
International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

194

Mitali Kashyape, Ayush Agrawal, Shourya Gahlod, Shubham Patil, Monika Ranade, and Prof. R. D. Wagh, “A hybrid approach for

prevention of SQL injection attack using pattern matching,” International Research Journal of Advanced Engineering and Science, Volume

2, Issue 1, pp. 194-197, 2017.

A Hybrid Approach for Prevention of SQL Injection

Attack Using Pattern Matching

Mitali Kashyape
1
, Ayush Agrawal

1
, Shourya Gahlod

1
, Shubham Patil

1
, Monika Ranade

1
,

Prof. R. D. Wagh
2

1
BE Students, Department of Information Technology, Dr. Babasaheb Ambedkar College of Engineering & Research, Nagpur
2
Assistant Professor, Department of Information Technology, Dr. Babasaheb Ambedkar College of Engineering & Research,

Nagpur

Abstract— Security of network frameworks is obtaining a lot of

essential as user’s confidential and personal knowledge are being

controlled on-line and acquire hacked systematically. The protection

of a machine structure is changed off at the purpose once a pause

happens because it could induce knowledge stealing or developer

creating the machine structures a lot of vulnerable. There are varied

algorithms that are utilised for the seeking the results on net. Pattern

matching system is one in every of them. Few models take into

account the detection of obscure assaults with shrivelled false

positives and confined overhead. This paper portrays a system to take

care of this type of management and consequently kill vulnerabilities

of SQL Injection. This paper additionally projected a discovery and

levelling activity strategy for checking SQL Injection Attack (SQLIA)

mistreatment Aho–Corasick pattern matching computation. Main

focus of this paper is on positive tainting thus detection makes it

straightforward. The rule objective is intrusion detection.

Investigations exhibit that projected system has higher recognition

rate than existing structure.

Keywords— SQL injection, database security, pattern matching,

dynamic pattern, static pattern.

I. INTRODUCTION

Organizations and associations utilize web applications to give

better support of the end clients. The Databases utilized as a

part of web applications regularly contain private and

individual data. These databases and client individual data is

focus to the assaults.

Web applications are normally associate with back-end

database to recover steady information and after that present

the information to the client as powerfully created yield, for

example, HTML website pages. This correspondence is

ordinarily done through a low– level API by powerfully

developing inquiry strings with in a broadly useful

programming dialect. This low–level connection (or)

correspondence is dynamic (or) session based on the grounds

that it doesn't consider the structure of the yield dialect. The

client input proclamations are dealt with as disconnected

lexical sections (or) string. Any aggressor can install a

summon in this string, which forces a genuine risk to web

application security.

SQL Injection Attack (SQLIA) is one of the intense

dangers for web applications [3, 11]. The web applications

that are defenceless against SQL Injection may permit an

assailant to increase finish access to the database. Now and

again, assailant can utilize SQL infusion assault to take control

and degenerate the framework that has the web application.

SQL infusion allude to a class of code–injection assaults in

which information gave by the client is incorporated into a

SQL inquiry of such a path, to the point that piece of the

client's information is dealt with as SQL code. SQL infusion is

a strategy offer used to assault a site. This is finished by

including segments of SQL explanations in a web application

section field trying to get the site to pass a recently framed

maverick SQL charge to the database. SQL Injection is a code

infusion strategy that adventures security weakness in site

programming. The weakness happens when client contribution

of either mistakenly sifted for string exacting break characters

installed in SQL proclamations or client info is not specifically

and out of the blue executed. A standout amongst the most

proficient components to guard against web assaults utilizes

Intrusion Detection System (IDS) and Network Intrusion

Detection System (NIDS). IDS utilize abuse or inconsistency

identification to protect against assault [8]. IDS that utilization

irregularity recognition method set up a standard of ordinary

use designs. Abuse location strategy utilizes particularly

known examples of unapproved conduct to anticipate and

distinguish resulting comparative sort of assaults. These sorts

of examples are called as marks [8, 9]. NIDS are not bolster

for the administration situated applications (web assault), in

light of the fact that NIDS are working lower level layers as

appeared in figure [11]

