
International Research Journal of Advanced Engineering and Science
 ISSN: 2455-9024

89

G. Elumalai and U. Vasudevan, “Worm hole attack detection in wireless sensor network,” International Research Journal of Advanced

Engineering and Science, Volume 1, Issue 2, pp. 89-95, 2016.

Worm Hole Attack Detection in Wireless Sensor

Network

G. Elumalai
1
, U. Vasudevan

2

1, 2
Panimalar Engineering College, Chennnai-600123

Email address:
2
u.vasudevan85@gmail.com

Abstract— Network coding has been shown to be an effective

approach to improve the wireless system performance. In network

coding systems, the impact of wormhole attacks and counter

measures are unknown. In this paper, we quantify wormholes ‘attack

impact on network coding system performance through experiments.

We first propose a centralized algorithm to detect wormholes and

show its correctness rigorously. For the distributed wireless network,

we propose DAWN, a Distributed detection Algorithm against

Wormhole, by exploring the change of the flow directions of the

innovative packets caused by wormholes. We rigorously prove that

DAWN guarantees a good lower bound of successful detection rate.

We perform analysis on the resistance of DAWN against collusion

attacks. Extensive experimental results have verified the effectiveness

and the efficiency of DAWN.

Keywords— WSN, RLNC system, network simulator.

I. INTRODUCTION

The main aim of this project is how to detect a wormhole

attack using Expected Transmission count technique in

Random linear Network coding (RLNC) System .Wormhole

link will be removed in the network and packets are

transmitted through secure link To improve the system

performance of wireless Network, network coding is shown to

be effective approach and it is totally different from traditional

network In contrast, in wireless network coding systems, the

forwarders are allowed to apply encoding schemes on what

they receive, and thus they create and transmit new packets.

To improve the system performance of wireless networks,

network coding has been shown to be an effective and

promising approach (e.g., [I], [II]) and it constitutes a

fundamentally different approach compared to traditional

networks, where intermediate nodes store and forward packets

as the original. In contrast, in wireless network coding

systems, the forwarders are allowed to apply encoding

schemes on what they receive, and thus they create and

transmit new packets. The idea of mixing packets on each

node takes good advantages of the opportunity diversity and

broadcast nature of wireless communications, and

significantly enhances system performance. However,

practical wireless network coding systems face new challenges

and attacks, whose impact and countermeasures are still not

well understood because their underlying characteristics are

different from well-studied traditional wireless networks. The

wormhole attack is one of these attacks. In a wormhole attack,

the attacker can forward each packet using wormhole links

and without modifies the packet transmission by routing it to

an unauthorized remote node. Hence, receiving the

rebroadcast packets by the attackers, some nodes will have the

illusion that they are close to the attacker.

II. SYSTEM ANALYSIS

A. Existing System

In traditional network, use connectivity graphs with binary

relation (i.e., connected or not) on the set of nodes. For this

reason, prior works based on graph analysis cannot be applied.

Introduced by wormhole attacks to detect them unfortunately,

this type of solutions cannot work with network coding either.

They require either to use an established route that does not

exist with network coding, or to calculate the delay between

every two neighboring nodes which will introduce a huge

amount of error in network coding systems.

B. Proposed System

In this project we detect a wormhole attack. Packet will be

sending using RLNC technique, when the attacker attack the

nodes while sending data. We find Critical Nodes and then we

remove that path. Packet will be sending other paths and

expected transmission count is to be increased if wormhole

attack is detected.

We first propose a centralized algorithm to detect

wormholes leveraging a central node in the network. For the

distributed scenarios, we propose a distributed algorithm,

DAWN, to detect wormhole attacks in wireless intra-flow

network coding systems. The main idea of our solutions is that

we examine the order of the nodes to receive the innovative

packets in the network. Innovative Packet means intermediate

node receives a packet which is linearly independent from

previous packets.

