamma_{jk}^{*i} + \left(\partial_{l} \Gamma_{jk}^{*i}\right) G_{h}^{l} + C_{jm}^{i} \left(\partial_{k} G_{h}^{m} - G_{kl}^{m} G_{h}^{l}\right) \\ + \Gamma_{mk}^{*i} \Gamma_{ih}^{*m} - k/h^{*}.$$

The curvature tensor R_{jkh}^{i} and the h(v)- torsion tensor H_{kh}^{i} are connected by

1.7)
$$R_{jkh}^{i}y^{j} = H_{kh}^{i} = K_{jkh}^{i}y^{j}$$
.

The tensor P_{jkh}^{i} is positively homogeneous of degree zero

in y^{*i*} and satisfies

(1.8)
$$P_{jkh}^{i}y^{j} = \left(\partial_{j}\Gamma_{hk}^{*i}\right)y^{j} = \Gamma_{hjk}^{*i}y^{j} = P_{kh}^{i} = C_{kh|r}^{i}y^{r}$$
and

(1.9)
$$P_{jkh}^{i}y^{k} = 0 = P_{jkh}^{i}y^{h}$$
,

where

(1.10) $\dot{\partial}_h \Gamma_{ik}^{*i} y^j = 0.$

This curvature tensor is positively homogeneous of degree zero in y^{i} and skew-symmetric in its last two lower indices. The torsion tensor P_{kh}^{i} satisfies the following relations

(1.11) a) $P_{kh}^i y^k = 0$, b) $P_{kh}^i y_i = P_{kh}$ and c) $g_{ir} P_{kh}^i = P_{rkh}$ Ricci tensor P_{jk} and the curvature vector P_k of the curvature tensor P_{jkh}^i are given by

(1.12) a) $P_{jki}^i = P_{jk}$ and b) $P_{ki}^i = P_k$. In view of (1.4b) and since the vector y^j is h – covariant

In view of (1.4b) and since the vector y^{j} is $n - covariant constant, i.e. <math>y^{j}_{\ |k} = 0$, we have

 $(1.13) \qquad C^i_{jh|k}y^j = 0$

* k/h means the subtraction from the former term by interchanging the indices k and h.

2. P2 – Like Generalized BR – Recurrent Space

Let us consider a P2 –Like space which is characterized by the condition ([11], [12]

(2.1) $P_{jkh}^{i} = \phi_{j}C_{kh}^{i} - \phi^{i}C_{jkh}$, covariant vector field and ϕ^{i} is a non-

where ϕ_j is a non-zero covariant vector field and ϕ^i is a non-zero contravariant vector field.

Definition 2.1. The generalized $\mathcal{B}R$ –recurrent space which is P2 –Like space [satisfies the condition (2.1)], will be called a P2 –*Like generalized* $\mathcal{B}R$ –*recurrent space* and will denote it briefly by a P2 –*Like* $G(\mathcal{B}R)$ – RF_n .

Remark 2.1. It will be sufficient to call the tensor which satisfies the condition of P2 –Like $G(\mathcal{B}R) - RF_n$ as generalized \mathcal{B} –recurrent tensor (briefly $G\mathcal{B} - R$).

Let us consider a P2 –Like $G(BR) - RF_n$.

Taking the covariant derivative for the condition (2.1) with respect to x^m in the sense of Berwald, we get

 $\begin{array}{ll} (2.2) & \mathcal{B}_m P_{jkh}^i = (\mathcal{B}_m \phi_j) C_{kh}^i + \phi_j (\mathcal{B}_m C_{kh}^i) - (\mathcal{B}_m \phi^i) C_{jkh} - \\ \phi^i (\mathcal{B}_m C_{jkh}) \ . \end{array}$

Suppose that the v(hv) – torsion tensor C_{kh}^i and the h(hv) – torsion tensor C_{jkh} satisfy the conditions

(2.3) a)
$$\mathcal{B}_m C_{kh}^i = \lambda_m C_{kh}^i + \mu_m (\delta_k^i y_h - \delta_h^i y_k)$$
 and

b)
$$\mathcal{B}_m C_{jkh} = \lambda_m C_{jkh} + \mu_m (g_{kj} y_h - g_{hj} y_k)$$
, respectively.