Fig. 1. Web based attack vs. network based attacks.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

195

Mitali Kashyape, Ayush Agrawal, Shourya Gahlod, Shubham Patil, Monika Ranade, and Prof. R. D. Wagh, “A hybrid approach for

prevention of SQL injection attack using pattern matching,” International Research Journal of Advanced Engineering and Science, Volume

2, Issue 1, pp. 194-197, 2017.

II. RELATED WORK

In the course of recent decades, distinctive examines and

methodologies have been exhibited and distributed numerous

procedures for recognition and counteractive action of SQL

Injection Attack (SQLIA). In electronic security issues,

SQLIA has the top generally need. Essentially, we can arrange

the identification and aversion procedures into two general

classes. In the first place approach is attempting to distinguish

SQLIA through checking Anomalous SQL Query structure

utilizing string coordinating, design coordinating and question

handling. In the second approach utilizes information

conditions among information things which are less inclined

to change for distinguishing malignant database exercises. In

both the classes, a considerable lot of the scientists proposed

distinctive plans with coordinating information mining and

interruption identification frameworks. These sorts of

methodologies limit the false positive alarms, limiting human

mediation and better recognition of assault [13]. Additionally,

unique interruption location procedures are utilized either

independently or other. Diverse work utilized abuse method

other utilized abnormality. A general system for distinguishing

vindictive database exchange designs utilizing information

mining was proposed by Bertino et al [16, 17] to mine

database logs to frame client profiles that can demonstrate

ordinary practices and recognize bizarre exchange in database

with part based get to control component.

The framework can recognize gate crasher by

distinguishing practices that not quite the same as the typical

conduct. Kamra et al [18], proposed an upgraded show that

can distinguish gate crashers in databases where there are no

parts related with every client. Bertino et al [19] proposed a

structure in view of inconsistency discovery procedure and

affiliation administer mining to recognize the inquiry that

veers off from the ordinary database application conduct.

Bandhakavi et al [20] proposed an abuse recognition strategy

to recognize SQLIA by finding the plan of an inquiry

powerfully and afterward contrasting the structure of the

distinguished question with typical inquiries in view of the

client contribution with the found expectation.

Halfond et al [21] built up a strategy that uses a model–

based way to deal with distinguish illicit questions before they

are executed on the database. William et al [20] proposed a

framework WASP to avert SQL Injection Attacks by a

technique called positive polluting. Srivastava et al [22]

offered a weighted arrangement digging approach for

recognizing information base assaults. The commitment of

this paper is to propose a system for recognizing and avoiding

SQLIA utilizing both static stage and element stage. The

proposed system utilizes static Anomaly Detection utilizing

Aho–Corasick Pattern coordinating calculation. The

irregularity SQL Queries are recognition in static stage. In the

dynamic stage, if any of the questions is distinguished as

abnormality inquiry then new example will be made from the

SQL Query and it will be added to the Static Pattern List

(SPL).

III. PROPOSED SCHEME

In this segment, we present a proficient calculation for

recognizing and avoiding SQL Injection Attack utilizing Aho–

Corasick Pattern coordinating calculation. The proposed

design is given in figure 2 underneath. The proposed conspire

has the accompanying two modules, 1) Static Phase and 2)