III. TECHNOLOGIES USED

A. NS (version 2)

NS (version 2) is an object-oriented, discrete event driven

network simulator developed at UC Berkely written in C++

and OTcl. NS is primarily useful for simulating local and wide

area networks. Although NS is fairly easy to use once you get

to know the simulator, it is quite difficult for a first time user,

because there are few user-friendly manuals. Even though

there is a lot of documentation written by the developers

which has in depth explanation of the simulator, it is written

with the depth of a skilled NS user. The purpose of this project

is to give a new user some basic idea of how the simultor

works, how to setup simulation networks, where to look for

further information about network components in simulator

codes, how to create new network components, etc., mainly by

International Research Journal of Advanced Engineering and Science
 ISSN: 2455-9024

90

G. Elumalai and U. Vasudevan, “Worm hole attack detection in wireless sensor network,” International Research Journal of Advanced

Engineering and Science, Volume 1, Issue 2, pp. 89-95, 2016.

giving simple examples and brief explanations based on our

experiences. Although all the usage of the simulator or

possible network simulation setups may not be covered in this

project, the project should help a new user to get started

quickly.

NS is an event driven network simulator developed at UC

Berkeley that simulates variety of IP networks. It implements

network protocols such as TCP and UPD, traffic source

behavior such as FTP, Telnet, Web, CBR and VBR, router

queue management mechanism such as Drop Tail, RED and

CBQ, routing algorithms such as dijkstra's algorithm, and

more. NS also implements multicasting and some of the MAC

layer protocols for LAN simulations. The NS project is now a

part of the VINT project that develops tools for simulation

results display, analysis and converters that convert network

topologies generated by well-known generators to NS formats.

Currently, NS (version 2) written in C++ and OTcl (Tcl script

language with Object-oriented extensions developed at MIT)

is available

Most of the figures that are used in describing the NS basic

structure and network components are from the 5th VINT/NS

Simulator Tutorial/Workshop slides and the NS Manual

(formerly called "NS Notes and Documentation"), modified

little bit as needed. For more information about NS and the

related tools, visit the VINT project home page.

Fig. 1

As shown in figure 1, in a simplified user's view, NS is

Object- oriented Tcl (OTcl) script interpreter that has a

simulation event scheduler and network component object

libraries, and network setup (plumbing) module libraries

(actually, plumbing modules are implemented as member

functions of the base simulator object). In other words, to use

NS, you program in OTcl script language. To setup and run a

simulation network, a user should write an OTcl script that

initiates an event scheduler, sets up the network topology

using the network objects and the plumbing functions in the

library, and tells traffic sources when to start and stop

transmitting packets through the event scheduler.

NS is written not only in OTcl but in C++ also. For efficiency

reason, NS separates the data path implementation from

control path implementations. In order to reduce packet and

event processing time (not simulation time), the event

scheduler and the basic network component objects in the data

path are written and compiled using C++. These compiled

objects are made available to the OTcl interpreter through an

OTcl linkage that creates a matching OTcl object for each of

the C++ objects and makes the control functions and the

configurable variables specified by the C++ object act as

member functions and member variables of the corresponding

OTcl object. In this way, the controls of the C++ objects are

given to OTcl. It is also possible to add member functions and

variables to a C++ linked OTcl object. The objects in C++ that

do not need to be controlled in a simulation or internally used

by another object do not need to be linked to OTcl. Likewise,

an object (not in the data path) can be entirely implemented in

OTcl. Figure 2 shows an object hierarchy example in C++ and

OTcl. One thing to note in the figure is that for C++ objects

that have an OTcl linkage forming a hierarchy, there is a

matching OTcl object hierarchy very similar to that of C++.

 Fig. 2 Fig. 3

B. OTcl: The User Language

As mentioned in the overview section, NS is basically an

OTcl interpreter with network simulation object libraries. It is

very useful to know how to program in OTcl to use NS. This

section shows an example Tcl and OTcl script, from which

one can get the basic idea of programming in OTcl. This

section and the sections after assumes that the reader installed

NS, and is familiar with C and C++.