Substituting the conditions (2.3a), (2.3b) and (2.1) in (2.2), we get

(2.4)
$$\mathcal{B}_m P_{jkh}^i = \lambda_m P_{jkh}^i + \mu_m \phi_j (\delta_k^i y_h - \delta_h^i y_k) + \delta_k^i (\delta_k^i y_h - \delta_h^i y_h) + \delta_k^i (\delta_h^i y_h)$$

 $\mu_m \phi^i (g_{kj} y_h - g_{hj} y_k) + (\mathcal{B}_m \phi_j) \mathcal{C}_{kh}^i - (\mathcal{B}_m \phi^i) \mathcal{C}_{jkh} .$ This shows that

(2.5)
$$\mathcal{B}_m P_{jkh}^i = \lambda_m P_{jkh}^i + \mu_m \phi_j (\delta_k^i y_h - \delta_h^i y_k)$$

if and only if

(2.6)
$$(\mathcal{B}_m \phi_j) \mathcal{C}_{kh}^i - (\mathcal{B}_m \phi^i) \mathcal{C}_{jkh} + \mu_m \phi^i (g_{kj} y_h - g_{hj} y_k) = 0 .$$

Thus, we conclude

Theorem 2.1. In P2-Like $G(\mathcal{BR}) - RF_n$, the covariant derivative of first order for Cartan's second curvature tensor P_{jkh}^i in the sense of Berwald is given by the condition (2.5), if and only if (2.6) holds good [provided the conditions (2.3a) and (2.3b) hold].

Transvecting (2.4) by y^{j} , using (1.8), (1.5a), (1.1) and (1.4a), we get

 $\mathcal{B}_m P_{kh}^i = \lambda_m P_{kh}^i + \gamma_m (\delta_k^i y_h - \delta_h^i y_k) +$

$$(\mathcal{B}_m\phi_j)\mathcal{C}_{kh}^{\iota}y^j$$

where $y^j \phi_j = \phi$ and $\gamma_m = \phi \mu_m$.

This shows that

(2.8)
$$\mathcal{B}_m P_{kh}^i = \lambda_m P_{kh}^i + \gamma_m (\delta_k^i y_h - \delta_h^i y_k)$$

if and only if

(2.9)
$$(\mathcal{B}_m \phi_j) \mathcal{C}_{kh}^i y^j = 0$$

Thus, we conclude

Theorem 2.2. In P2 –Like $G(\beta R) - RF_n$, the covariant derivative of first order for the torsion tensor P_{kh}^i in the sense of Berwald is given by the condition (2.8), if and only if (2.9) holds. [provided the conditions (2.3a) and (2.3b) hold].

Contracting the indices i and h in (2.4), using (1.12a), (1.3a), (1.3b) and (1.4c), we get

$$\begin{array}{ll} (2.10) & \mathcal{B}_m P_{jk} = \lambda_m P_{jk} + (1-n)\mu_m \phi_j y_k + \\ \mu_m \phi^i \big(g_{kj} y_i - g_{ij} y_k \big) + (\mathcal{B}_m \phi_j) \mathcal{C}_k - (\mathcal{B}_m \phi^i) \mathcal{C}_{jki} \, . \\ \text{This shows that} \\ (2.11) & \mathcal{B}_m P_{jk} = \lambda_m P_{jk} + (1-n)\mu_m \phi_j y_k \end{array}$$

and only if
$$B_m P_{jk} = \lambda_m P_{jk} + (1 - h)\mu_m 0$$

(2.12)
$$\mu_m \phi^i (g_{kj} y_i - g_{ij} y_k) + (\mathcal{B}_m \phi_j) \mathcal{C}_k - (\mathcal{B}_m \phi^i) \mathcal{C}_{jki} = 0.$$

Thus, we conclude

if

Theorem 2.3. In P2 –Like $G(\mathcal{B}R) - RF_n$, the P – Ricci tensor P_{jk} is non vanishing if and only if (2.12) holds good [provided the conditions (2.3a) and (2.3b) hold].