Dynamic Phase. In the Static Pattern List, we keep up a

rundown of known Anomaly Pattern. In Static Phase, the

client produced SQL Queries are checked by applying Static

Pattern Matching Algorithm. In Dynamic Phase, if any type of

new inconsistency is happen then Alarm will show and new

Anomaly Pattern will be produced. The new oddity example

will be refreshed to the Static Pattern List. The accompanying

strides are performed amid Static and Dynamic Phase,

Static Phase

Step 1: User produced SQL Query is send to the proposed

Static Pattern Matching Algorithm

Step 2: The Static Pattern Matching Algorithm is given in

Pseudo Code is given beneath

Step 3: The Anomaly examples are kept up in Static Pattern

list, amid the example coordinating procedure each example is

contrasted and the put away Anomaly Pattern in the rundown

Step 4: If the example is precisely coordinate with one of the

put away example in the Anomaly Pattern List then the SQL

Query is influenced with SQL Injection Attack

Dynamic Phase

Step 1: Otherwise, Anomaly Score esteem is figured for the

client created SQL Query, If the Anomaly Score esteem is all

the more than the Threshold esteem, then an Alarm is given

and Query will be go to the Administrator.

Step 2: If the Administrator gets any Alarm then the Query

will be investigate by physically. On the off chance that the

question is influenced by an infusion assault then an example

will be produced and the example will be added to the Static

pattern list.

Fig. 2. System architecture.

There are many ways to deal with perceiving designs that

include utilizing limited automata. The Aho–Corasick

calculation [2] is one such great calculation. The thought is

that a limited machine is developed utilizing the arrangement

of watchwords amid the pre–computation period of the

calculation and the coordinating includes the robot checking

the SQL question proclamation perusing each character in

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

196

Mitali Kashyape, Ayush Agrawal, Shourya Gahlod, Shubham Patil, Monika Ranade, and Prof. R. D. Wagh, “A hybrid approach for

prevention of SQL injection attack using pattern matching,” International Research Journal of Advanced Engineering and Science, Volume

2, Issue 1, pp. 194-197, 2017.

SQL inquiry precisely once and setting aside steady time for

each read of a character. Pseudo code of the Aho–Corasick

various catchphrase coordinating calculation is given beneath,

The AC calculation utilizes a refinement of a tries to store the

arrangement of Anomaly Keywords in an example

coordinating

Example:

The specimen of Query era is given in figure 3 and the

procedure of example coordinating for the client created

question in given in figure 4 and figure 5.

Fig. 3. SQL query generation with legal user name and password.

Fig. 4. SQLIA pattern matching process.

Fig. 5. SQLIA pattern exactly matching.

IV. ALGORITHM

A. Static Pattern Matching

Step1: SPMA (Query, SPL [])

INPUT: Query → User Generated Query

SPL [] → Static Pattern List with m Anomaly Pattern

Step2: For j = 1 to m do

Step3: If (AC (Query, String .Length (Query), SPL[j] [0])

==ɸ))

Step4:

Step5: If (Anomolyscore≥ Threshold value) then

Step6: Return Alarm → Administrator

Else

Step 7: Return Query → Accepted

End if

Step 8: Return Query → Rejected

End if

End For

End Procedure

B. Aho - Corasick Algorithm

Step 1: Procedure AC (y, n, q0)

Step 2: Set of all Queries.

Step 3: For All Queries i = 1 to n do

Step 4: Check with Static pattern matching

Step 5: If (Detected (True)) show result

Step 6: Else Send For Dynamic Pattern Matching

Step 7: Tokenize the query.

Step 8: Convert token into pattern matching syntax by using

syntax aware

Step 9: For each token match with patterns

Step 10: Detect anomaly score for the query

Step 11: If (Anomaly Score < Threshold)

Step 12: Reject Query

Step 14: Else Start Positive Tainting

Step 15: Remove the attack pattern tokens

Step 16: After token removal combine all tokens

Step 17: Execute Query

Step 18: End for

Step 19: End Procedure

V. CONCLUSIONS

This structure maintains a strategic distance from assaults

like SQL control and furthermore noticeable SQL infusion.

