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. INTRODUCTION

In [7], using the technique in [6] generalized fractional
hyperbolic functions are obtained as solutions of 2™ order
CFDE involving a parameter ‘a’. In this paper we consider 3"
order and higher order CFDEs of the same family and obtain
their solutions using the approach in [7]. The properties of
these solutions are also studied.

Il.  PRELIMINARIES

To obtain the main results in this paper we need to
introduce definitions and concepts related to fractional
derivatives. These definitions run parallel to the definitions of
ordinary derivatives. In this context we first begin with a
generalization of the exponential function known as Mittag -
Leffler function which was discovered in 1903 [4, 8].

Definition 2.1: The Mittag - Leffler function of one
parameter, E (z) is defined by
k

E,(2)=2,——— (z€C, R(0)>0).
kzt; I'(kq+1)
where the symbol I" denotes Gamma function.

(2.1)

Definition 2.2: The Mittag - Leffler function of two
parameters, E, ;(z) is defined by

k

VA

(2)= (z,€C, R(q)>0).
o/ kzc; I'(kq+ )

The definitions of fractional derivatives for a series introduced

by Riemann and Caputo [3] are given below.

(2.2)

Definition 2.3: Riemann - Liouville fractional derivative for

series.
If
f(x)=x) ax"
k=0
then

ey EG) g T((k+2)0) i
DI == Z “IT((k +1)q) @3)
Definition 2.4: Caputo fractional derivative for series.
If
()= ax"
k=0
then
q ©
D= 0D _§y T (4Da)

= I'(1+kq)
Next we proceed to present the definitions of the fore
mentioned derivatives in terms of the integrals.

Definition 2.5: Riemann - Liouville derivative of X(t)is
given by

Dx(t) = 9Ja-9 s, Gen). @9

r(1— ) dt;

Definition 2.6: Caputo derivative of x(t) is given by
‘DIx(t t—s)x'(s)ds, (tell 2.6
()= m_)j( )IX(s)ds, (tell) (@8)

The initial value problem for Riemann - Liouville
fractional differential equation (RLFDE) and the initial value
problem for Caputo fractional differential equation (CFDE)
have a basic difference. The RLFDE has a singularity at the
initial point and is given by

DIx(t) = f (t,x(t)) , X° =x(@®)(t-t,) " /t=t,,
and the CFDE is given by

“Dx(t) = f(t,x(t) , x(t,) =X,.

There exists a relation between the CFDE and RLFDE

which is given by
“Dx(t) = DU[x(t) —X,].

It has been shown in [2, 5] that the results which hold for
the initial value problem of RLFDE are also true for CFDE.
On basis of this result we give the existence and uniqueness
results for linear N™ order RLFDE and for systems and
propose that they can be naturally extended for linear CFDE.
We now introduce the Q - exponential function which is
needed to define the solution of the linear Reimann - Liouville
fractional differential equation.
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Definition 2.7: The q - exponential function e;Z is defined by

e’ =2"E, . (12°) 2.7)
where (z € C\{0}, R(q) >0) and 1 €C.
Definition 2.8: We define the function egzn as
© 1 g\ k
et = Z‘HZ (k+n)t  (1z%) . 28)
’ o [[(k+n+1)q] k!

Consider the linear fractional differential equation (LFDE).
n-1

[L, (NI :=(DI)y®) + > a (D)yt)=0  (29)
k=0

where the coefficients {a j}?j are real constants.
Then we assume that the solution of (2.9) is of the form
y(t)=e;"®, 1eC
and obtain the characteristic equation as

n-1
P(A)=2"+>aAa" 1eC.
k=1

Please refer to [5] for lemmas and theorems that are
necessary to obtain the existence and uniqueness result for
LFDE (2.9).

We denote [ ™ as the set of all non-negative real numbers.