Example 1 is a general Tcl script that shows how to create a

procedure and call it, how to assign values to variables, and

how to make a loop. Knowing that OTcl is Objectorieneted

extension of Tcl, it is obvious that all Tcl commands work on

OTcl the relationship between Tcl and Otcl is just same as C

and C++. To run this script you should download ex-tcl.tcl,

and type "ns ex-tcl.tcl" at your shell prompt. The command

"ns" starts the NS (an OTcl interpreter). You will also get the

same results if you type "tcl ex-tcl.tcl", if tcl8.0 is installed in

your machine.

Example 1. A sample Tcl scripts

The keyword puts prints out the following string within

double quotation marks. The following shows the result of

Example 1

http://www.isi.edu/nsnam/ns/#_blank
http://www.isi.edu/nsnam/vint#_blank
http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl/index.html#_blank
http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html#_blank
http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html#_blank
http://www.isi.edu/nsnam/ns/ns-tutorial/ucb-tutorial.html#_blank
http://www.isi.edu/nsnam/ns/ns-documentation.html#_blank
http://www.isi.edu/nsnam/vint#_blank
http://www.isi.edu/nsnam/vint#_blank
http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl#_blank
http://bmrc.berkeley.edu/research/cmt/cmtdoc/otcl#_blank
http://www.isi.edu/nsnam/ns/ns-build.html#_blank
http://perform.wpi.edu/NS/Example/ex-tcl.tcl

International Research Journal of Advanced Engineering and Science
 ISSN: 2455-9024

91

G. Elumalai and U. Vasudevan, “Worm hole attack detection in wireless sensor network,” International Research Journal of Advanced

Engineering and Science, Volume 1, Issue 2, pp. 89-95, 2016.

The next example is an objectoriented programming

example in OTcl. This example is very simple, but shows the

way which an object is created and used in OTcl. As an

ordinary NS user, the chances that you will write your own

object might be rare. However, since all of the NS objects that

you will use in a NS simulation programming, whether or not

they are written in C++ and made available to OTcl via the

linkage or written only in OTcl, are essentially OTcl objects,

understanding OTcl object is helpful.

Example 2. A Sample OTcl Script

Example 2 is an OTcl script that defines two object

classes, "mom" and "kid", where "kid" is the child class of

"mom", and a member function called "greet" for each class.

After the class definitions, each object instance is declared, the

"age" variable of each instance is set to 45 (for mom) and 15

(for kid), and the "greet" member function of each object

instance is called. The keyword Class is to create an object

class is to define a member function to an object class. Class

inheritance is specified using the keyword –super class. In

defining member functions, $self acts same as the "this"

pointer in C++, checks if the following variable name is

already declared in its class or in its super class. If the variable

name given is already declared, the variable is referenced, if

not a new one is declared. Finally, to create an object instance,

the keyword new is used as shown in the example.

Downloading ex-otcl.tcl and executing "ns ex-otcl.tcl" will

give you the following result:

45 year old mom say:

 How are you doing?

15 year old kid says:

What’s up, dude?

C. Event Scheduler

This section talks about the discrete event schedulers of

NS. As described in the Overview section, the main users of

an event scheduler are network components that simulate

packet handling delay or that need timers. Figure 4 shows each

network object using an event scheduler. Note that a network

object that issues an event is the one who handles the event

later at scheduled time. Also note that the data path between

network objects is different from the event path. Actually,

packets are handed from one network object to another using

send (Packet* p) {target_-> receiver (p)}; method of the

sender and receiver (Packet*, Handler* h = 0) method of the

receiver.

Fig. 4 Discrete event scheduler

NS has two different types of event schedulers

implemented. These are real-time and non-real-time

schedulers. For a non-real-time scheduler, three

implementations (List, Heap and Calendar) are available; even

though they are all logically perform the same. This is because

of backward compatibility: some early implementation of

network components added by a user (not the original ones

included in a package) may use a specific type of scheduler

not through public functions but hacking around the internals.