Contracting the indices i and h in (2.7), using (1.12b), (1.3a), (1.3b) and (1.4c), we get

(2.13)
$$\mathcal{B}_m P_k = \lambda_m P_k + (1-n)\gamma_m y_k + (\mathcal{B}_m \phi_j) \mathcal{C}_k y^j$$
.
where $y^j \phi_j = \phi$ and $\gamma_m = \phi \mu_m$.
This shows that
(2.14) $\mathcal{B}_m P_k = \lambda_m P_k + (1-n)\gamma_m y_k$

 $(\Box, \Box, \tau) \qquad \mathcal{B}_m P_k = \lambda_m P_k$ if and only if

 $(2.15) \qquad (\mathcal{B}_m \phi_i) C_k y^j = 0.$

Thus, we conclude

Theorem 2.4. In P2 – Like $G(BR) - RF_n$, the curvature vector P_k is non-vanishing if and only if (2.15) holds .[provided the conditions (2.3a) and (2.3b) hold]. we know that [10]

$$(2.16) \qquad R^{i}_{jkh|s} + R^{i}_{jsk|h} + R^{i}_{jhs|k} + y^{m} \Big(R^{r}_{mhs} P^{i}_{jkr} + R^{r}_{mkh} P^{i}_{icr} + R^{r}_{msk} P^{i}_{jhr} \Big) = 0 .$$

Taking the covariant derivative for (2.16) with respect to x^m in the sense of Berwald, we get

$$\begin{array}{l} (2.17) \qquad \mathcal{B}_m(R^{\,l}_{\,jkh|s} + R^{\,l}_{\,jsk|h} + R^{\,l}_{\,jhs|k}) + \\ \mathcal{B}_m\left[y^{\,m}(R^{\,r}_{\,mhs}P^{\,i}_{\,jkr} + R^{\,r}_{\,mkh}P^{\,i}_{\,jsr} + \\ R^{\,r}_{\,msk}P^{\,i}_{\,jhr}) \right] = 0 \,. \end{array}$$

International Research Journal of Advanced Engineering and Science

Using (1.7) in (2.17), we get $\mathcal{B}_m(R^{i}_{jkh|s} + R^{i}_{jsk|h} + R^{i}_{jhs|k}) +$ (2.18) $\mathcal{B}_m(H_{hs}^r P_{ikr}^i + H_{kh}^r P_{isr}^i + H_{sk}^r P_{ihr}^i) = 0$ or $\mathcal{B}_m\left(R^{i}_{jkh|s} + R^{i}_{jsk|h} + R^{i}_{jhs|k}\right) +$ (2.19) $P_{ikr}^{i}(B_{m}H_{hs}^{r}) + H_{hs}^{r}(B_{m}P_{ikr}^{i}) +$ $P_{jsr}^{i}(\mathcal{B}_{m}H_{kh}^{r}) + H_{kh}^{r}(\mathcal{B}_{m}P_{jsr}^{i}) +$ $H_{sk}^{r}(\mathcal{B}_{m}P_{jhr}^{i}) + P_{jhr}^{i}(\mathcal{B}_{m}H_{sk}^{r}) = 0.$ Using (2.1) in (2.19), we get $\mathcal{B}_m(R^{i}_{jkh|s} + R^{i}_{jsk|h} + R^{i}_{ihs|k}) + (\phi_i C^i_{kr} -$ (2.20) $\phi^{i}C_{jkr})(\mathcal{B}_{m}H_{hs}^{r}) + H_{hs}^{r}\mathcal{B}_{m}(\phi_{j}C_{kr}^{i} - \phi^{i}C_{jkr}) + (\phi_{j}C_{sr}^{i} - \phi^{i}C_{jkr$ $\phi^{i}C_{jsr})(\mathcal{B}_{m}H_{kh}^{r}) + H_{kh}^{r}\mathcal{B}_{m}(\phi_{j}C_{sr}^{i} - \phi^{i}C_{jsr}) + (\phi_{j}C_{hr}^{i} - \phi^{i}C_{jsr$ $\phi^i C_{jhr})(\mathcal{B}_m H^r_{sk}) + H^r_{sk} \mathcal{B}_m(\phi_i C^i_{hr} - \phi^i C_{ihr}) = 0$ or $\mathcal{B}_m(R_{jkh|s}^i + R_{jsk|h}^i + R_{jhs|k}^i) +$ (2.21) $\phi_i \left[C_{kr}^i (\mathcal{B}_m H_{hs}^r) + C_{sr}^i (\mathcal{B}_m H_{kh}^r) + C_{hr}^i (\mathcal{B}_m H_{sk}^r) \right] \phi^{i} \left[C_{jkr}(\mathcal{B}_{m}H_{hs}^{r}) + C_{jsr}(\mathcal{B}_{m}H_{kh}^{r}) + C_{jhr}(\mathcal{B}_{m}H_{sk}^{r}) \right] +$ $H_{hs}^{r}\mathcal{B}_{m}(\phi_{i}C_{kr}^{i}) + H_{kh}^{r}\mathcal{B}_{m}(\phi_{i}C_{sr}^{i}) + H_{sk}^{r}\mathcal{B}_{m}(\phi_{i}C_{hr}^{i}) \left[H_{hs}^{r}\mathcal{B}_{m}(\phi^{i}C_{jkr})+H_{kh}^{r}\mathcal{B}_{m}(\phi^{i}C_{jsr})+H_{sk}^{r}\mathcal{B}_{m}(\phi^{i}C_{jhr})\right]=0.$ Transvecting (2.21) by y^{j} , using (1.7), (1.5a) and (1.4a), we get $(2.22) \quad \mathcal{B}_m(H^i_{kh|s} + H^i_{sk|h} + H^i_{hs|k}) + \phi \big[C^i_{kr}(\mathcal{B}_m H^r_{hs}) +$ $C_{sr}^{i}(\mathcal{B}_{m}H_{kh}^{r}) +$