Parallel to the definition of Wronskian in ordinary
differential equations [2] we define Wronskian corresponding
to fractional differential equations as follows:

(2.10)

Definition 2.9: (Wronskian).
Let &,¢,,...,¢, be Nreal or complex valued functions
defined on some nonempty interval | in [  each having

derivatives of order @ =ng, N N. Then the fractional
Wronskian of these N functions is the determinant matrix of
the W of order N defined on | and whose value at t € | is

W(O) =W (s, 4. 4)(1)
() ¢, (1)
‘D4 (1) D, (1)

¢, (1)

"Dig,(t) | (211)

DIVG®M) DOV - DY)

I1l.  GENERALIZED FRACTIONAL HYPERBOLIC LIKE
FUNCTIONS THROUGH THIRD ORDER CFDE

In [8] many results pertaining to 2™ order CFDE are stated
and proved. In this section we state and prove important
results corresponding to 3" order CFDE using the theory of
fractional differential equations.

We now state and prove a theorem in which generalized
fractional hyperbolic like functions are obtained.
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Consider the (39)" order, (é <q slj homogeneous Caputo

fractional IVP

*D¥x(t) —ax(t) =0,

x(0) =1, °Dx(0) =0, ° quX(O) =0
where tell ,, a>0 isa real number.

3.1
3.2)

Theorem 3.1. The general solution of the CFDE (3.1) is given
byc,x(t) + c,y(t) + c,z(t) (¢, c, and c, being
arbitrary constants ) where X(t), y(t) and z(t) are
infinite series solutions of the form

Rat)™

0

1) = , 3.3
x® kzzc;l“(1+3kq) 3.3)
© 3 at (3k+1)q
y(t) = (a) : (3.4)
oo [(1+(3k+1)q)
0 3 (3k+2)q
Z(t) = Rat) \ (3.5)

~ 1+ 3k+2)q)’

Proof. We transform the given IVP to a system of equations

of q" order §<q <las

“Dx(t) = (Ya) z(1),

(3.6)
"DUy(t) = (Ya)'x(t), “Dz(t) = (¥a) y(t)
with initial conditions
x(0) =1, y(0) =0, z(0) = 0. (3.7)

Let
X(t):iaktkqa y(t) =ibktkq, z(t) zicktkq (3.8)
k=0 k=0 k=0

be solutions of the system (3.6) - (3.7) where a,, bk and
¢, Sare unknown constants and t €[] . We proceed to find
a, , b, and Ck'S as follows. Using the initial conditions
(3.7)in (3.8), we obtain 8, =1, by =0 and c,=0.

Using the fact that

“Dx(t) = (Ya)  2(t)

and substituting (3.8) in the above equation we get
9 o

Zakﬂ F(1+ (k +1)q)tkq — (a)3 chtkq.
k=0 I'(1+kq) k=0

Comparing the coefficients of the same power on both
sides we obtain

o0

 (a)°I(L+kq)

k+1 — Ck, fOf k=0,1,2,....
'+ (k+1)q)
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Similarly by using the equations °D%y(t) = (3/a)?x(t) and
"Dz(t) = (Ya) y(t), we get

_ (2)°L'(L+kq) a
LT+ (k+Dq)

and
—(a)3r(1+kq) for k=0,12
o F(1+(k+1)q) A
q
3
For k=0, weget a =0, blzrgi) y c,=0.
+q
2
3
k=1 vyields a,=0, b,=0, CZ:%.
+20
q
For k=2, we have agza—, b,=0, c,=0.
I'd+3q)

By continuing this process successively, we finally get the
solutions as

x(t):i—(\/at) -

= I'(1+3kq) = N3, (t.2) (say) (3.9
R (\/_t)(3k+1)q
)_kzz(;l“(1+(3k +1)q) Ng,(t,a) (say) (3.10)

\/_t)(smz)q
2(t) = kz(; r'ad+@Gk+ 2)q)

The proof is complete.

Ng,(t.a) (say). (3.11)

We next provide another method to verify the same result
as in the Theorem 3.1.

Verification.
Consider the IVP (3.1)
(3.1) - (3.2) be given by

X(t) = Z(ft)q

“T(1+3kq)’ ’

© (\/_t)(3k+1)q
y® = kzl“(1+(3k+1)q) tell,

~ (%t)(3k+2)q
2t _Z;r(1+(3k+2)q)’ tet..