The Calendar non-real- time scheduler is set as the default.

The real time scheduler is for emulation, which allows the

simulator to interact with a real network. Currently, emulation

is under development although an experimental version is

available. The following is an example of selecting a specific

event scheduler.

Set ns [new simulator]

$ns Use-scheduler Heap

IV. SYSTEM DESIGN

A. Modules

 Network Formation

 Path Finding and data sending using RLNC

 Wormhole Detecting

B. Network Formation

In region each node sends ―hello message to other nodes

which allows detecting it. Once a node detects ―hello

message from another node (neighbor), it maintains a contact

record to store information about the neighbor. Using

http://perform.wpi.edu/NS/Example/ex-otcl.tcl

International Research Journal of Advanced Engineering and Science
 ISSN: 2455-9024

92

G. Elumalai and U. Vasudevan, “Worm hole attack detection in wireless sensor network,” International Research Journal of Advanced

Engineering and Science, Volume 1, Issue 2, pp. 89-95, 2016.

multicast socket, all nodes are used to detect the neighbor

nodes. Once after finding neighbor nodes a queue is

maintained for each neighboring node called as real queue.

C. Path Finding and Data Sending Using RLNC

In RLNC technique we sending packet in multiple path in

order to best utilize resources, before data transmissions,

routing decisions (i.e., how many times of transmissions a

forwarder should make for each novel packet) are made based

on local link conditions by some test transmissions. We find

redundant path, it means which is an unwanted path.

D. Wormhole Deecting and Remove The Link

We detect wormhole link in wireless network coding

systems, where no fixed routes exist, ETX, the expected

number of the packets for the source node to transmit so that

the target node (intermediate node or recipient) receives the

packet, provides a way to portray the topological structure of

the network and the relations among nodes. After detecting the

Wormhole link it will be removed in the network.

V. NETWORK COMPONENTS

This section talks about the NS components, mostly

compound network components, a partial OTcl class hierarchy

of NS, which will help understanding the basic network

components.

The root of the hierarchy is the Tcl Object class that is the

super class of all OTcl library objects (scheduler, network

components, timers and the other objects including NAM

related ones). As an ancestor class of Tcl Object, Ns object

class is the super class of all basic network component objects

that handle packets, which may compose compound network

objects such as nodes and links. The basic network

components are further divided into two subclasses, Connector

and Classifier, based on the number of the possible output data

paths. The basic network objects that have only one output

data path are under the Connector class, and switching objects

that have possible multiple output data paths are under the

Classifier class.

Node and Routing

A node is a compound object composed of a node entry

object and classifiers there are two types of nodes in NS. A

unicast node has an address classifier that does unicast routing

and a port classifier. A multicast node, in addition, has a

classifier that classify multicast packets from unicast packets

and a multicast classifier that performs multicast routing.

Fig. 5. Node and routing.

In NS, Unicast nodes are the default nodes. To create

Multicast nodes the user must explicitly notify in the input

OTcl script, right after creating a scheduler object, that all the

nodes that will be created are multicast nodes. After

specifying the node type, the user can also select a specific

routing protocol other than using a default one.

Unicast

-$ns rtproto type

- type: Static, Session, DV, cost, multi-path

Multicast

-$ns multicast (right after set $ns [new

 Scheduler]) $ns mrtproto type

- type: CtrMcast, DM, ST, BST

A. Packet Flow Example

Until now, the two most important network components

(node and link).The network consist of two nodes (n0 and n1)

of which the network addresses are 0 and 1 respectively. A

TCP agent attached to n0 using port 0 communicates with a

TCP sink object attached to n1 port 0. Finally, an FTP

application (or traffic source) is attached to the TCP agent,

asking to send some amount of data.