This paper moreover suggest useful corrupting changes from

conventional spoiling, paying little respect to the way that it is

engaged around the acknowledgment, checking, and imitating

of trusted, instead of non-put stock in, data. Besides sentence

structure mindful appraisal is utilizing the pollute imprints to

comprehend legitimate from unsafe questions. These papers

likewise introduce a methodology for preventive and

acknowledgment activity of SQL infusion assaults utilizing

Aho corasick design coordinating calculation and Positive

polluting system. In future it is conceivable to utilize graphical

passwords for login, with the goal that it will likewise not get

hacked by assailant and can give more secure validation.

Additionally it will be valuable to study elective avoidance

procedure for SQL Injection Attack to make the application

more effective.

REFERENCES

[1] A. Kumar Pandey, “Securing web applications from application-level

attack”, Master Thesis, 2007.

International Research Journal of Advanced Engineering and Science
 ISSN (Online): 2455-9024

197

Mitali Kashyape, Ayush Agrawal, Shourya Gahlod, Shubham Patil, Monika Ranade, and Prof. R. D. Wagh, “A hybrid approach for

prevention of SQL injection attack using pattern matching,” International Research Journal of Advanced Engineering and Science, Volume

2, Issue 1, pp. 194-197, 2017.

[2] C. J. Ezeife, J. Dong, and A. K. Aggarwal, “SensorWebIDS: A web

mining intrusion detection system,” International Journal of Web
Information Systems, volume 4, pp. 97-120, 2007.

[3] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”

Technical Report, Chalmers Univ., 2000.
[4] M. F. Marhusin, D. Cornforth, and H. Larkin, “An overview of recent

advances in intrusion detection,” in Proceeding of IEEE 8th

International Conference on Computer and Information Technology
CIT, 2008.

[5] S. F. Yusufovna, “Integrating intrusion detection system and data

mining,” International Symposium on Ubiquitous Multimedia
Computing, 2008.

[6] W. L. Low, S. Y. Lee, and P. Teoh, “DIDAFIT: Detecting intrusions in

databases through fingerprinting transactions,” in Proceedings of the 4th
International Conference on Enterprise Information Systems (ICEIS),

2002.

[7] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the

detection of sql injection attacks,” in Proceedings of the Conference on

Detection of Intrusions and Malware and Vulnerability Assessment

(DIMVA), 2005.
[8] E. Bertino, A Kamra, E. Terzi, and A. Vakali, “Intrusion detection in

RBAC-administered databases,” in the Proceedings of the 21st Annual

Computer Security Applications Conference, 2005.
[9] A. Kamra, E. Bertino, and G. Lebanon, “Mechanisms for database

intrusion detection and response,” in the Proceedings of the 2nd

SIGMOD PhD Workshop on Innovative Database Research, 2008.

[10] A. Kamra, E. Terzi, and E. Bertino, “Detecting anomalous access

patterns in relational databases,” the VLDB Journal VoU7, No. 5, pp.
1063-1077, 2009.

[11] E. Bertino, A Kamra, and J. Early, “Profiling database application to

detect SQL injection attacks,” In the Proceedings of 2007 IEEE
International Performance, Computing, and Communications

Conference, 2007.

[12] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. Venkatakrishnan,
“CANDID: Preventing sql injection attacks using dynamic candidate

evaluations,” in the Proceedings of the 14th ACM Conference on

Computer and Communications Security, 2007.
[13] W. G. Halfond, and A. Orso, “AMNESIA: Analysis and monitoring for

neutralizing SQL-Injection attacks,” in Proceedings of the 20th

IEEE/ACM international Conference on Automated Software
Engineering, 2005.

[14] W. G. J. Halfond, A. Orso, and P. Manolios, “WASP: Protecting web

applications using positive tainting and syntax- aware evaluation,” IEEE

Transactions on Software Engineering, vol. 34, no. 1, pp. 65-81, 2008.

[15] G. Buehrer, B. W. Weide, and P. A. Sivilotti, “Using parse tree

validation to prevent SQL injection attacks,” in Proceedings of the 5th
international Workshop on Software Engineering and Middleware,

2005.