- (3.2). Let the solutions of the IVP

and

To verify them, we consider
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°DQ(x(t))=°D{i(§E—t)3kq}, tell,

= ['(1+3kq)

=D 1+ a't™ + ait + ait™ +
I'l+3q) I'(+6q) Ir'1+9q)
a’t? aitdd a’it8e

= + + +
'd+2q) I'l+5q) I'(1+8q)
Differentiating both sides using the Caputo derivative, we get
a4q 29449 34479
‘D2x(t) = at  at et
I't+q) r@+4q) TI'@Q+7q)

Again differentiating both sides using the Caputo
derivative, we obtain

2qt3q a3qt6q
‘D¥x(t) = a% + + +
rd+3q) TI@+6q)
aqt3q thGq
=a'll+ + + oo
rd+3q) TI'(@1+6q)
_ Z Ran™ a’x(t)
“T(1+3kq)
or ¢ D3q x(t)—a?x(t) =0.

Also the initial condition X(0)=1 is satisfied.
Hence

) 3 3kq
x(t) = Z(\/_a—t) el
o I'(1+3ka)
is the solution of IVP (3.1) - (3.2).
Similarly we can verify that
o0 3 at (3k+1)q
yo = 3RO
= T1+Bk+1)q)

and

0 3 (3k+2)q
Z(t) = ). (Rfat) , tel,
oo L(1+(3k +2)q)
are the solutions of the IVP (3.1) - (3.2).

This completes the verification.
In this setup, the Wronskian property is as follows:

Theorem 3.2. Let X(t), y(t) and z(t) be three solutions
of the CFDE (3.1). These three solutions are linearly
independenton LI , if and only if the Wronskian

W(x,y,z)(t) = 0, forevery tell,

Proof. Let the  Wronskian of the solutions
X(t),y(t)and z(t) of the CFDE (3.1), be such

thatW (t) = 0. We show that X(t), y(t) and z(t)are

linearly independent solutions. If possible, assume that
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X(t), y(t) and z(t) are linearly dependent. Then there
exists a linear combination of  solutions as

ax(t)+by(t)+cz(t) =0, abc ad tel,

where a,b, C are not simultaneously zero. Suppose a = 0.
Then

b c
x(t) = ——y() - —z(1).
a a
. b c
By setting h=—— and I=——, weget
a a
x(t)= hy(t) + lz(t).

Now consider the Wronskian
X(t) y(t) z(t)
W(t)=| “DI(x(t)) °Di(y(t)) °D(z())
"DX(x(1)) D*(y()) “D*(z(t))
hy(t)+ Iz(t) y(t) z(t)
heDéy(t) +1°Dz(t) °“D%y(t) °Dz(t)
h°D*y(t) +1°D*z(t) °D*y(t) °D*z(t)

hy(t) y(t) z(t)
h°D%y(t) °“Dy(t) °Diz(t) |+
h°D?y(t) °D*y(t) °D*z(t)
Iz(t) y(t) z(t)
1°DYz(t) °DIy(t) °Dz(t)
1°D*z(t) °D*"y(t) °D*z(t)
= 0.
Hence W(t) = 0, which is a contradiction. Therefore the

solutions  X(t), y(t) and z(t) are linearly independent.

To obtain a sufficient condition assume that X(t), y(t)
and z(t) are linearly independent solutions. We show that
W (t) = 0.

If possible W (t)=0 forsome tell
Then

4

X(t) y(t) z(t)
‘Dix(t) °DY%y(t) °Dz(t)
‘D¥x(t) °D*y(t) °D*z(t)

Then there exists a linear combination of columns as

x(t) y(t) z(t)
al| ‘DIx() |+b| °Dy(t) |+]| °Dz(t) (=0
*D2x(t) *D2y(t) °Dz(t)
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where a,b and C are not simultaneously zero.
b Cc

If a#0 then x(t)=——y@l) — —z(1).
a a

This implies that X(t), y(t)and z(t) are linearly

dependent, which is a contradiction as the assumption is that
these solutions are linearly independent.

Hence W (t) #0.

This completes the proof.
The following theorem gives a relation between the
solutions of the CFDE (3.1).