Fig. 6. Packet flow

VI. OVERALL DESCRIPTION

A. Purpose

The main aim of this project is how to detect a wormhole

attack using Expected Transmission count technique in

Random linear Network coding (RLNC) System .Wormhole

link will be detected in the network and packets are

transmitted through secure link.

B. Project Scope

To improve the system performance of wireless Network,

network coding is shown to be effective approach and it is

totally different from traditional network. In traditional

network where intermediate nodes store and forward packets

as the original. In contrast, in wireless network coding

systems, the forwarders are allowed to apply encoding

schemes on what they receive, and thus they create and

transmit new packets.

In a wormhole attack, the attacker can forward each packet

using wormhole links and without modifies the packet

transmission by routing it to an unauthorized remote node.

Hence, receiving the rebroadcast packets by the attackers,

some nodes will have the illusion that they are close to the

attacker. With the ability of changing network topologies and

bypassing packets for further manipulation, wormhole

International Research Journal of Advanced Engineering and Science
 ISSN: 2455-9024

93

G. Elumalai and U. Vasudevan, “Worm hole attack detection in wireless sensor network,” International Research Journal of Advanced

Engineering and Science, Volume 1, Issue 2, pp. 89-95, 2016.

attackers pose a severe threat to many functions in the

network, such as routing an localization. If wormhole attacks

are launched in routing, the nodes close to attackers will

receive more packets than they should and be considered as

having a good capability in help forwarding packets. Thus

they will be assigned with more responsibility in packet

forwarding than what they can actually provide.

C. External Interface Requirements

a) User interfaces

a) Graphical User Interfaces not in this product.

b) Users are communicated with Buttons with network

animator.

b) Hardware interfaces

Linux environment of system and basic need of system

feature like random access memory etc

c) Software interfaces

 This software is interacted with the TCP/IP protocol.

 This product is interacted with the and linux

 This product is interacted with the Server Socket

 This product is interacted with TCL

D. Communication Interfaces

The TCP/IP protocol will be used to facilitate

communications between the nodes.

E. Performance Requirements

The performance of the wireless sensor network, to

execute this project on LAN or wifi communication channel.

So we need to one or more than machine to execute the demo.

Machine needs the enough hard disk space to install the

software and run our project.

Security requirements

 Do not block the some available component through the

Linux firewall

 Do not block the some available component in network-

simulator 2

F. Software Qulity Attributes

 Functionality: are the required functions available,

including Interoperability and security

 Reliability: maturity, fault tolerance and recoverability.

 Usability: how easy it is to understand, learn and operate

the software system.

 Efficiency: performance and resource behavior.

 Maintainability: how easy is it to modify the software

 Portability: can the software easily be transferred to

another environment, including install ability.

G. Product Features

In this project we detect a wormhole attack. Packet will be

sending using RLNC technique, when the attacker attack the

nodes while sending data. We find Critical Nodes and then we

remove that path. Packet will be sending other paths and

expected transmission count is to be increased if wormhole

attack is detected.

We first propose a centralized algorithm to detect

wormholes leveraging a central node in the network. For the

distributed scenarios, we propose a distributed algorithm,

DAWN, to detect wormhole attacks in wireless intra-flow

network coding systems. The main idea of our solutions is that

we examine the order of the nodes to receive the innovative

packets in the network. Innovative Packet means intermediate

node receives a packet which is linearly independent from

previous packets.

H. User Classes and Characteristics

The user privileges vary according to their designations.

Basic knowledge of using computers is adequate to use this

application. Knowledge of how to handle the system is

necessary. The user interface will be friendly enough to guide

the user.

I. System Features

In this project we detect a wormhole attack. Packet will be

sending using RLNC technique, when the attacker attack the

nodes while sending data. We find Critical Nodes and then we

remove that path. Packet will be sending other paths and

expected transmission

VII. SIMULATED OUTPUT

A. Existing Model

Fig. 7. Existing model

 The above diagram represents the existing model.In this

theory there exists packet losses in transmission.

 They are overcome by the proposed model.