$$C_{hr}^{i}(\mathcal{B}_{m}H_{sk}^{r})] + \phi(H_{hs}^{r}\mathcal{B}_{m}C_{kr}^{i} + H_{kh}^{r}\mathcal{B}_{m}C_{sr}^{i} + H_{sk}^{r}\mathcal{B}_{m}C_{hr}^{i}) = 0,$$

where $\phi = \phi_j y^j$.

Thus, we conclude

Theorem 2.5. In P2 – Like $G(\mathcal{B}R) - RF_n$, we have the identity (2.22) [provided the conditions (2.3a) and (2.3b) hold].

3. P^* – Generalized $\mathcal{B}R$ – Recurrent Space

A P^* – Finsler space is characterized by the condition ([8], [9])

(3.1) $P_{kh}^{i} = \phi C_{kh}^{i},$ where

(3.2) $P_{jkh}^i y^j = P_{kh}^i = C_{kh|s}^i y^s$.

Definition 3.1. The generalized $\mathcal{B}R$ – recurrent space which is a P^* – space [satisfies the condition (3.1)], will be called a P^* – generalized $\mathcal{B}R$ – recurrent space and will denote it briefly by $P^* - G(\mathcal{B}R) - RF_n$.

Remark 3.1. It will be sufficient to call the tensor which satisfies the condition of $P^* - G(\mathcal{B}R) - RF_n$ as generalized \mathcal{B} -recurrent tensor (briefly $G\mathcal{B} - R$).

Remark 3.2. All results in a P2 –Like $G(\mathcal{B}R) - RF_n$ which obtained in the previous section satisfy in an $P^* - G(\mathcal{B}R) - RF_n$.

Let us consider an $P^* - G(\mathcal{B}R) - RF_n$.

Taking the covariant derivative for the condition (3.1) with respect to x^m in the sense of Berwald, we get

(3.3) $\mathcal{B}_m P_{kh}^i = (\mathcal{B}_m \phi) \mathcal{C}_{kh}^i + \phi(\mathcal{B}_m \mathcal{C}_{kh}^i) .$

Using the conditions (2.3a) and (3.1) in (3.3), we get

(3.4) $\mathcal{B}_m P_{kh}^i = \lambda_m P_{kh}^i + \gamma_m (\delta_k^i y_h - \delta_h^i y_k) + (\mathcal{B}_m \phi) C_{kh}^i$, where $\gamma_m = \phi \mu_m$. This shows that

(3.5)
$$\mathcal{B}_m P_{kh}^i = \lambda_m P_{kh}^i + \gamma_m (\delta_k^i y_h - \delta_h^i y_k)$$

if and only if
(3.6)
$$(\mathcal{B}_m \phi) C_{kh}^i = 0.$$

Thus, we conclude

Theorem 3.1. In $P^* - G(\mathcal{B}R) - RF_n$, the covariant derivative of first order for the $v(hv) - torsion tensor P_{kh}^i$ in the sense of Berwald is given by the condition (3.5) if and only if (3.6) holds [provided the conditions (2.3a) holds].