Theorem 3.3. Let X(t), y(t) and z(t) be three linearly
independent increasing solutions of the CFDE (3.1) on the

interval [ to, T ] Then the Wronskian

K(t-t,)*

W(t) < W(t,) + , t>t, §<q£1(3.12)

where
—as (3¢(M)(T) + 3y (TX(T) + 32()y(M)).

Proof. Since X(t),y(t) and z(t) are three linearly
independent increasing solutions of the CFDE (3.1), we have

Wronskian
X(t) y(t) z(t)
W(t) =| °Dx(t) °Do(t) °D(t)
‘D¥x(t) °D*y(t) °D*z(t)

X(t) y(t) 2(t)
| @2 @0 @y

@°y0) @20 (@° 0

=x(®)] a'%* (1) -a’y()z(t) |-

y(O] a’z®)x(t)-a’y’(t) | + z(t) a’z*(t) -a'x(®)y() |
= a' () +y* () + 2° (1) - 3x(t) y(t) z(t) |

Operating Caputo fractional differential operator D% on both
sides, we get

"DW (t)=a "D*[ x*(t) + y°(t) + 2° (1) - 3x() y(t)z(t) ]

el L s {SX(S)X@ , }ds
ri-q); +3y2(s)y (s) +32°(s)Z (s)

{F(l— )I (t—3) "X (s)y(s)z(s)ds +

ri- )J(t $)x(s)y (s)z(s)ds
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1
r'(l-q)

+

j (t —s)qx(s)y(s)z'(s)dsH.

Thus
"DW (t) <a’[ 3% (t) “DX(t) +3y” (t) “Dy(t) +32° (t) ‘D z(t)

=30y (t,) 2(t,) ‘DIX(R) + X(t,) 2(t,) ‘DY (1) +X(t,) Y () D 2(1)} |

=3a° {agx2 (t)z(t)+y? (t)a%x(t) +2° (t)a%y(t)

() 2(t)as 20+ X(t)2(t)as (1) +

X(t,)y(t,)a® y(t)}

<3a3 [ X*(T)z(T)+y* (T)X(T)+2*(T)y(T)
()7 (1) + 2(t)X° (to) +X(t) ¥ (t)} ]

<a? [ 3x"(T)z(T)+3y" (T)x(T)+32*(T)y(T) =k (say).

The above inequalities follow from the fact that

X(t,) < x(s) < x(t) < x(T),
y(t,) < y(s) <y(t) < y(T)
and
z(t) <z(s)<z(t) <z(T) for t,<s<t<T.
Hence
‘DIW(t) <Kk,

wherek =a° (3X*(T)z(T)+3y*(T)x(T) +32*(T) y(T)).

Now °“DIW(t) <k yields

k(t_to)q

W (t)<W(t,)+ t>t, where

k =a® [ 3x*(T)z(T) +3y*(T)x(T)+32*(T)y(T) |.

This completes the proof.
From the above result we deduce the following Corollary.

Corollary 3.4. If X(t),y(t) and z(t) are linearly
independent increasing solutions of the CFDE (3.1) on the

interval [ 0, T ], then
X3 () + Y2 (1) + 23(t) = 3x(t) y(t)z(t) <1+ 3a%

(xzcr)zm+yzcr)x(r>+z2(r)y(T))%.

Proof. The result follows by taking t, = 0 in the Theorem
3.3.
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Now we present the addition formulae for solutions of third
order CFDE (3.1).

Addition Formulae. We show that the solution
(X( t ), y( t ), Z( t )) of CFDS (3.6) possesses the
properties

X(t+7) =x()x®) + z(7)y®) + y(mz(t),  (3.13)
y(t+7) = ymx@®) + x(@)y®) + z(mz(t), G149

z(t+m) =z(m)x(®)+y(m)yt)+x@)z() .t, nell,. (3.15)
To prove these properties we use the method of linear
algebra.