B. Proposed Model

Fig. 8. Proposed models

International Research Journal of Advanced Engineering and Science
 ISSN: 2455-9024

94

G. Elumalai and U. Vasudevan, “Worm hole attack detection in wireless sensor network,” International Research Journal of Advanced

Engineering and Science, Volume 1, Issue 2, pp. 89-95, 2016.

 This overcomes the drawbacks of the basic model

 In this system we introduce single source and single

destination method by which we are able to receive and

transmit packets without any loss.

 Only drawback is that we are unable to use the other path

for communication, thereby the path remains idle.

C. Enhanced Model

Fig. 9. Enhanced models

 In this model we are able to access the two or more paths

to transmit the packet(single source and multiple

destination)

 Therefore all paths are used effectively in this model.

D. Delay Ratio

Fig. 10. The delay is analyzed by considering time and delay ratio

E. Total Loss

Fig. 11. The total loss is analyzed by considering time

F. Throughput Workload

Fig. 12. The throughput workload is analyzed by considering time and

throughput.

G. Protocol Frequency

Fig. 13. The protocol frequency is analyzed by considering time and phase

H. Source Frequency

Fig. 14. The source frequency is analyzed by considering time and signal

strength

VIII. CONCLUSION

We have proposed a Centralized Algorithm that assigns a

central node to collect and analyze the forwarding behaviors

of each node in the net- work, in order to react timely when

wormhole attack is initiated. We have proven the correctness

of the Centralized Algorithm by deriving a lower bound of the

deviation in the algorithm. We have also proposed a

Distributed detection Algorithm against Wormhole in wireless

Network coding systems.

International Research Journal of Advanced Engineering and Science
 ISSN: 2455-9024

95

G. Elumalai and U. Vasudevan, “Worm hole attack detection in wireless sensor network,” International Research Journal of Advanced

Engineering and Science, Volume 1, Issue 2, pp. 89-95, 2016.

REFERENCES

[1] D. Dong, Y. Liu, X. Li, and X. Liao, “Topological detection on

wormholes in wireless ad hoc and sensor networks,” IEEE/ACM

Transactions on Networking, vol. 19, no. 6, pp. 1787–1796, 2011.
[2] J. Kim, D. Sterne, R. Hardy, R. K. Thomas, and L. Tong, “Timingbased

localization of in-band wormhole tunnels in MANETs,” in Proceedings

of the Third ACM Conference on Wireless Network Security, WISEC, pp.
1–12, 2010.

[3] R. Poovendran and L. Lazos, “A graph theoretic framework for
preventing the wormhole attack in wireless ad hoc networks,” Wireless

Networks, vol. 13, no. 1, pp. 27–59, 2007.

[4] S. Biswas and R. Morris, “Opportunistic routing in multihop wireless
networks,” ACM SIGCOMM Computer Communication Review, vol. 34,

issue 1, pp. 69–74, 2004.

[5] S. Chachulski, M. Jennings, S. Katti, and D. Katabi, “Trading structure
for randomness in wireless opportunistic routing,” in Proceedings of the

conference on Applications, technologies, architectures, and protocols

for computer communications, pp. 169–180, 2007.

[6] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcrof,”

XORs in the air: Practical wireless network coding,” in Proceedings of
the 2006 conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications, pp. 243–254, 2006.

[7] S. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE
Transactions on Information Theory, vol. 49, no. 2, pp. 371–381, 2003.

[8] S. R. D. R. Maheshwari, and J. Gao, “Detecting wormhole attacks in

wireless networks using connectivity information,” 26th IEEE
International Conference on Computer Communications, pp. 107–115,

2007.

[9] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B.
Leong, “A random linear network coding approach to multicast,” IEEE

Transactions on Information Theory, vol. 52, no. 10, pp. 4413–4430,

2006.
[10] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless

networks,” IEEE Journal on Selected Areas in Communications., vol.

24, no. 2, pp. 370–380, 2006.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4215581
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4215581