Contracting the indices i and h in (3.4), using (1.12b), (1.3a), (1.3b) and (1.4c), we get

(3.7) $\mathcal{B}_m P_k = \lambda_m P_k + \gamma_m (1-n) y_k + (\mathcal{B}_m \phi) C_k$. This shows that

$$\mathcal{B}_m P_k = \lambda_m P_k + \gamma_m (1-n) y_k$$

if and only if

 $(3.9) \qquad (\mathcal{B}_m\phi)C_k=0\;.$

Thus, we conclude

Theorem 3.2. In $P^* - G(\mathcal{B}R) - RF_n$, the curvature vector P_k is non-vanishing if and only if (3.9) holds [provided the conditions (2.3a) holds].

Transvecting (3.4) by y_i , using (1.11b), (1.5b), (1.3a) and (1.4d), we get

 $(3.10) \qquad \qquad \mathcal{B}_m P_{kh} = \lambda_m P_{kh} \; .$

Thus, we conclude

Theorem 3.3. In $P^* - G(\mathcal{B}R) - RF_n$, the P - Ricci tensor P_{kh} behaves as recurrent [provided the condition (2.3a) holds].

Transvecting (3.4) by g_{ir} , using (1.11c), (1.6), (1.3c) and (1.4e), we get

$$(3.11) \qquad \mathcal{B}_m P_{rkh} = \lambda_m P_{rkh} + \gamma_m (g_{kr} y_h - g_{hr} y_k) + (\mathcal{B}_m \phi) C_{rkh} - 2y^h P^i_{kh} \mathcal{B}_h C_{irm} .$$

This shows that

(3.12) $\mathcal{B}_m P_{rkh} = \lambda_m P_{rkh} + \gamma_m (g_{kr} y_h - g_{hr} y_k)$ if and only if

$$(3.13) \qquad (\mathcal{B}_m\phi) C_{rkh} = 2y^h P_{kh}^i \mathcal{B}_h C_{irm} .$$

Thus, we conclude

Theorem 3.4. In $P^* - G(\mathcal{B}R) - RF_n$, the covariant derivative of first order for the associative tensor P_{rkh} in the sense of Berwald is Given by the condition (3.12), if and only if (3.13) holds [provided the conditions (2.3a) holds].

We know that [10]

3.14)
$$P_{jkh}^{i} = \partial_{h} \Gamma_{jk}^{*i} + C_{jr}^{i} P_{kh}^{r} - C_{jh|k}^{i}.$$

Taking the covariant derivative for (3.14) with respect to x^m in the sense of Berwald, we get

$$\mathcal{B}_m P_{jkh}^{\,i} = \mathcal{B}_m \left(\dot{\partial}_h \Gamma_{jk}^{*i} + C_{jr}^{\,i} P_{kh}^r - C_{jh|k}^{\,i} \right)$$

or

$$(3.15) \qquad \mathcal{B}_m P_{jkh}^i = \mathcal{B}_m \,\dot{\partial}_h \Gamma_{jk}^{*i} + P_{kh}^r (\mathcal{B}_m C_{jr}^i) + C_{jr}^i (\mathcal{B}_m P_{kh}^r) - \mathcal{B}_m \, C_{jh|k}^i \,.$$