If (X( t ), y( t ), Z( t )) is a solution of the CFDS (3.6)

then (X(t+7), y(t+7),z(t+7r)), nell, also satisfies
CFDS (3.6) with different initial conditions. Now these

solutions can be expressed in terms of
X( t ), y( t ) and Z( t ) in the following form

x(t+7)=p.x(t) + p,y() + p;z(t), (3.16)
y(t+m7)= qx(t) + a, y(t) + g, z(t), (3.17)
Z(t+7) = X({) + r,y(t) + ryz(t), (3.18)

where P;, Py, P3, Oy, Oy, O, I, 1, and I are constants
to be chosen appropriately for a given value of 77> 0.
Consider
X(t+m) = pX(t) + p,y(t) + pyz(t).
For
t=0 weget p, =x(7).
Also
*Dix(t+n)=p,*DX(t) + p,“Dy(t) + p,"Dz(t).
This implies
z(t+n) = pz(t) + PX() + PyY(D).
For
t=0 weget p,=z(n).
Operating Caputo fractional differential operator D on
both sides we get
*Dz(t+7)=p,"Dz(t) + p,"DX(t) + p,“Dy(t).
This gives
yt+n)=py() + p,z(t) + pyx(t).
For
t=0 weget p,=y().
Here we have used the initial conditions (3.7). Substituting the
valuesof p,, P, and P, in (3.16) we get
X(t+17) = x(m)x(X) + z(7)y(t) + y(@@)z(t) .
Similarly we can show that
y(t+n) = y@x) + x(m)y®) + z(m7)z(t) ,

and
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z(t+m) = z(m)x(t) + y(@m)y(®) + x@)z(t) .
From these relations, by taking 7 =1 we get

X(2t) = X2(t) + 2z(t) y(1),
y(2t) = 2°(t) + 2x(t) y(t),

and
2(2t) = y*(t) + 2z(O)x(1), 7, tell,
These results may be easily used to obtain the values of
X(3t), y(3t) and z(3t) and many similar relations.

Similar to the Euler's formulae for the second order CFDE
[7], we can obtain the Euler's formulae for the third order
CFDE (3.1).

Euler’s Formulae. The solutions of the CFDE (3.1) are
q
3,92t

E,(2’0t")

a q
q q
E,(@%"), E,(@°wt")  and where

ag a%a) aga)z(a):_l-'_\/gi
) H 2

characteristic equation A% —af

j are the roots of the

=0 (a>0). We express

q q q
q ] a _
E,(@%t?), E,(a%at") and E (a°w1") in terms of

NJo(t,a), N, (t,a) and N, (t,a)
follows:

respectively as

kq

(-) ( g tq ) Z l—‘ :I tlk{q +
‘ k=0 ( q)

q 29
a3tq a 3 t2q aqt3q
+ +

I'd+q) I'+2q) Ir@+3q)

4q 5q
a?t“'q a?tSq
+ + +

I'd+4q) I'(1+5q) TI'(1+60q)

q
a’t® a2t ast’

+ + et +
I'd+3q) I'+6q) r'l+q)

49 29 5q
a3t4q a3t2q a3t5q

ra+aq) r(1+ 29)  T(+5q)
i (\/_t)Skq (Yat)@De
o I'(1+3kq) kor(1+(3k+1)q)
© \jgt (3k+2)q
kz_(;l“((1+(?3k+2)q)
=N, (t,a) + N (t,a) + N3, (t, a).

=14

a9t

S. Nagamani,
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kq
. 1 2 asd @t
(IE,(a%wt?) ell,
‘ kzc; I'(1+kg)’
q 29
atot! asd it
+ +
I'lt+q) I'(1+2q)
4q 5q
ad o't a3 p’t™
+ +
I'l+4q) TI'@+5q)
athq anth
+ + +
'd+3q) I@+6q)
q 4q
astt asth
w +
rd+q) I'@Q+4q)

alw’t™
_l_
I'(1+3q)

a9 @°tb
+ +
I'(1+6q)

2q 5q
,| a3t™ ast™

+ +
I't+2q) TI@+5q)

i \/_t)3kq © (%t)wkﬂ)q

o T+ 3kq) o 1+ Bk +1)q)

Y 3 (3k+2)q
o3 (a0

i L1+ (3k+2)q)
= Njo(t,a) + N3 (t, ) + @ N3, (t, a).

kq
q © o3 2kikg
(iii) Eq (a® a)th) = ZM tell,
ko T(L+ka)
q 29
atw’t? ade't® a'e’t™
+ + +
rd+q) r'+2q) I'(1+3q)
4q 5q
al o't adw
+ + +
'd+4q) TI'(1+5q)

alt™ a2t

+ + +
'd+3q) I'(l+6q)

10454 12469

aw
+
I'1+6q)

q 49
astt ast*

+ +
'd+q) r@a+4q)

2q 5q
asdtX ast™

0] + +
rd+2q) Ir1+5q)
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_$ Fan* L& Rapee

=2, T Z;F(l+(3k 11)q)
© (%t)(3k+2)q

wkZ; 1+ (3K + 2)q)

=NJ,(t,a)+ ®*Nj, (t, @) + oN;, (¢, a).
Thus we obtain the following relations

q
E, (%) = NZy(t,a) + NZ,(t,a) + NS, (t,a) (319)

aq
E,(@%ot?) = NJ (t,a)+oNJ, (t,a)+ @ NJ,(t,a)  (3.20)

and

q
E,(@%’t") = NJ (t,a)+’ N, (t,a)

+oN{,(t,a), tel,.

The equations (3.19), (3.20) and (3.21) are three Euler's
forms for the solutions of the CFDE (3.1).
By solving (3.19), (3.20) and (3.21) we obtain

1 q 1 q
NJo(t.) =2 Ey(@°t")+ E, (a%at)

(3.21)

(3.22)
1o a3, 2
+§Eq(a ot ) y
1 a Q)Z q
N;jl(t,a):gEq(aStq)Jr?Eq(a%tq)
(3.23)
@ 3 2
+§ Eq(a ot ) )
NS, (t,a) = 1E (a3tq)+wE (a3a)tq)
(3.24)

2

+% E, (aga)th) , teR".

Here the three solutions of the CFDE (3.1) are expressed in
terms of Mittag - Leffler's forms.

IV. EXTENDED GENERALIZED FRACTIONAL HYPERBOLIC
LIKE FUNCTIONS THROUGH nth ORDER CFDE

The results obtained in Section 3 can be generalized to n

order CFDE. In this section we study the solutions of the n®
order CFDE.

n
order,

-1
Consider the (nq)™ <(q<1 fractional IVP of

the form

°DMx(t) — a’x(t) =0

with initial conditions

x(0)=1, °*Dx(0) =0, °D**x(0),..
where (n=1)<ng<n, neN

(4.1)

LD MI%(0) =0 (4.2)
fixed.
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Theorem 4.1. The general solution of the CFDE (4.1) is given

by €% (t)+C,X,(t)+...+C X, (t) where
c.,C,,...,C, are arbitrary constants and
X, (t), X, (t),..., X, (t) are infinite series solutions of the
form

a“t ka
&()—Z (a1

s T'(1+nkq)

o (aﬁt)(”k”’q
%(t) = kzl“(1+(nk +1)q)

(4.3)

& (a%t)(nm(nfl»q
w0 =2 ke LS

Proof. We transform the IVP (4.1) - (4.2) to a system of

-1
equations of qth order, <Qg<1 by taking @ =nq

and setting
]
“Dix (1) =a"x, (1),

—anx (D), “Dx()

"D, (1)

(4.4)
q q
=a"x,(t),..., ‘Dix, (t)=a"x, ,(t).

with initial conditions
x(0)=1, x,(0)=0,..., x,(0)=0. (4.5)
Let
X(t) = D &, t, %, (t)

k=0 (4.6)

=D a, 9 x () =) a,t
k=0 k=0

where aik,s, i=12,...,n,k=0,1,...,00 are unknown
constantsand t €[] ,
From the initial conditions (4.5) we have

a, =1 a,=0..., a,=0.