Using the conditions (2.5), (3.5) and using (1.4f) in (3.15), we get

$$(3.16) \qquad \mathcal{B}_m(\dot{\partial}_h\Gamma_{jk}^{*i} - C_{jh|k}^i) + P_{kh}^r(\mathcal{B}_mC_{jr}^i) + \lambda_m C_{jr}^i P_{kh}^r + \gamma_m(C_{jk}^i y_h - C_{jh}^i y_k) - \lambda_m P_{jkh}^i - \phi_j \mu_m(\delta_k^i y_h - \delta_h^i y_k) = 0.$$

where $\gamma_m = \phi \mu_m$

Using the condition (3.1) in (3.16), we get

International Research Journal of Advanced Engineering and Science

ISSN: 2455-9024

$$(3.17) \qquad \mathcal{B}_{m}(\dot{\partial}_{h}\Gamma_{jk}^{*i} - C_{jh|k}^{i}) + P_{kh}^{r}(\mathcal{B}_{m}C_{jr}^{i}) + \lambda_{m}C_{jr}^{i}P_{kh}^{r} + \mu_{m}(P_{jk}^{i}y_{h} - P_{jh}^{i}y_{k}) - \lambda_{m}P_{jkh}^{i} - \phi_{j}\mu_{m}(\delta_{k}^{i}y_{h} - \delta_{h}^{i}y_{k}) = 0.$$

Thus, we conclude

Theorem 3.5. In $P^* - G(\mathcal{B}R) - RF_n$, we have the identity (3.17) if and only if (2.6) and (3.6) hold [provided the conditions (2.3a) holds].

Transvecting (3.17) by y^{j} , using (1.5a),(1.10), (1.13), (1.4b), (1.11a) and (1.8), we get

(3.18) $\lambda_m P_{kh}^i + \phi \,\mu_m(\delta_k^i y_h - \delta_h^i y_k) = 0 \,.$ where $\phi_i y^j = \phi$

Thus, we conclude

Theorem 3.6. In $P^* - G(\mathcal{B}R) - RF_n$, we have the identity (3.18) if and only if (2.6) and (3.6) hold [provided the conditions (2.3a) holds].

REFERENCES

- A. A. Muhib, "On independent components of tensor, I-relative tensor and R^h-generalized trirecurrent Finsler space," M.Sc. Thesis, Univ. of Aden, Aden, Yemen, 2009.
- [2] A. A. M. Saleem, "On certain generalized birecurrent and trirecurrent Finsler space," M.Sc. Thesis, Univ. Aden, Aden, Yemen, 2011.
- [3] A. M. A. Al Qashbari, "Certain types of generalized recurrent in Finsler space," Ph.D. Thesis, Faculty of Education - Aden, University of Aden, Aden, Yemen, 2016.

- [4] A. M. A. Hanballa, "On covariant differentiation of curvature tensors in Finsler spaces," Ph.D. Thesis, Faculty of Education - Aden, University of Aden, Aden, Yemen, 2016.
- [5] C. K. Mishra and G. Lodhi, "On C^h recurrent and C^v recurrent Finsler spaces of second order," *Int. Jour. Contemp. Math. Sci.*, vol. 3, no. 17, pp. 801 – 810, 2008.
- [6] F. Y. A. Qasem, "On transformation in Finsler space," D.Phil. Thesis, Univ. of Allahabad, Allahabad, India, 2000.
- [7] F. Y. A. Qasem and A. A. A. Muhib, "On R^h trirecurrent Finsler spaces," *The Scientific Journal of the Faculty of Education, University* of Thamar, Thamar, vol. 1, no. 3, 2010.
- [8] H. Izumi, "On P* Finsler space. Memo. Defence Acad. Japan," 16, pp. 133 – 138, 1976.
- [9] H. Izumi, "On P* Finsler space. Memo. Defence Acad. Japan," 17, pp. 1–9, 1976.
- [10] H. Rund, "The differential geometry of Finsler spaces," Springer-Verlag, Berlin Göttingen, 1959, 2nd Edit. (in Russian), Nauka, Moscow, 1981.
- [11] M. Matsumoto, "On C reducible Finsler space," *Tensor N.S.*, 24, pp. 29-37, 1972.
- [12] M. Matsumoto, "On Finsler space with curvature tensors of some special form," *Tensor N.S.*, 22, pp. 201 – 204, 1971.
- [13] R. Verma, "Some transformations in Finsler space," D.Phil. Thesis, University of Allahabad, Allahabad, India, 1991.
- [14] S. Dikshit, "Certain types of recurrence in Finsler spaces," D.Phil. Thesis, Univ. of Allahabad, Allahabad, India, 1992.