Now consider the equation

q
‘Dx (t) =a"x, (t).
Substituting (4.6) in the above equation we get

00 S 0
° D“[Zaikt"q } =a"y a,t"
0 k0
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which gives Theorem 4.2. Let X, (t), X,(t),..., X,(t) be n solutions of
ial . r@+(k +1)q)tkq _ a%i a ktkql the CFDE (4.1). These N solutions are linearly independent
S P(A+-ka) " on [, if and only if the Wronskian W (t) =0 for every

Further comparison of the coefficients of the same power tell

yields
q
a"T'(1+k Proof. Let there be a point t, in [] _ such that W (t,) = 0.
By =KD o gor k=01,2,.... POt i I ®)
rd+k+1$q) Assume that there are N constants C;,C,,...C, such that
Similarly using . ¢, % (t) + X, (t) + ...+ C X (1) =0, tell,
“DUx,(t) =a" x,(t), “Dx,(t) To show that X (t), X,(t), ..., X, (t) are linearly

q g q independent, we must show that ¢, =C, =...C, =0. At
=a"x(t),..., ‘DX, (t)=a"x
"% (), n(0)=a"%,,(0) t=t in[l, wehave

we get
ﬂr(l ka) CX (4)+C, %, (t) +...+C, X, (t,)=0
a'n + q C C C
a =————"a,, c, ‘D (t)+c,°Dix, (t)+...+¢, ‘D% (t)=0
2(k+1) T+ (k+1)q) Ar Ay 1 X1( 1) 2 2( 1) n .n (t1)
. : : :
_arl+ky) g ¢, ‘D PIx (t,)+¢, DOV, () +...+¢C, DX (1,)=0
r@+k+1)q) = ey These are N simultaneous homogeneous equations in
q C,,C,,...C, as unknown coefficients. Since the determinant
a"T"(1+kaq) - . :
=—————a, ., for k=0,12,... formed by the coefficients of the N equations W (t,) =0, it
. F(1+ (k +1)q) . . . is clear that C, =C, =...C, = 0. Therefore the solutions are
Using the above recursive relations, we obtain the values . .
. linearly independent.
of ‘_5‘11’ aiz"_'" 811891+ 8y By and Ainally  the To obtain a sufficient condition assume that the solutions
solutions are g|ven by X, (t), X,(t),..., X, (t) are linearly independent. We show
© i ( )”kq N (ta) (say) that Wronskian W (t) = O.
= = ,a) (sa
% —=Tl+ Noo y Suppose if possible that W(t) = 0 forsome tell ,
o (aft)(nk+l)q Then
X, (t) = Z N7, (t,a) (say) 4.7) Xl(t) X, (1) X, (t)
ST+ (nk +q) ' c c c
. DX, (t) Dx,(t) - DX, (t)

=0.

1 : : : :
- (an t)(nk+(n—1) c D(n—l)q Xl(t) c D(n—l)q Xz (t) .. ¢c D(n—l)q Xn (t)

X (t t,a) (sa
O 2t ks gy et )
The proof is complete. Then there exists a linear combination of columns as
At this stage, we consider a suitable notation to X, () X, (t)
conveniently represent such infinite series. The notation is as g . ;
follows. D™ x,(t) D™, (t)
1 Cl : +CZ :
® aﬁt)(nkw)q - -
N, (t,a)= ( : cpMDay (t cpMDay (t
”’r kzz(;r(1+(nk+r)q) (0 (1)
r=0,12,...,(n-1), neN, te,. X, (1)
These solutions are called as extended generalized ‘DY X, (t) -0
fractional hyperbolic like functions. + G, . =
Now we state and prove a theorem which relates the :
Wronskian and the solutions of the CFDE (4.1). *DOVIx (t)
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where C,,C,,...,C, are not simultaneously zero. If C, #0

then X(t) = — 2%, (t) = B x,(t) ——1x (t). This
Cl Cl 1

implies that X, (t), X, (t), ..., x,(t) are linearly dependent

solutions, which is a contradiction. Thus W (t) = 0.

This completes the proof.

V. CONCLUSION

This paper deals with a family of specific type of CFDE
involving a parameter ‘a’. The solutions of the 3™ order and
n" order CFDEs are obtained analytically. Inequality results
between the solutions of the 3" order CFDE are obtained.
Further properties of these solutions are studied.
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